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Abstract: In recent years, the Internet of Things (IoT) paradigm has been widely applied across a vari-
ety of industrial and consumer areas to facilitate greater automation and increase productivity. Higher
dependability on connected devices led to a growing range of cyber security threats targeting IoT-
enabled platforms, specifically device firmware vulnerabilities, often overlooked during development
and deployment. A comprehensive security strategy aiming to mitigate IoT firmware vulnerabilities
would entail auditing the IoT device firmware environment, from software components, storage, and
configuration, to delivery, maintenance, and updating, as well as understanding the efficacy of tools
and techniques available for this purpose. To this effect, this paper reviews the state-of-the-art tech-
nology in IoT firmware vulnerability assessment from a holistic perspective. To help with the process,
the IoT ecosystem is divided into eight categories: system properties, access controls, hardware and
software re-use, network interfacing, image management, user awareness, regulatory compliance,
and adversarial vectors. Following the review of individual areas, the paper further investigates the
efficiency and scalability of auditing techniques for detecting firmware vulnerabilities. Beyond the
technical aspects, state-of-the-art IoT firmware architectures and respective evaluation platforms are
also reviewed according to their technical, regulatory, and standardization challenges. The discussion
is accompanied also by a review of the existing auditing tools, the vulnerabilities addressed, the anal-
ysis method used, and their abilities to scale and detect unknown attacks. The review also proposes a
taxonomy of vulnerabilities and maps them with their exploitation vectors and with the auditing
tools that could help in identifying them. Given the current interest in analysis automation, the
paper explores the feasibility and impact of evolving machine learning and blockchain applications
in securing IoT firmware. The paper concludes with a summary of ongoing and future research
challenges in IoT firmware to facilitate and support secure IoT development.

Keywords: Internet of Things; firmware auditing; reverse engineering; security testing

1. Introduction

Internet of Things (IoT) devices have become ubiquitous in a wide range of areas,
including Industry 4.0, smart homes, smart cities, healthcare systems, the automotive sec-
tor, public services, and critical infrastructure [1-9]. The anticipated deployment of future
generations of mobile access [10] and Low-Power Wide Area Networks (LPWAN) [11] tech-
nologies will see greater investment and drive the evolution of the IoT ecosystem [12,13].
Regardless of their popularity, the limited hardware and power capabilities of IoT devices
lead to inherent challenges which affect security and device lifespan [14,15]. Many studies
over the past decade focused on hardening IoT security at the network and application lay-
ers [16-22]; however, an important and often overlooked facet of secure IoT infrastructure
is maintaining the integrity of IoT firmware.
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A 2021 Microsoft review of the security landscape indicated that an increasing number
of attacks focus on the IoT device firmware and BIOS (basic input/output system) due to a
significant lapse and support for firmware security primitives [23,24]. Various categories
of IoT vulnerabilities are directly linked to the firmware content and device capabilities.
Firstly, due to their typical disposable nature, some devices cannot be updated or modified,
which renders them vulnerable to issues discovered after their release. From the perspective
of hardware capabilities, their fit-for-purpose design encompasses reduced storage and
processing power, hence additional protection mechanisms may impede their functionality;
further related to their design, their actual implementation cycle is not iterative and unlikely
to be supportive of eliminating vulnerabilities identified after market release [24,25]. Due
to all these inherent challenges, many traditional cybersecurity solutions cannot run on IoT
hardware. Any vulnerable firmware present on IoT devices, coupled with their Internet-
readiness, can therefore be exploited in a more streamlined and straightforward fashion;
subsequently, any such device can be used as a bot, cause disruption, or be the starting point
for other attacks. Some leading security companies, such as Checkpoint, offer products that
investigate the security level provided by the firmware through runtime, weak credentials,
and code checks against high-severity vulnerabilities from the Common Vulnerabilities
and Exposures (CVE) list [26]. Potential attackers often consider alternative attack vectors,
using domains and network endpoints that an IoT device firmware connects to, as infected
firmware files might contain malicious payload as part of a more sophisticated attack. To
summarize existing approaches to counteract these issues, our review outlines auditing
methods that can be used to investigate the firmware of IoT devices against a wider
spectrum of possible IoT firmware vulnerabilities.

Several prior studies and surveys have sought to ascertain and overcome security
issues at the application and network layers of IoT systems [27,28]. While some of the
studies including [25,29-32], focused on individual aspects of system architecture, emula-
tion, operational and service security in IoT-ware, there is a fundamental requirement to
comprehensively survey firmware security of IoT systems, to highlight existing challenges
and discuss opportunities for future research. To this end, unlike previous studies, this
paper provides a holistic view of existing lIoT firmware deployments, prominent vulnera-
bilities, auditing techniques and limitations, and contemporary applications. Its focus on
firmware also includes a comprehensive analysis of the different facets of firmware security
to understand cross-domain concerns and aid future researchers and security practitioners.
The primary contributions are listed as follows:

1. Deliver an overview of the related work in multiple areas of firmware security includ-
ing reverse engineering, tool development, auditing mechanisms, and preliminary
yet relevant work in machine learning. The paper couples the inherent limitations of
IoT environments with existing tools and auditing mechanisms.

2. Present and analyze IoT firmware vulnerabilities across eight broad axes, their respec-
tive susceptibility triggers, and domain limitations based on prior literature. Although
a number of prior studies do focus on particular aspects of the vulnerability spectrum,
here the paper aims not only to define and categorize in terms of vulnerabilities,
challenges, and corresponding mitigation measures, but also to map each of them
with the exploitation vector and with the auditing tool that could help in identifying
the vulnerability.

3. Undertake a detailed software vulnerability analysis, discussing reverse engineering
methods and the latest solutions and frameworks available in the static and dynamic
vulnerability analysis domain. Hybrid vulnerability auditing approaches are presented,
along with the limitations of state-of-the-art auditing techniques and recommendations
for improving scalability, coverage, support, and automation. This is an area that has
been traditionally overlooked as past approaches delivered solutions aimed at open
systems with no resource limitations, while existing reverse-engineering tools focused
on eliciting system behavior rather than identifying vulnerabilities.
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4. Summarize the state-of-the-art research in the area of IoT firmware security, including
framework unification, multi-platform and multi-architecture support, tool manage-
ment, machine learning and blockchain technology;, all in the context of improving
firmware security challenges, increasing vulnerability coverage, and providing poten-
tial recommendations for future research.

To deliver its contributions, the paper reviews the state-of-the-art efforts in securing
IoT firmware, highlighting the causes behind its insecurity, along with a detailed discussion
on the available techniques for security auditing and their efficacy. Compared to similar
efforts, such as [24,30,31], the present review methodically discusses existing firmware prob-
lems, and investigates abstract vulnerability classifications that further motivate analyzing
present assessment techniques and their limitations. The closest study related to our work
is [32], which overviews firmware image re-hosting, emulation, and analysis. However,
to the best of our knowledge, the present work is the first to comprehensively review and
taxonomize the factors that contribute to or influence IoT firmware vulnerabilities, along
with a discussion of existing static, dynamic and hybrid vulnerability auditing solutions,
as well as the implications of future applications such as machine learning, deep learning,
federated learning, blockchain technology, and framework unification.

The remainder of the paper is organized as follows. Section 2 provides a background
overview on loT firmware and related work. Section 3 details vulnerability influences in
IoT firmware. Section 4 provides an overview of existing vulnerability analysis schemes
and discusses the trends in auditing techniques. Section 5 explores the application of con-
temporary technologies in securing IoT firmware, open research challenges, and provides
recommendations for future research directions. The final conclusions are presented in
Section 6.

2. Related Works

As mentioned in the introduction section, several studies catalogued IoT firmware se-
curity issues by aligning them with higher operational layers. This section selects prominent
previous work in firmware security categorized according to primary focality in interface
security, auditing methods, reverse engineering, emerging applications in blockchain and
machine learning (ML), and commercial solutions. Table 1 summarizes a comparative
analysis of the existing literature in the context of IoT firmware. The table also includes
a further classification of the research scope as monolithic focusing on a single aspect,
cross-sectional across multiple IoT operations, standardization efforts, or survey-oriented
studies. Research and developments in each category are briefly described as follows.

Table 1. Related contributions in IoT firmware security *.

