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Abstract: Widespread and ever-increasing cybersecurity attacks against Internet of Things (IoT)
systems are causing a wide range of problems for individuals and organizations. The IoT is self-
configuring and open, making it vulnerable to insider and outsider attacks. In the IoT, devices are
designed to self-configure, enabling them to connect to networks autonomously without extensive
manual configuration. By using various protocols, technologies, and automated processes, self-
configuring IoT devices are able to seamlessly connect to networks, discover services, and adapt their
configurations without requiring manual intervention or setup. Users’ security and privacy may be
compromised by attackers seeking to obtain access to their personal information, create monetary
losses, and spy on them. A Denial of Service (DoS) attack is one of the most devastating attacks
against IoT systems because it prevents legitimate users from accessing services. A cyberattack of this
type can significantly damage IoT services and smart environment applications in an IoT network.
As a result, securing IoT systems has become an increasingly significant concern. Therefore, in this
study, we propose an IDS defense mechanism to improve the security of IoT networks against DoS
attacks using anomaly detection and machine learning (ML). Anomaly detection is used in the proposed
IDS to continuously monitor network traffic for deviations from normal profiles. For that purpose, we
used four types of supervised classifier algorithms, namely, Decision Tree (DT), Random Forest (RF),
K Nearest Neighbor (kNN), and Support Vector Machine (SVM). In addition, we utilized two types of
feature selection algorithms, the Correlation-based Feature Selection (CFS) algorithm and the Genetic
Algorithm (GA) and compared their performances. We also utilized the IoTID20 dataset, one of the most
recent for detecting anomalous activity in IoT networks, to train our model. The best performances were
obtained with DT and RF classifiers when they were trained with features selected by GA. However,
other metrics, such as training and testing times, showed that DT was superior.

Keywords: IoT network; DoS attacks; feature selection; classifier algorithms; machine learning; IDS

1. Introduction

The IoT is present in many elements of our lives, including homes, cars, trains, streets,
transportation, agriculture, and businesses. However, the increasing interconnectedness of
these devices has raised concerns regarding the security and trustworthiness of IoT commu-
nications. As IoT systems become more complex and extensive, ensuring secure and reliable
interactions among devices becomes a paramount requirement [1]. Trust and reputation
management mechanisms play a pivotal role in establishing the reliability and integrity of
IoT ecosystems. The rapid growth of such attacks is partly due to the proliferation of IoT
technologies in areas such as smart grids, environmental monitoring, patient monitoring
systems, smart manufacturing, and logistics [2]. The design of IoT devices entails several
automated processes that enable them to self-configure. The devices discover and connect
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to networks autonomously using protocols like UPnP or mDNS, minimizing the need
for manual intervention during setup. Plug-and-play capabilities enable these devices to
establish connections instantly upon powering up or connecting, automatically identifying
network protocols, and initiating operations without requiring explicit configuration. Ad-
ditionally, these devices can be configured dynamically to obtain IP addresses and network
settings, thereby ensuring adaptability within various environments. In addition to the
configuration data they get from centralized servers and the cloud, they adjust the setting
details based on specific deployment scenarios through auto-provisioning mechanisms.
Furthermore, advanced IoT systems may incorporate machine learning algorithms for
autonomously optimizing configurations over time, adapting to changing user behavior.
The combination of automated processes allows IoT devices to configure themselves more
efficiently and effectively, so user intervention is minimized, and their usability can be
enhanced in a variety of network environments.

IoT systems are susceptible to a wide range of security attacks, and of those that
prevent legitimate IoT network users from accessing their services, Denial-of-Service (DoS)
is one of the most common. As a result, firms and organizations suffer huge monetary
losses by violating Service Level Agreement (SLA) terms. Therefore, to ensure that systems,
devices, and data are secured and protected effectively, robust techniques and mechanisms
to counter attacks against IoT networks are needed [3]. In addition, DoS poses a danger to
many IoT systems, including smart cities, healthcare applications, and agriculture systems.
Attackers can exploit vulnerabilities in IoT devices, such as smart lights, door locks, and
smart TVs, to launch DoS attacks against them [3]. One common attack type is distributed
DoS (DDoS), one of which occurred on Friday, 21 October 2016, when many IoT devices
were attacked. The attackers targeted IoT security vulnerabilities and hacked the IoT
network, affecting access to customer data and disrupting services and applications. The
companies sustained huge damage [4]. Many researchers in the literature have mentioned
the urgency of the need to address the security of IoT systems and networks against DoS
attacks, and some have proposed several DoS defense techniques to detect such attacks.
Defenses against DoS attacks tend to include multiple verifications, network traffic filtration,
and inspection of attacks. Most of these frameworks still have limitations, such as the use
of traditional techniques and the lack of strict security requirements [3]. Very few studies
have employed machine learning techniques in the Intrusion Detection System (IDS) to
detect DoS attacks in IoT networks [3].