Domain Incorporation References
Monolithic Cross-domain Standlfiel;:ls and Security survey

Interface security v v v p [33-36]
Firmware auditing v p p p [17,24,29,37-41]
Reverse engineering v v X p [33,36]
Threat analysis v v p v [36,42-44]
Tools and testbeds p p v p [2,4,44-56]
Distributed ledgers v v v v [45,57-68]
Machine learning p v X X [31,45,69-72]
Commercial developments v p v p [73-75]
Remote attestation v X X p [42,76-79]

* Related work: v Comprehensive studies, P Partial work supporting primary avenue, X Non-existent/non-
applicable.
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Interface security: Vulnerable interface identification in hardware, software, network,
and application domains of loT-ware represented the focality of studies in [29,31].
Some of the work in this area focuses on interface security and vulnerability solu-
tions of consumer devices, detailing mechanisms for remote hijacking and control
of loT-ware, including surveillance nodes and general threats posed by loT-specific
malware [28-30,80]. Additionally, [31] provided a classification of existing solutions
to detect IoT firmware threats, albeit without discussing corresponding solutions.
Auditing techniques: Solutions describing the challenges in static [45,69,81,82] and
dynamic auditing methods [33,38,83-88] have been proposed for loT firmware vulner-
ability detection. Furthermore, to describing these fundamental vulnerability auditing
techniques, some studies also highlighted the use of fuzzing technology and symbolic
system execution to identify susceptibility in IoT-ware [84,89-93]. The primary efforts
have been focused on assessing the effectiveness of different existing auditing methods
and recommendations for developers/testers.

Reverse engineering: Reverse engineering evaluation has been carried out on several
commodity IoT devices to understand firmware vulnerabilities [94,95]. Employing
fault injection, researchers have sought to identify the shortcomings of several vulner-
abilities including weak authentication (password, PIN, etc.), device capability, and
backdoors in IoT-ware [96,97]. System emulation schemes have also been the subject
of research with a view to understand common challenges faced by developers and
testers [38,87,98]. The tools and techniques employed for reverse engineering have
been discussed in [19,25,94-96,99,100], providing basic discussion of pre-processing,
de-compiling, unpacking, and evaluation techniques.

Emerging applications: Ongoing advances in blockchain technology and machine
learning technologies have also been topical areas of research in IoT-ware. Firmware
data transmitted to IoT devices connected to a blockchain network is cryptographi-
cally proofed and signed by the true sender holding a unique public key, ensuring
authentication and integrity of firmware [57-60,101,102]. When an IoT device needs
to be updated, a smart contract [61] sends the hash or metadata file to that IoT device
to obtain a copy of the update through peer-to-peer exchange with other nodes [58,59],
or it is directly downloaded from the manufacturer’s server [62]. Bitcoin technology
can also be employed to verify a firmware version before the update begins and to
acknowledge a transaction before the IoT device can download and install it [57,101].
The studies [63,64] proposed direct and indirect firmware update distribution based
on Ethereum blockchain. Similarly, Skipchain blockchain technology has also been
proposed for secure trusted firmware updates using smart contracts [103].

Firmware identification is vital in preventing spoofed firmware packages. Machine

learning algorithms are used for identification and classification of IoT image fingerprint-
ing [70], according to vendor or device type [71]. Greater ML-based automation signifi-
cantly reduces the latency involved in reverse engineering maneuvers such as firmware
decompression [72,104].

Commercial developments: In the commercial realm, TrustZone [73] by ARM has
provided users a hardware-based security extension establishing a root of trust (RoT)
and cryptographic services to securely store critical (firmware) data, which is an
improvement over conventional trusted platform modules (TPM). TrustZone allows a
wider set of hosted sensitive services driven by (hardware-based) isolation; however,
an ever-expanding set of threats from secure-mode operation is not uncommon [74].
Similarly, Intel Turstlite [75], a generic security architecture suited to low-power
embedded devices, allows remote management, authentication, and over the air
(OTA) updating as well as remote attestation [76]. Among low-cost solutions, IoT-
ware memory access control can also be implemented using SMART [79], using a
ROM measurement routine with a secret key to provide remote attestation. However,
SMART does not specifically deal with memory access violations or provide provisions
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for updating the attestation code [77] and, as discussed in [42,78], the verifier can also
be malicious while the prover is benign, a significant limitation of remote attestation.

Compared to earlier studies surveying specific aspects of loT-firmware, to the best
of our knowledge, the present work is the first to provide a comprehensive survey of IoT
firmware, holistically treating auditing techniques and tools in secure firmware manage-
ment and delivery. The subsequent sections describe the individual aspects of the above
highlighted research streams.

3. Firmware Vulnerability: Influences and Challenges

The amalgamation of multiple technologies embedded in IoT lends greater susceptibil-
ity of IoT devices to several attack vectors. This section discusses IoT-ware vulnerabilities
from a system and operational perspective based on the primary influencing factors in the
existing literature [29,31,100]. Prior studies had various approaches for clustering vulnera-
bilities based on their preferred discriminator: the attack source (physical, local, network,
Internet), the nature of the threat (hardware, operating system, software, interaction), the
TCP/IP layer, the environment (off-the-shelf, corporate), or the impact (denial of service,
bot harvesting, impairing QoS, data leakage). Our approach focuses on the IoT ecosystem,
considering the design, development, and management of IoT devices, crossed with the
access and operational characteristics of such an ecosystem. The design and development
encompass the hardware, operating system, software, communication, and configuration
issues, with the management adding in the additional systems required for normal lifetime
functionality. The other direction focuses on user interaction component and brings in the
legal framework, access, and any adjacent environments. Based on this, we classified the
influencing factors in eight broad categories namely, system properties, access controls,
hardware and software re-use, network interfacing, image management, user awareness,
regulatory compliance, and adversarial vectors illustrated in Figure 1.

loT Firmware Vulnerabilities Exploitation Axes Domain Limitation

Software corruption TN

Memory corruption v b3 ht, Im, pe
|5~ System Properties Misconfiguration e

Access controls . Im, pe, le
[—> Access Mechanisms —‘:: Authentication

Hardware reuse
| —— Component Re-use —EE Software reuse

Development resource

) Web services

|—— Network Interfacing Network protocols

Tainted data

I:: Storage and integrity
——> Image Management Update delivery

>
Automation & intervention
[—> User Awareness _E Optimization
Minimal regulator oversight

cc, ht, oc, QoS

cc, ht, le, QoS, pe

Influencing Factors

oc, ht, QoS, pe, Im
ht, cc

|—— Regulatory Compliance —E: Standardization

Development oversight ht, cc, Im, Is, pe

N i i
Adversarial Vectors —:: Intrusive ht, cc, Im, le, pe

Non-instrusive, stealth

Cross-connectivity (cc), Heterogeneity (ht), Limited Encryption (le), Limited Memeory (Im), Limited Space (Is),
Operational Cost (oc), Power Efficiency (pe), Quality of Service (QoS)

Figure 1. IoT firmware vulnerabilities—influencing factors.

Drawn from prior studies, the prevalent discriminator for vulnerabilities is the attack
vector they trigger; therefore we built the exploitation triggers into our classification, which
are referred to as Exploitation Axes. At the other end, each vulnerability is driven by
a domain characteristics and limitations; this is essential within the scope of our study
because it emphasizes the differences brought in by an IoT ecosystem versus a traditional
IT environment. Guided by the headings of the vulnerability areas, the following sections
will discuss the encompassing exploitation axes and domain limitations.
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3.1. System Properties

System software exploitation remains one of the fundamental avenues to target and

exploit IoT firmware vulnerabilities.

Software corruption: IoT firmware is inherently susceptible to software corrup-
tion, such as coding bugs introduced at service initiation or operation or during
upgrades [29]. Coding bugs may introduce pointer violations, and type/format con-
fusion, while programming related issues can also lead to malicious code injections,
running of privileged commands and system failures. Tainted data and unexpected
input can alter device behavior and further expose it to firmware threats.

Memory management: Inefficient or corrupt coding can also lead to integer and buffer
overflow, a common cause of security vulnerabilities further exacerbated by memory
constraints inherent in IoT-ware [105]. Application requirements also may dictate
implementing safety critical services in separate hardware chips [93,106]. While
hardware-based trust management (HTM) is considered an optimal solution, the
spatial and financial cost again might render it unfeasible for IoT-ware. Adopting
HTM is also limited by the typical absence of dedicated Memory Management Units
(MMU) in IoT systems, leading to frequent memory violations. Service isolation can
also be offered solely in software, utilizing virtual memory and enabling monitoring
of device sub-systems, allowing wider cryptographic support despite code-sharing
on a single processor [79,106]. Additionally, dynamically establishing a root of trust
by modifying the existing microcontroller units (MCU) using a hardware-software
co-design approach is being used to allow greater flexibility and lesser spatial, as
well as memory consumption for secure code execution. Using remote attestation
techniques [76,78,107], detection and disabling of malicious code can be actioned
before compromised execution.

Misconfiguration: Domain limitations including limited memory, power efficiency and
device heterogeneity need to be recognized during system configuration to mitigate
some of the system vulnerability exploits discussed earlier. Misconfiguration of the
system may lead to a successful exploitation.

3.2. Access Mechanisms

Access, authentication, and credential management all play an essential role in patch-

ing IoT nodes, as devices can be located in remote environments where manual (local
console) updates are economically infeasible, requiring over-the-air-update mechanisms.

Access control: IoT firmware access requires well-defined policies and suitable en-
cryption to mitigate against password, certificate, or encryption key threats. The
device manifest, containing author information and firmware update policy, if left un-
encrypted, can lead to accessing, altering, or deleting vital metadata required for future
authentication and upgrades to device firmware. Similarly, public certificate servers
utilizing SSL (Secure Sockets Layer) certificates for provision of IoT-ware security
may lead to man-in-the-middle attacks if repeatedly reused for a range of devices [81].
While vendors may also incorporate backdoor channels or push mechanisms to access
devices for regular updates, such channels, if not protected by adequate credential
management, may result in compromising device firmware or device data [85,108].
Authentication: IoT-ware attacks due to weak authentication mechanisms are rather
common [31]. Misconfigured and erroneous authentication routes allow control and
jeopardizing of normal operation [108]. Weak authentication is usually due to re-
source constraints, allowing limited authentication schemes to conserve memory and
processing power.

3.3. Component Re-Use

Hardware and Software Re-use: Hardware and software components re-use, including
off-the-shelf boards, circuitry, sensors, bootloaders, or software libraries, is preva-
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lent among vendors to reduce development time and associated costs in the IoT
domain [88], while inadvertently overlooking vulnerabilities arising due to hetero-
geneous cross-connectivity. In multi-controller systems, firmware from different
manufacturers requires comprehensive security analysis and testing of each individual
component. Firmware vulnerabilities in one controller or in exploitable software can
lead to cascaded threats disrupting the entire operation and to the mass production of
a range of insecure IoT devices [18].

o Development Resource: An ever-evolving set of IoT applications has also generally
led to vendors frequently employing developers with limited expertise in developing
high-quality firmware [16,34]. In addition, vendors also tend to overlook firmware
vulnerabilities in favor of overall device usability and performance.

3.4. Network Interfacing

IoT devices interact with other heterogeneous systems over several interface types and
networking protocols. However, this may translate into application programming interfaces
(APIs) and protocol susceptibilities, presenting potential attackers with opportunities to
compromise device functionality as well as accessibility. In order to understand the impact
at each level, it is worth observing how each communication level may introduce its own
attack opportunities.

e  Web Services: IoT devices communicate with cloud, fog, edge computing and mon-
itoring systems over a range of web APIs. Insecure, poorly designed web services
remain one of the leading causes of device exploitation, allowing service interruption
via application-level and firmware-based attacks [33,35,100]. Prominent malware such
as IoTReaper have successfully exploited IoT web interfacing to launch wide variety
of attacks on device-ware [109]. Limited resources again hamper the adoption of
multi-factor authentication incorporation in IoT-web interactions [46].

e Network Protocols: Vendors use a wide range of standardized and proprietary network
protocols that, when combined with reusable hardware and software components,
may lead to propagation of existing security issues in IoT-ware. Poor management of
device network configuration, such as leaving open unused ports, may lead to security
issues. The security firm Kaspersky reported that, in the first half of 2023, honeypots
recorded that nearly 98% of the network-related attacks on IoT-ware occurred on the
unsecure Telnet interface [43]. Over-the-air updates need to employ standardized and
tested protocols that offer greater protection against man-in-the-middle and spoofing
attacks while patching firmware.

e Tainted Data: The sensor and actuation services process incoming data that may re-
quire acquisition, perusal, validation, processing, and sanitization through associated
fog and cloud nodes. Data acquired from sensory or actuator portals, if tainted or
malformed, can overwhelm device operability and expose the device firmware to
security risks [110].

3.5. Image Management

Firmware image management is vital for the longevity and secure operation of IoT-
ware. Inefficient non-redundant firmware storage and upgradation schedules coupled with
suboptimal configuration parameters, will negatively influence IoT firmware integrity.

e  Storage Integrity: IoT device firmware requires image storage integrity as well as se-
cure distribution and updating to mitigate the threat exposure. Despite improvements
in OTA mechanisms, device developers are generally reluctant to provide security
patching as a continual maintenance service [47]. Given the significant lifespan of
IoT operations, devices may be running obsolete firmware several years old that has
several discovered, widely acknowledged flaws. Where OTA updates and encryption
mechanisms are available, the network protocols also need to be tested for security
compliance and suitable encryption. As an example, investigations by the security
community identified that the update protocol for the popular FitBit devices is prone
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to hacking despite using end-to-end encryption [111]. Firmware image integrity is a
strict requirement to avoid attempts at flashing or modifying existing images from
unwarranted sources, protecting image confidentiality from adversaries recovering
plain text binaries.

Update Delivery: The process of firmware update, where available, can be used as an
attack delivery option, as it can be initiated by the customer, pushed from a server, or
follow a hybrid approach; in addition, vendors may introduce provisions for backdoor
updating of device firmware [64,103,112]. While not an intrinsic vulnerability, having
firmware downloads available publicly may also offer an insight into the libraries,
settings, and functionality to launch sophisticated attacks. Lack of coordination
between the operating parties, server and network downtime, and device outages
can also lead to inconsistencies in update tracking, causing unnecessary delays to
firmware updating.

3.6. User Awareness

Firmware updates frequently involve complex decision-making processes, such as the

re-certification of tested code, and once the device has been deployed, consumer consent in
upgrading to any of the new functionalities.

Automation and Intervention: An efficient device update process requires a balance
between automation and human intervention, whereby large-scale updates should
be performed using minimal manual intervention. To optimize decision making,
necessary provisions for manual intervention can be kept, while maximizing de-facto
upgrade policies using dynamic updates to be applied as released. Users can also be
incentivized to update by flagging the risks that they expose themselves to in case of
non-compliance.

Optimization: Incorrect operational settings such as disabling or reducing event
logging to conserve energy makes post-incident analysis difficult and prone to errors.
A significant number of IoT vendors provide devices without any user guidelines
for updating configuration parameters based on usage. Opting for default settings,
ranging from generic authentication passwords, switched off update notifications,
or outdated web applications, vendors pass the responsibility and burden of device
firmware updates to the end-user. However, as widely acknowledged in the literature,
firmware adjustments are rarely considered or applied by everyday users [23,28,112].
A general improvement in the set of guidelines to provide the user with sufficient
information to secure their devices is nonetheless vital and consortiums such as IoT
Alliance Australia issued specific user guidelines on the maintenance and operation of
IoT firmware updating and help in identifying firmware hijacking [113].

3.7. Regulatory Compliance

The IoT paradigm is still an emerging technology subject to ongoing standardization.

This section introduces some of the existing efforts in standardization and compliance.

Standardization: Existing IoT-ware regulations have been introduced by commercial
and governmental organizations including OWASP (Open Web Application Security
Project), IoT Security Foundation, and NIST (National Institute of Standards and
Technology). Standardization bodies have provided operational guidelines as well as
best-practice mechanisms to provide secure IoT systems; however, these have not been
widely adopted due to limited regulation. On a similar note, inadequate and inefficient
compliance resulted in insecure booting, minimal or no encryption, and outdated
firmware. Enforcing security compliance as part of lIoT-related products engineering,
development frameworks, and business policies requires greater regulatory oversight
by governmental and non-governmental bodies which are usually beyond the scope
of standardization organizations.

Development Oversight: Vendors with inadequate experience in the IoT domain have
been mass producing devices without adequate security inclusion [94,114,115]. A



Sensors 2024, 24, 708

9 of 28

separate category of oversight challenges is linked to the design and manufacturing
process. Hardware device manufacturing and software provision tend to be rather
independent processes and coordination issues between original device manufactur-
ers (ODM) and original equipment manufacturers (OEM) may result in overlooking
firmware flaws. Code developed and supplied by ODMs may contain security loop-
holes that, when used and implemented by OEMs, may result in replication across
thousands of commercial devices [16,35].