It has recently become possible to use the IoT paradigm to build smart environments
that aim to maximize the comfort and efficiency of human life. A billion IoT smart nodes
interconnect without human interaction through self-organized and heterogeneous com-
munication networks. Various fields have been improved using IoT-based systems in
recent years, including healthcare, agriculture, supply chains, education, transportation,
and traffic monitoring. Of the 17 billion connected devices worldwide, 7 billion are IoT
devices, a number that is expected to rise to more than 22 billion within the next few
years [4]. Unfortunately, most of these connected devices offer inadequate security and
privacy protection, triggering many security and privacy concerns in IoT networks. In turn,
node heterogeneity has raised security concerns, one of the most challenging aspects of the
IoT [5]. However, IoT device security cannot be achieved by employing security methods
like IDS, access control, and authentication [6].

Therefore, researchers are concerned with securing these devices. The intrusion
detection field has received heavy research attention worldwide in order to resolve this
issue. IDSs designed specifically for IoT environments are crucial for mitigating IoT-
related security attacks. An IDS is a security mechanism that works mostly at the network
layer of an IoT system. For an IoT system to be fully effective, the IDS must be able to
analyze packets of data at different layers of the IoT network with different protocol stacks,
generate responses in real time and adapt to a variety of technologies based on the IoT
environment [3]. Smart environments that rely on the IoT require IDSs with a high data
volume, high performance and fast response time. As a result, conventional IDSs may
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not be completely suitable for IoT environments [7]. However, designing an efficient IDS
for IoT devices remains a challenge for a number of reasons: detection systems for IoT
environments must be extremely lightweight and use minimal storage space and computing
power [8]. Also, for detection and classification, the number of features must be kept as
simple as possible [8]. Using all features in the design of an IDS can introduce redundant
and irrelevant features. To achieve effective IDS performance, feature optimization is
necessary. Moreover, many of the existing datasets are outdated and may be inefficient at
capturing the behavioral patterns of modern cyberattacks. However, little information is
available about recent attacks or their patterns [7]. So, finding suitable datasets to train and
test the detection system is challenging [7]. Therefore, this paper aims to:

• Propose an IDS defense mechanism based on anomaly detection and machine earning
(ML) techniques in order to prevent hackers from successfully attacking IoT networks.

• Select the most relevant and important features using the CFS algorithm and GA and
compare them.

• Determine the optimal ML classifier model for detecting and classifying DoS traffic in
IoT networks by evaluating four types of supervised classifier algorithms, KNN, SVM,
DT, and RF. Then, apply a confusion matrix to analyze the results.

This paper builds upon our previous study about the threats to IoT, in which we found
that DoS attacks pose the most threat to IoT networks and that detection techniques are
required to address this challenge [9].

2. Intrusion Detection System

An IDS is a software or a service that monitors or identifies abnormal activity within a
network or system. To predict anomalies in IoT networks, several ML methods are being
implemented [10]. Figure 1 shows that IDSs are mainly classified into two types: host-based
and network-based IDSs. A host-based IDS monitors and secures a single device or host
based on the device’s information, such as system logs. In contrast, a network-based IDS
measures the flow of data within a network by accessing and analyzing the data. A network-
based IDS can be further divided into packet- and flow-based systems. Information from
the network packet, such as the payload or header, is used for the packet-based IDS. As a
result, it is often called the traditional IDS [11]. In contrast, the flow-based IDS analyzes
and monitors anomalies within a network based on network flow characteristics, such as
data rate and bytes. Thus, it is also known as network behavior analysis [11]. It is possible
to classify malicious or anomalous network activity using supervised or unsupervised
ML models.
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3. Existing Work

Verma et al. [3] discussed the role of anomaly-based IDS in securing IoT against DoS
attacks. A performance evaluation of seven ML classification algorithms is conducted,
including RF, adaboost, gradient-boosted machines, extremely randomized trees, classifica-
tion and regression trees, and multi-layer perceptron. To determine the optimal parameters
of classifiers, they used random search algorithms. Various factors are taken into account
when measuring classifier performance, including accuracy, specificity, sensitivity, false
positive rate, and area under the receiver operating characteristic curve. The CIDDS-001,
UNSW-NB15, and NSL-KDD datasets are used to benchmark all classifiers. To find signif-
icant differences among classifiers, Friedman and Nmenyi post-host tests are applied to
the statistical analysis of performance measures. Furthermore, the authors evaluated all
of the classifiers’ response times using the Raspberry Pi hardware device. Based on the
performance results and statistical tests, they found that classification and regression trees,
as well as extreme gradient-boosting classifiers, are optimal for building anomaly-based
IDS that are tailored to the IoT environment.