3.8. Adversarial Vector

It is important to consider adversarial models when documenting the vulnerability
triggers of IoT-ware.

e  Local and Remote Vectors: Remote or over the network adversarial factors can infect
systems via malware, while local adversaries can eavesdrop and interfere with device
communication [107]. Stealth-based adversaries can attack either from closer physical
proximity or remotely, masquerading as an authentic entity and gain unwarranted
access to the IoT ecosystem [79].

e  Side-channeling: Similarly, side-channel attacks can be carried out by a physical
non-intrusive entity, while an intrusive adversary can completely overtake an authen-
tication mechanism to prove its identity to an IoT device aiming to solicit information
or exploit device behavior through hardware-software modification [79].

e  Hybrid Designs: Dedicated hardware and software security have associated cost
implications; the inherent spatial, financial, and power efficiency compromises for IoT-
ware require careful trading off. A combinatorial approach using a mix of hardware
and software-based controls to address adversarial threats is often considered to be
a more viable option compared to purely hardware-based security or an entirely
software-oriented security primitive [107].

The above discussion provides a non-exhaustive list of the major vulnerability influenc-
ing factors, ranging from system and network properties to firmware image management
and user-awareness concerns. In the following section we specifically consider the state-of-
the-art firmware vulnerability auditing tools and technologies.

3.9. Domain Limitations and Associated Impact

As mentioned, IoT devices are inherently limited devices, but these limitations span
across multiple areas, as highlighted in Figure 1. From the hardware perspective, they have
limited memory (Im) and limited storage space (Is) due to their reduced manufacturing
cost; a significant direct impact of these characteristics is that such devices cannot typically
employ additional security monitoring processes. Also under this heading are their limited
encryption (le) capabilities, which directly impact protection mechanisms thar are computa-
tionally intensive or require specialized hardware. Given their wide deployment, each IoT
device must also benefit from a low operational cost (oc) and must deliver excellent power
efficiency (pe), both components also having a direct impact on any security mechanisms
that users may wish to deploy but, in addition, also severely impacting any support, update,
or monitoring infrastructure or associated management costs aiming to keep them up to
date. The limited hardware also impacts their ability to perform any additional security and
update functions beyond their primary purpose, which has specific quality of service (QoS)
associated constraints. All above listed points relate to individual devices; expanding to
the overall IoT ecosystem, there is a wide range of devices from a variety of manufacturers,
which leads to significant heterogeneity (ht) and cross-connectivity (cc) to allow them to
operate. While beneficial from a market competitiveness perspective, these two constraints
have a direct impact on harmonizing defense mechanisms and they also make regulatory
compliance virtually impossible to achieve.
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4. Vulnerability Auditing

Firmware auditing is a manually intensive task, requiring assessor expertise in reverse
engineering (RE) and a multitude of static (SA) and dynamic analysis (DA) techniques [110].
Prior to vulnerability analysis, the respective firmware needs to be systematically processed
to ensure its compatibility with the chosen auditing method. Once processed or re-hosted,
the firmware is subjected to vulnerability auditing testing processes for accurate determina-
tion of inherent weaknesses. The completeness and accuracy of vulnerability auditing is
subject to several associated challenges in reverse engineering tasks, as well as the adequacy
of state-of-the-art vulnerability analysis mechanisms. The present section overviews the
generic firmware reverse engineering process, discussing existing analysis techniques and
their respective limitations.

4.1. Reverse Engineering

Firmware source code is usually not readily available for vulnerability auditing. As
part of the firmware examination process, the first and foremost step is to perform a series of
reverse engineering tasks involving binary file acquisition, unpacking, and de-compilation
to access the source code [16,65,100,108]. Table 2 provides an overview of existing tools

involved in reverse engineering process along with their performance caveats.

Table 2. Firmware reverse engineering—prominent tools and techniques *.

Tool Operatl(.mal Features Limitations
Domain
Binwalk [116] FU .Flrrm{v.are .analys1s, extraction, .ﬁle system lelte.d flrmwarg extraction,
identification, entropy comparison recursive unpacking
Recursive unpacking for approximately .
BANG [117] FU 130 file types Inconsistent support
FMK [118] FU Flrmwgre unpe}c'kmg a.nd extraction and Ir}sufﬁaent support, supports only
repacking specific to Linux. Linux platforms
FACT [119] MRE, FU Automatic, gxtens1ble basic firmware analysis L%rmted.to s.tatl? analysis, and to certain
and comparison to Linux distributions, resource heavy
ANGR [120] MRE, FU Framework for binary analysis using CFG C.omplex usability, limited Windows
binary support
. . Binary analysis with intermediate language Closed source. Limited support for
Binary Ninja [121]  MRE, FD supporting multiple platforms, with GUI dynamic analysis
. .. . . Difficult to learn, and analyze
Radare2 [122] FD Binary analysis, disassembling and debugging complex code
Ghidra [123] D Open—squrce ana.ly51s and de-compilation tool, Supports limited architectures and
supporting multiple platforms de-buggers, slow performance
KLEE [48] MRE, FD Symbolic VM based on LLVM compiler support = Resource heavy
Built atop multiple analysis and reverse Compatibility issues of base-tools
FAT [49] MRE . . T
engineering tools with Linux
IDA Pro [124] MRE Powerful 1nteracflve dlsaésembler, debugger, High cost, closed source, basic GUI
support for multiple architectures
Efficient open-source emulator, and . .
QEMU [125] MRE virtualization for Linux platforms Limited GUI, only Linux support
AFL [126] MRE Security oriented brute-force fuzzer employing  Requires target input to learn

generic algorithms

and improve

* MRE: Multiple Reverse engineering Tasks, FA: Firmware Acquisition, FU: Firmware Unpacking, FD: Firmware
Decompiling.

4.1.1. Firmware Acquisition

Firmware can be acquired from a vendor repository, locally extracted from a de-
vice [94], or intercepted and saved during OTA updating [19]. Firmware acquisition
automation using web-crawling and scripting techniques is also possible [81,108], although
dedicated FTP-based image servers remain the preferred option [83].
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Code can also be acquired from devices through JTAG and UART ports or by using
forensic analysis techniques [85,94,127]. Device manifests and update servers may schedule
regular upgrades of device firmware using OTA updates [19]. Depending on encryption,
firmware data (update) transfer mechanisms can allow vulnerability analyzers to record
and store data during the update process through packet sniffing or mirroring [128]. Estab-
lishing central repositories that aggregate firmware code from multiple vendors to expedite
and scale auditing procedures remains a long-standing tester requirement [114].

4.1.2. Firmware Unpacking

The criteria and scheme for binary packing is usually vendor-specific and considered
proprietary [33,81,108,129]. Some of the common challenges faced by testers during un-
packing include file encryption, obfuscation [44], compression using non-standard schemes,
or a monolithic multi-feature systems containing kernel, OS and IoT applications bun-
dled together [33]. Each of the unpacking concerns require independent selection and
application of tools, the foremost being entropy analysis to determine the encryption
or obfuscation techniques. The overall confidence in the output generated is, however,
minimal, requiring repeated analysis by domain experts for unpacking [71]. Some of the
other prominent tools used for unpacking (summarized in Table 2) include Binwalk [116]
and BANG [117] using recursive unpacking, while FMK [118] and FACT [119] focus on
Linux-based platforms. Multi-faceted tools such as ANGR [120] can also be utilized as part
of reverse engineering and analysis processes. ANGR is a python-based platform offering
binary analysis, automated firmware unpacking, control flow analysis, symbolic execution,
and compatibility with Linux, Windows, and MAC platforms. The operational capability
of ANGR is only limited by either OS-specific or inconsistent backend support. Successful
firmware acquisition and unpacking is followed by source code generation.

4.1.3. Decompiling

Decompiling machine code is needed for greater human readability in a higher-
level language and comprises disassembly, data flow, control flow analysis and data type
inspection [130,131].

Machine code is first converted to a low-level assembly equivalent. Modern com-
pilers are capable of separating executables from data; however, if data are placed in the
executable section, it may result in inefficient execution code and data isolation.

After disassembly, during lifting and data flow assembly processing, the code is
translated to a higher level internal representation. Control flow analysis can also employ
control flow graphs, allowing data type identification in the code. Debugging is sometimes
also used to analyze sections of particular security interest [39]. Popular de-compilation
tools include Radare?2 [122] and Binary Ninja [121] and provide binary analysis capabilities
with (optional) GUI support. IDA Pro [124] and Ghidra [123] have multiple features
including interactive disassembly and multi-architecture support. KLEE [48] uses symbolic
VM processing (LLVM) compiler with relatively heavy resource consumption.

4.1.4. Challenges

The impact of the issues relating to the acquisition, unpacking and de-compilation
process is amplified by a number of additional challenges highlighted as follows.

e Packing logic: packers do not modify the code functionality, making presentation of
the code sequential and not readily human-legible for security analysis. Therefore,
use of automated dynamic analysis as opposed to manual perusal can yield better
results, providing auditing scalability for a multitude of firmware solutions [104].
Testing frameworks, including FAT [49] and QEMU [125], simplify the analysis by
incorporating several vulnerability assessments tools and emulation.

e  Mitigation techniques: In addition to cryptic packing, vendors may resort to de-
compilation mitigation, adding to firmware source inspection obstacles.



Sensors 2024, 24, 708

12 of 28

e  Metadata unavailability: Masquerading device meta-data to avoid hardware-based
hacking can inadvertently complicate the security auditing process [94,129] by limit-
ing information on product release, update log and version number, and hardware
architecture for de-compiler selection [132]. Intuitively assuming protocols, OS and
libraries and other data inputs are used to analyze the device for security vulnerabili-
ties is therefore common, as is brute-force fuzzing using genetic algorithms such as
the American Fuzzy Lop (AFL) fuzzer [126] that aids when randomizing input testing.
The scope, applicability, and operational capability of auditing techniques remains
vital to firmware vulnerability assessment and device protection.

4.2. Auditing Techniques

Auditing techniques encompass methodologies for vulnerability analysis of IoT
firmware. In the existing literature [32,33,66,81,83,85], auditing techniques can be broadly
divided into static and dynamic auditing schemes. Table 3 presents a comparative analysis
of the schemes against the auditing features.

Table 3. Firmware auditing schemes.

Auditing Feature

Static Dynamic

Methodology

Code scanning (manual, semi-automated) Execution-based behavior analysis

De-compilation
False Positives/Errors
Firmware Acquisition

Manifest
Non-exploitable code
Physical device access

Run-time Insights
Scalability

Unused Code
Virtualization

Vulnerability Focus

Limited applicability as de-compiler may not
be available or produce false output

High rate of false positives N/A

There is no need to acquire firmware if the device
is locally or remotely available

Necessary for virtualization

Cannot find unexploited code

No requirement for code de-compilation

Acquiring device firmware is necessary

Desired but not necessary
Non-exploitable code cannot be analyzed

Physical access to devices is not needed

No real-time code execution information;
problems due to run-time vulnerabilities.
Possible to automate if a large repository of
device firmware is available

Unused code can be inspected

Virtualization is not needed
Buffer overflows, memory corruption,
segmentation errors, uninitialized variables

IoT device or firmware emulation required
Can provide additional insights on input
data/execution during run-time

Can be achieved with greater virtualization

Not feasible to identify vulnerabilities in unused
code of program

Virtualization needed for manifest/meta-data
Any type of vulnerability can be inspected by
running relevant code

4.2.1. Static Analysis

Static analysis involves manual and intensive scanning of the source code against
ruleset patterns to identify coding errors [36,66,133]. Static analysis, therefore, does not
involve the actual execution or emulation of firmware and does not require the auditor to
have physical access to IoT devices for scrutiny [44]. Typical vulnerabilities determined
using static analysis include invalid references, buffer overflows and memory corruption
flaws [67], segmentation faults, and uninitialized variables [68]. To reduce cost and time,
auditors can use tools to automate sub-processes, sometimes at the risk of greater false
positives. Similarly, code obfuscation and encryption techniques employed by device
manufacturers can impede static vulnerability analysis [134]. We analyze existing static
analysis strategies and tools over the past decade that we summarized in Table 4.

Historically, we can divide existing static analysis strategies into six categories: Man-
ual analytics, Automation and parallelism, Parsing-based analysis, Control flow graphs,
Machine learning approaches, Determining backdoors.

A typical example of a manual analysis tool is woodpecker, introduced in 2012 for
Android applications [135]. Although the tool itself was not intended to find firmware
vulnerabilities, it did find permission leaks in pre-loaded applications. Later, in 2014, the
work performed by Costin et al. [81] laid the basis for firmware vulnerability detection,
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including an extensive study of more than 32,000 firmware images. After statically analyz-
ing the images, the authors were able to detect over 693 different vulnerabilities, including
38 zero-day vulnerabilities.

Table 4. Auditing strategies and tools for static analysis *.

Tool Year Analysis Method Target Vulnerability SC. UVv. PV. Architecture
Woodpecker [135] 2012 Code analysis Permission leaks N/A N/A Yes Android
Correlation engine [81] 2014  Vulnerability correlations Any Yes Yes Yes Multiple
Firmalice [108] 2015 Symbolic execution Authentication Yes Yes No Multiple
PIE [69] 2015 Parsing identification ~ DU8% Protocolspecs, oy Ny, Multiple

commands
ANGR [120] 2016  Binary control flow graphs Any Yes Partly Yes Limited
Genius [136] 2016 Control flow graphs Any Yes Yes No Multiple
Gemini [40] 2017 Neural network Any Yes Partly  Yes Multiple
HumlIDIfy [45] 2017 Machine learning F}Tlilcr’:ilr:ﬁi}e/n No Partly Yes Multiple
Stringer [134] 2017 Automated analysis Finding backdoors Yes No No Multiple
FirmUp [82] 2018 Program slicing Multi-domain Yes Yes Partly Multiple
UFO [137] 2018 Shell script dependency Multi-domain Yes Yes Yes Multiple
Two-stager [41] 2019 Code similarity Any Yes Yes No Multiple

* SC: Scalability issue, UV: Unknown Vulnerability Detection, PV: Platform Versatility.

Firmalice, another binary analysis tool proposed in [108], used an automation and
parallelism approach that slices a program and uses a symbolic execution engine to execute
parallel functions for recording vulnerabilities. The tool has the ability to understand
security policies as well as identify privileged instructions.

A parsing-based analysis group was introduced by Parser Identification in Embedded
Systems (PIE) [69], which is a tool for detecting functions while parsing components and
complex code. Before any classification can be performed on the parsed components, the
firmware binary code is converted to an intermediate language via LLVM, thereby allowing
PIE to analyze the firmware of embedded systems without any documentation or source
code. PIE can be used for detecting exploitable bugs, extracting protocol specifications,
and finding hidden commands, and has been widely tested on user devices such as GPS
systems, power meters, hard disks, and PLCs (Programmable Logic Controllers).

As a follow up to Firmalice, Shoshitaishvili et al. proposed ANGR [120], enabling both
static and dynamic analysis as briefly described earlier on; ANGR remains popular among
many other tool frameworks for carrying out firmware analysis using binary control flow
graphs (CFG). Following a different approach, FirmUp [82] performs static vulnerability
analysis of firmware images using CFGs and, additionally, firmware slicing to find the exact
location of vulnerable procedures. Using reverse engineering tools including Binwalk, IDA
Pro, and ANGR, researchers claimed to have outperformed other static analysis methods by
an average margin of 45%. CFG schemes allow auditors to systematically inspect firmware;
however, scalability remains a concern with an ever-increasing diversity in firmware.

Machine learning has been used to enable greater automation by incorporating pat-
tern recognition in existing static analysis techniques. In 2016, Feng [136] introduced an
algorithm called Genius to solve the scalability problem with control flow graphs using a
combination of machine learning and computer vision techniques. In 2017 Xu et al. [40]
developed a neural network-based approach, named Gemini, seeking to outperform al-
gorithms such as Genius [136] using a proof-of-concept implementation. The aim was to
reduce the classifier training time while finding a significantly higher number of vulnerabil-
ities in firmware images. In 2019, Wang et al. proposed a two-stages firmware vulnerability
detection based on code similarity [41] but the study did not categorically prove greater
accuracy compared to Gemini.

A set of static analysis tools have also been developed to determine undocumented
functionalities hidden in firmware. A prominent example is HumlIDIfy [45], which uses
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ML to identify any hidden functionality, using a set of profiles with expected firmware
behavior and a binary functionality description language that compares these with the
real-time code behavior. If variations are found between expected and real-time behavior,
then the firmware is assumed to have hidden functionality. Although it is a novel approach,
it cannot be regarded as a complete solution because it requires expert human knowledge
and firmware metadata to avoid generating a substantial number of false positives.

Another common vulnerability in firmware development is the use of backdoors.
Stringer [134], a tool based on automatic static analysis of firmware, seeks to address
this problem. In a similar study, a tool named Universal firmware vulnerability observer
(UFO) [137] was proposed and could be used for firmware vulnerability, reversing, deter-
mining password leakages, and finding backdoors using a newly developed algorithm
called Shell Script Dependency (ShDep). UFO can be used to ensure that embedded IoT de-
vices follow the IoT specific security and privacy standards such as OWASP, UL-2900 [138],
and ICSA Labs [139]. During UFO validation, 96% of 237 devices considered were success-
fully reverse engineered and more than 70 were found to have common vulnerabilities.
Although UFO cannot reverse engineer obfuscated or encrypted firmware, it claims to have
better firmware file system extraction when compared to existing tools.

4.2.2. Dynamic Analysis

The dynamic schemes execute firmware code allowing auditors to observe system
behavior without requiring access to the program internals information. Dynamic analysis
requires metadata information to optimize firmware emulation. However, images cannot
always be emulated without knowledge of the underlying architecture, therefore dynamic
analysis does not scale well when automated emulation is not possible, as it would require
repeated customization of emulation and configuration setup. Typically, dynamic analysis
is employed when source code is unavailable or de-compilation is unsuccessful. We will
analyze existing the prominent technologies and tools used for dynamic analysis listed
earlier in Table 5. There are several well-used methods for conducting the dynamic analysis:
peripheral emulation, symbolic execution, abstraction modelling and fuzzing techniques.

FIE [92] was developed to scrutinize memory locations of peripherals using invocation
of interrupt handlers to observe behavior. FIE was built using KLEE symbolic execution
engine [48] and is micro-controller specific. FIE keeps records of all previously analyzed
states, filtered using state pruning and memory smudging. State pruning helps remove
redundant state executions for even small firmware images, while memory smudging
allows FIE to recognize loop counters and replace them with symbolic variables to help
with greater code coverage.

Symbolic execution is a rather slow yet powerful technique to determine equations
capable of defining as well as fully describing the stagnant and operational state of firmware
in real-time. Using symbolic execution, peripherals are emulated, and input is generated
for execution and testing in real-time. Tools such as Laelaps [98], puEmu [140], or Gerbil [88]
can run various embedded device software without coding any specific device related
information into the emulator. Unknown peripheral registers are considered as symbols and
the input firmware image is symbolically executed to infer rules responding to unknown
peripheral access types. The rules are further stored in a database that can be referred to
during firmware analysis. The Gerbil [88] is an extension of the ANGR [120] static tool and
was used to test privilege separation vulnerabilities in everyday smart devices.

Table 5. Auditing strategies and tools for dynamic analysis.

Tool Year Analysis Method Target Vulnerab. SC. UV. PV. Architecture
FIE [92] 2013 Symbolic execution Memory bugs Partly Yes Yes MSP430
Avatar [85] 2014 Emulation Any Partly Yes Yes Multiple
Firmadyne [141] 2016 Emulation Multi-domain Yes Yes Yes ARM MIPS
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Table 5. Cont.

Tool Year Analysis Method Target Vulnerab. SC. UV. PV. Architecture
Dynamic auto. [33] 2016 Emulation Web vulnerability Yes Partly Partly Multiple
Multi-stager [99] 2016 B“Tlary a.nal.ysm, Industrial IoT Yes Yes Yes Multiple

virtualization systems
FIoT [142] 2016 Symbolic execution Memory corruption Yes Partly No Multiple
P2IM [86] 2017 Abstraction model Any Partly Yes Yes Multiple
DICE [38] 2021 Abstraction model Any Yes Yes Yes Multiple
HALucinator [87] 2020 HAL, Emulation Any Yes Yes Yes Multiple
PRETENDER [88] 2018 Emulation Any Yes Yes Partly Multiple
Laelaps [98] 2020 Symbolic execution Any Yes Yes Yes Multiple
pEmu [140] 2021 Symbolic execution Any Yes Yes Partly Multiple
Gerbil [88] 2019 Symbolic execution Any Partly Yes Yes Multiple

SC: Scalability issue, UV: Unknown Vulnerability Detection, PV: Platform Versatility.

Several multi-utility frameworks were developed to execute the dynamic analysis
supported by full system emulation via QEMU [125], which emulates the I/O and kernel
operations. One such framework is Avatar [85], able to perform dynamic analysis of
embedded device firmware and having equal applicability in the IoT domain; however, it
requires real hardware to discover vulnerabilities slowing execution of the entire procedure,
which is adding to its scalability concerns. In contrast, the framework proposed by Costin
et al. [33] can identify vulnerabilities in Linux-based systems without requiring actual
hardware by testing the embedded web interfaces with readily available open-source
security scanner tools such as Zed Attack Proxy (ZAP), Nmap, and Nessus, followed by
Metasploit for exploiting vulnerabilities. Firmadyne [141] focuses on Linux-based firmware
vulnerabilities; it can crawl vendor websites searching for firmware images along with
their metadata using manually written scripts. After downloading the images, it extracts
the kernels and performs dynamic analysis methods to find and exploit vulnerabilities on
the emulated firmware.

Expanding to industrial IoT-ware, the dynamic framework proposed by Palavicini
et al. [99] uses a combination of methods, including binary analysis tools, cyber reasoning
system, fuzzer, as well as security analysis virtualization solutions such as OpenPLC,
Firmadyne, and QEMU. The study proposes a three-stage approach, starting with the
extraction of the firmware blob to extract code for emulation, further emulating the code,
and analyze the results for vulnerabilities using a number of techniques such as fuzzing
and symbolic execution. This analysis results in finding backdoors, information leakage
and code for creating botnets. A similar multi-stage approach is used in FloT [142] and it
allows the identification of memory corruption issues in constrained IoT firmware.

Feng et al. [86] proposed the Processor-Peripheral Interface Modeling (P2IM) soft-
ware framework based on an off-the-shelf fuzzer channeling input to firmware binary for
auditing. P2IM uses abstraction modelling of peripheral devices to generate firmware
models; it also employs information from manufacturer device documentation to under-
stand acceptable processor-peripheral interface inputs. An extension to P2IM, the DICE
framework [38] is used for emulation of direct memory access (DMA) channels in firmware
analysis. The framework is hardware-independent, identifying and abstracting DMA input
channels as firmware communicates with source and designation DMA transfer points in
the DMA controller. DICE can manipulate the input transferred via DMA for analysis and
is integrated in the P2IM framework.

Abstraction modelling is also used by HALucinator proposed by Clements et al. [87].
HALucinator uses high-level replacements of the hardware abstraction layer function and
locates all the library functions using binary analysis of a firmware and library matching
techniques to infer functions. HALucinator was validated using American Fuzzy Lop
fuzzer, employing genetic algorithms for greater use-case coverage; during the validation
experiments, it reported multiple previously unknown firmware library vulnerabilities.
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While most methods promise multiplatform and multi-architecture analysis, real-
test cases and reported results have mostly focused on limited classes of firmware. To
fully appreciate their readiness, a comparative analysis of alternate approaches and tools
requires the same firmware as well as a wider set of architectures, characteristics that are
unfortunately absent in existing studies.

4.2.3. Hybrid Proposals

Hybrid approaches, amalgamating static binary analysis with dynamic real-time
investigations are a valuable option for greater auditing coverage. A hybrid combination of
auditing techniques can be used to increase unknown vulnerability detection efficacy. From
a practical perspective, multiple systems can be considered hybrid; Costin and Zaddach’s
work [28], described earlier, is a combination of dynamic and static analysis that aims to
achieve full automation. Similarly, DroidRay [50] was developed to discover malicious
code in Android devices by relying on dynamic analysis during APK files checks and
on static analysis during scanning for viruses. Shoshitaishvili et al. [143] implemented
Mechanical Phish, a hybrid vulnerability detection framework that combines fuzzing with
symbolic execution to find bugs while satisfying specific and general checks required by
the tested programs.

Hybrid techniques can also rely on fuzzing, using malicious input patterns to trigger
unexpected device operation, essentially stress-testing system security. loTFuzzer [129] is
one such framework that uses a black-box approach to detect possible memory corruption
vulnerabilities. It sends probing messages to the IoT device and, when crashing, collects
the generated error messages. Zheng et al. also implemented a grey-box fuzzer called
Firm-AFL [51] that supports firmware sets that can be emulated through Firmadyne [141]
and cannot be fuzzed via Firm-AFL. The authors in [84] developed a vulnerability-oriented
fuzzing tool named FIRMCORN which uses a vulnerable-code search algorithm to find
vulnerabilities in IoT firmware. Despite these recent developments, inherent scalability
issues incorporated in hybrid dynamic and static analysis will continue to be a concern for
fixed input as well as fuzzing-based techniques.

4.3. Discussion of Auditing Techniques

Dynamic analysis is preferred by practitioners over static analysis, despite the in-
herently high vulnerability determination efficiency of the later, because complex reverse
engineering and tight software—hardware coupling raise additional challenges for static
auditing [38]. Over the recent years, fuzzing and hybrid methods have also gained wider
adoption. Frameworks incorporating static, dynamic and hybrid techniques can be de-
veloped for accurate identification over most of the vulnerability axes listed in Figure 1.
One important facet to consider while amalgamating different solutions is the availability
of utilities for a specific underlying platform. For the majority of the solutions discussed
in previous sections, Linux platforms remain prevalent while architecturally most solu-
tions support ARM and MIPS with partial support for others. ARM, MIPS, and x86 are
architectures with different instruction sets used in the design of computer processors.

In relation to the scope of the analysis, as discussed in Section 3, there are several
classes of vulnerabilities that need to be audited and analyzed, including system properties,
access mechanisms and networking, code reusage, and user awareness. While some vul-
nerability triggers such as authentication bypassing, hard-coded credentials, and memory
corruption have been the subject of interest due to their ubiquity, less frequent alternatives
are often overlooked during auditing. Misconfiguration, user-awareness, lack of regulatory
compliance and standardization, as well as tainted data input and essential image manage-
ment have received lesser attention due to the complexity of a potential investigation and
variability across the spectrum of IoT-ware in use. Table 6 provides a summary of the eight
different vulnerability classes along with their prominent auditing primitives, respective
platform, and architecture support.
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Table 6. Vulnerability coverage—existing techniques.

Auditing

Techni Supported Platform Architecture Compatibility
Vulnerab. Influence Exploitation Axes echnique
Static Dynamic Linux Windows RTOS Other ARM MIPS X86 Other
. [41,51,129, [37,41,51,52,69, [41,69,82, [37,41,56,69, [51,69,82, [41,51,69,82, [53,69,82, [14,41,83,86,
System Property Memory corruption [52,69,82] 142] 82,129,142] 129,142] 82,129] 129,142] 129,142] 129,142] 95] [82,129,142]
Taint vulnerability [52,53] - [52,53] [53] [53] [53] [52,53] [52,53] [53] [53]
. [39,45,81,108, [45,81,99,108, [45,81,99, [45,81,99,
Authentic./Backdoor 122137] [99] 137] [108] [108] [108] 108,137] 108,137] [99,108] [99,108]
Access Mechanisms Weak [45,81,122
ea 581,122,
password 137] ) (811 ) [45,81]
y [50,54,55, [50,54,55, [50,54,55, [50,54,55,
Comp. Re-use Obsolete components [54,55] [104] [50,54,55,104] [104] [104] [104] 104] 104] 104] 104]
Insecure
Pt [137] [69] [69,137] . : [69] [69,137] [69,137] [69,137] [69,137]
Network Interface Weak
ea )
firewall [45] ) [45] - - - [45] [45] - -
Image Mgmt Web [81] [81] [81] - [81] . [81] [81] [81] [81]
’ Services, Storage
Regulatory Harg""zfifd [39"3%6'81' - [45,56,81] - - ; [45,81] [45,31] [81] [81]
Compliance, credentials <
User awareness Information leakage - [99] [99] - - - [99] [99] [99] [99]
Adversary Vectors Side-channeling [7,33,38,85] [142] [3,38,85,94] [108] [108] [108] [3,7,38,94] [3,7,38,94] [99,108] [99,108]

RTOS: Real-Time Operating System; ARM: Advanced RISC Machine; MIPS: Microprocessor without Interlocked Pipeline Stages; x86: processor architecture, developed by Intel

and AMD.



Sensors 2024, 24, 708

18 of 28

Due to heterogeneity of loT-ware, auditing tools vastly focus on identifying and
replicating recognized attacks, while only a few solutions focus on finding zero-day vul-
nerabilities. The versatility of existing tools is questionable, as most of them only cover a
particular class or subclass of vulnerabilities and may not be easily extended to cover others.
In hindsight, some solutions such as ANGR [120], Genius [136], Gemini [40], Avatar [85],
and DICE [38] can detect numerous vulnerabilities due to their underlying methodology,
but may also exhibit a high rate of false positives unless used by domain experts. Several
solutions discussed earlier employ a wide range of methods for firmware analysis, includ-
ing function profiling, program slicing, inter-relating shell scripts, code snippet emulation,
and augmented process emulation. While beneficial for individual tools, establishing and
developing a similar critical mass of equivalent human expertise in such a wide variety
of techniques is very challenging. The complexity involved and the associated human
expertise required can directly impact auditing results. In terms of future trends, research is
increasingly focusing on machine learning and blockchain technology. ML and blockchain
can, to an extent, bring further flexibility, adaptability, and automation to firmware audit-
ing. However, harnessing the full spectrum of potential applications of these technologies
remains an open initiative.

5. Contemporary Research and Open Challenges

This section examines firmware vulnerability challenges, as identified in the previous
sections. The relationship between state-of-the-art and contemporary research is stream-
lined across three integral components: standardization, technology redressal, and design
innovations. Figure 2 illustrates future research directions and corresponding challenges.
The arrows show how their potential interconnectivity and discussion in each category is
provided as follows.
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Figure 2. Future research avenues, open challenges, and intersecting themes.

5.1. Standardization
5.1.1. Unification

Despite numerous auditing solutions, most assessment tools aim to identify a spe-
cific firmware vulnerability. In this context, auditing frameworks must be unified to
provide a comprehensive vulnerability evaluation instead of developing isolated tools
and firmware-specific solutions [100,144]. The development of self-evolving, extendable,
platform-independent automated mechanisms will further facilitate firmware auditing,
testing and validation for the IoT community. Modular unified frameworks, that can
incorporate static and dynamic ensembles, may lead to the implementation of hybrid
approaches and offer better scalability and efficiency [48,125]. Developed frameworks
should broadly cover the auditing of hardware, firmware, and connectivity aspects of IoT
devices for regulatory compliance, configuration, and seamless deployment.



Sensors 2024, 24, 708

19 of 28

5.1.2. Firmware Stack and Instruction Set

Firmware stacks and instruction set analysis could also benefit from unification and
greater standardization. Currently there is no unified IoT firmware architecture [129] and,
although there are commercial reasons behind their inherent variability, having a unified
architecture would make security analysis significantly easier. Unification also requires
translation, interpretation, and mapping to associate any abstract (IoT-specific) commands
to multiple underlying architectures allowing greater automation [145]. Firmware vendors
must also agree to a unified machine-independent stack for firmware development in
order to have greater standardization. The impact of these measures must be carefully
weighed; while standardization endeavors may not result in the development of new
firmware stacks, the ability to fully support existing supported stacks such as the Unified
Extensible Firmware Interface (UEFI) would be helpful [146,147]. To conclude, the design
of a firmware stack that can be used as a model for IoT-ware and future applications would
immensely benefit practitioners in industry and academia.

5.2. Technical Redressal
5.2.1. Analysis Methodologies

As previously established, reverse engineering requires further research since certain
processor architectures do not have any associated de-compilers and cannot be analyzed.
Incorporating ML as part of reverse engineering will provide automation of the tasks
by connecting relevant pieces of information for human analysis. Specifically, ML can
automate training by using identified matching problems in several architectures and
aggregated learning models through federated learning (FL). FL can be employed to fuse
the extracted ML models at an aggregation server and expedite reverse engineering tasks of
separate vulnerability classes, holistically identifying threats across the entire set of features
offered by the device type [148].

As mentioned in the earlier discussion, dynamic analysis requires emulation across
multiple architectures, which is also far from flawless and may crash due to the unavail-
ability of NVRAM parameters [129]. Extending QEMU and similar emulator technologies,
re-enforced by ML, can help identify any existing vulnerability patterns. Emulation can
also leverage blockchain assisted federated learning to incentivize local model training and
regularly update global vulnerability classification models [57]. Crafting statistical input
features in traditional ML systems can again be manually intensive; the evolving narratives
have therefore resorted to deep learning (DL) structures as a viable alternative. Firmware
security analysis can also leverage DL techniques to feed raw data comprising device
properties such as domain of use, instruction-set, firmware architecture, DMA specification,
peripheral device composition, and vendor-specific information for automatic retrieval
of usable features to support classifier training and vulnerability identification. Some
studies have already shown promising results in the application of DL approaches for static
binary as well as dynamic analysis to inspect vulnerability type signatures and similari-
ties [149,150]. With a handful of basic studies, DL incorporation in firmware vulnerability
assessment is still nascent and open for further academic and industrial investigation.
Sufficient training data for ML and DL structures would, however, require greater data
sharing between vendors, auditors and regulatory bodies.

5.2.2. Secure Ecosystem

Prominent IoT security organizations such as the European Union Agency for Cy-
bersecurity (ENISA), OWASP, IoTSF, and Symantec recommend IoT firmware updating
as one of the most important steps towards improving IoT security. Several IoT secure
update protocols, including the IETF SUIT [134] standard, have been suggested by prior
studies [16,34,89,102,108]. A standardized firmware update framework for this purpose
can protect against one of the biggest attack vectors in the IoT paradigm [137]. Blockchain
technology can also be used to store authentic copies of firmware made available to par-
ticipating nodes and customers for over-the-air retrieval [63]. As previously discussed,
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blockchain technology using several different publishing, incentive, and peer to peer mod-
els has been used in firmware storage and delivery [57-59,102]. Incorporating blockchain
transactions during firmware authentication and download can also aid accountability
and reduce instances of compromised image updates being downloaded by everyday
users, while firmware update distribution incentives can also reward participating vendor
blockchain peers. Verification of downloaded images and general update delivery mecha-
nism are only a few of the suggested efforts in existing research [62-64,101] with significant
work required to translate generic blockchain assisted models in real-world firmware se-
curity scenarios. Blockchain structures can also be used as a knowledgebase repository
of vulnerability signatures, storage of locally generated ML /DL classifiers, publication of
unknown vulnerability information and integration with regulatory oversight bodies to
increase consumer confidence in IoT-ware.

5.2.3. Tool Management and Data Collection

The typical performance expectations from the previously considered vulnerability
analysis tools are not on par with evolving vulnerabilities and are affected by firmware
unpacking or availability issues. In this context, tool compatibility with IoT-ware is im-
portant as some were not built for embedded or IoT devices [30]. Furthermore, limited or
altogether absent support and guidance remain a constant concern. A few of the analysis
platforms mentioned, such as Firmalice, have had no compatibility studies associated with
them, while others such as IDA Pro, are either costly or proprietary. Tools may also report
a high false positive/negative rate due to the versatility of IoT devices [93]. Additionally,
much of the work performed in firmware analysis has typically focused on Linux-based
systems, which are popular due to availability of open source and free tools [116], mak-
ing the investigation of Windows-based and other platforms quite complex. A growing
proportion of firmware is, however, based on various operating systems, therefore future
research must propose novel methodologies for finding and resolving the respective vulner-
abilities, regardless of OS platform. Essentially, understanding the behavior of the device
architecture, unpacking and format analysis, and finally understanding the code behavior
can jointly improve vulnerability auditing. This is an ongoing challenge due to limited
success of current standardization efforts and the heavy reliance on the developer and
vendor priorities.

Aggregated efforts are also required towards firmware metadata collection, which
is an essential factor in reverse engineering for firmware analysis and towards reducing
the overall analysis time by recording and referring to typical vulnerabilities. Blockchain
is a promising technology in this regard; with its immutability, verifiability, and storage
features, metadata can be recorded on public and private blockchains and made accessible
to the vulnerability research community for reference. A more progressive approach
could, therefore, be to use blockchain-based repository, offering greater unification of
resources rather than the traditional vendor provided online datasheet. In essence, there
is a substantive need for a publicly available firmware database, accompanied by the
metadata for the respective releases, to allow researchers and security experts to benefit
from it as well as share their expertise to benefit vendors.

5.3. Design Innovations
5.3.1. Operating Systems and Platforms

OS compatibility with the underlying hardware architecture is important from a
security perspective [2]. Any removal of libraries and packages that are unnecessary
for device operation reduces the possibility of potential exploits. While there have been
concerns by developers against integration of standardized platforms such as UEFI in
IoT-ware, the domain is still open for further investigation [151]. Employing UEFI in IoT
for firmware development would allow developers to reduce the time to market, given
the usage of UEFI is well-known in traditional computing devices, since rapid product
development cycles have had an impact on the ability of OS designers to economically
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realize IoT-specific operating system. As a result, current IoT devices mostly use stripped
down versions of existing OSes primarily designed for other purposes/systems while only
few developments such as Contiki, Android things, or LiteOS offer IoT-specific systems.

5.3.2. Emulation Support

The current IoT ecosystem relies significantly on security through secrecy. While this
may be acting as a deterrent for some attacks, making the firmware of IoT devices public
would bring in the support of the research community and facilitate emulation designing
and long-term support [38,98]. Providing the source code and design of the firmware will
encourage contribution to standardize and broaden the scope of emulator testing. Code
testing, which is a vital part of the development process, focuses typically on ensuring
the delivery of core logic rather than security provision. Static analysis can also be used
during the development phase while dynamic analysis techniques after the product is
developed for validation and testing purposes [31,66]. Vendor-emulation software used
for IoT-ware testing and quality control can expedite vulnerability analysis and reduce
time gap in patching zero-day vulnerabilities if made available to regulatory bodies open-
source consortiums.

The role of emerging technologies such as machine learning and blockchain in ad-
dressing the technical challenges is highlighted in Table 7.

Table 7. The overview of application areas for blockchain and machine learning in IoT firmware security.

Technology Application Area Adaptations and Recommendations
ML and DL Automated reverse Reverse engineering tasks require greater automation using intelligent code
engineering [148] analysis and ML/federated learning models.
Improvement in emulation systems can help to extend dynamic analysis to
ML and DL Improved emulation architectures where static analysis is the only primitive available. Self-evolving
[31,57,66] emulators based on prediction DL models with automated selection of
architecture-dependent parameters can also be helpful.
Identifying vulnerability ML apd DL technologies can aid in pattern/signature recognition while federated
learning platforms can ensure low-latency local model generation for global
ML and DL patterns [149,150] o r . . .
Auditing framework [57] classifiers. FL can ensure greater data privacy and anonymity while the
framework can utilize blockchain peers for verifiability and immutability.
Blockchain Secure firmware update OTA updates need to have sufficient security guarantees; blockchain technology
[62-64,101] can be employed as a promising alternative to deliver OTA updates.
Blockchain Image storage and Blockchain technology can be used for storage and delivery of firmware images
verification [57-59,102] offering verifiability and accountability for regulatory bodies.
. . Metadata and manifest information should be available in a central repository and
Blockchain Metadata collection

verifiable for authenticity. Blockchain can be leveraged for this purpose.

Apart from the research avenues and open challenges discussed, it is important
to acknowledge the hardware, software, and space constraints encompassing loT-ware.
Limited resources can greatly influence the applicability of vulnerability identification,
assessment, and mitigation measures as highlighted in Section 3.9. A concerted effort by
stakeholders, including vendors, manufacturers, developers, and testers, can aid security
improvements by allowing embedding security vulnerability analysis as a crucial aspect of
product development.

6. Conclusions

The prevalent use of IoT devices to simplify everyday life to achieve automation is
increasingly apparent. However, safe everyday device operation requires an adequate
level of security. Improving loT firmware security can provide much-needed assurance
to IoT users against security threats. The present work discusses concepts that emphasize
the importance of identifying, analyzing, and mitigating security threats specific to IoT
firmware. This work explores fundamentals in firmware vulnerability identification, ex-
ploring static, dynamic and hybrid auditing techniques as well as state-of-the-art solutions
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available to counter the insecurity of IoT devices. In parallel, we present a discussion of
open challenges and propose recommendations influenced by contemporary technologies,
including machine learning, deep learning, federated platforms, and blockchain technology;,
to give an overall view of IoT-ware vulnerabilities. The paper also acknowledges the
need for greater resource unification, standardization, and regulatory guidance from IoT
vendors, developers, integrators, and other stakeholders to adequately address current and
future security concerns.
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