Khatib et al. [6] presented ML solutions that detect and protect systems from abnormal
states. Furthermore, several ML classifiers were used to analyze the effect of data oversam-
pling on ML models. They also studied the binary and multiclass cases and compared the
different techniques used after resampling and balancing the dataset using the SMOTE
method. The results showed that when employing this kind of data to identify cyberat-
tacks on IoT network traffic, Linear Discriminant Analysis (LDA), RF, DT, the approaches
performed better than others since they were able to predict assaults with a higher degree
of accuracy. Also, it was found that the DT, RF, and Nystrom-SVM techniques performed
better in the binary case, which is the first time the same technique has been applied for de-
tecting attacks in IoT network traffic. They noticed that when they trained their algorithms
with balanced data, they were able to detect attacks more efficiently.

Khammassi et al. [12] presented a feature selection approach for IDS to produce a
subset of features suitable for classifying the KDD99 and UNSW-NB15 datasets. There
are three stages in the proposed approach: preprocessing, feature selection, and classifi-
cation. During the preprocessing phase, redundant records are eliminated, the datasets
are resampled, and attribute values are modified to make them compatible with Logistic
Regression (LR) classifiers. The feature selection stage uses the Genetic Algorithm-Logistic
Regression (GA-LR) wrapper, which involves an interaction between a GA-based feature
search and an LR-based learning algorithm. Optimal subsets are selected by maximizing
the accuracy of classification and minimizing features. As a result of the GA-LR wrapper,
the best subset of features is used for classification. Three decision tree classifiers—C4.5,
RF, and NBTree—are used to assess and compare the produced feature subsets against
other current methods throughout the classification step. With only 18 features in the
KDD99 dataset, the experimental results showed a 99.90% classification accuracy, a 99.81%
detection rate (DR), and a 0.105% false alarm rate (FAR). In addition, the selected subset
offers a good DR of 99.98% for the DoS category. For UNSW-NB15, the lowest FAR was
6.39%, and the classification accuracy was good in comparison to other approaches with
a subset of 20 features. As a result of these findings, the UNSW-NB15 dataset is more
complex than the KDD99 dataset. To improve the accuracy of classification for the new IDS
benchmark, they suggest trying other approaches.

Mukherjee et al. [13] proposed to identify anomalies in smart devices and IoT systems.
A supervised learning model was used to predict anomalies in historical data, which could
be incorporated into real-world scenarios, preventing future anomalies and attacks. ML
models are used to predict anomalies on 350 K datasets, and their performance is compared
with the state of the art. Two different approaches are used based on the dataset analysis.
Initially, the classification algorithms were applied to the entire dataset, and after excluding
data points with binary values (0 and 1) in the feature “value”, the same classification
algorithms were applied, and the results have been 99.4% accurate in the first case and
99.99% accurate in the second case.
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Brun et al. [14] provided a methodology for network attacks against IoT gateways to
be detected online. Using a set of metrics extracted from packet captures, the methodology
predicts that there is a possibility of a network attack using a deep-learning approach.
Based on empirical validation results on packet captures containing attacks, the Dense
Random Neural Network (RNN) detects attacks correctly.

Tyagi et al. [15] developed an IDS based on extracted novel feature sets synthesizing
the BoT-IoT dataset that can accurately and automatically distinguish benign and malicious
traffic in real-time. An IoT-specific lightweight feature set consisting of seven lightweight
features was developed instead of using existing feature reduction techniques such as
principal component analysis (PCA), which can change the core meaning of variables. The
study shows that fabricated seven features can be used to detect four types of attacks,
such as distributed DoS (DDoS), DoS, reconnaissance, and information theft. Further, the
study demonstrated the efficiency and applicability of supervised ML algorithms such as
KNN, LR, SVM, multilayer perceptron (MLP), DTs, and RF in IoT security. A variety of
performance metrics, including accuracy, precision, recall, F-Score, and receiver operating
characteristics (ROC), are used to validate the performance of the proposed system. They
found that DT and RF classifiers both performed nearly as well in terms of accuracy (99.9%),
but other metrics like training and testing times indicated that RF was superior.

Thamilarasu et al. [16] proposed an intelligent IDS that detects anomalous behavior on
insecure IoT networks by combining network virtualization with the Deep Learning (DL)
algorithm. The IDS can detect attacks relating to the IoT, such as blackholes, opportunistic
attacks, DDoS, sinkholes, and wormholes. An approach based on deep learning is used
to detect attacks. In the proposed system, features are selected based on the information
gained at each Deep Neural Network (DNN) layer. Based on the results of the proposed
deep learning model, the true positive rate was 97%, and the average precision was
95% for all attacks. A total of five models have been developed for the detection of each
attack type. In their experiments, they found that it is both practical and feasible to use
DL algorithms for effective anomaly detection in the IoT environment, based on network
simulations and testbeds.

Anthi et al. [17] proposed a framework that uses ML classifiers to identify network
probing and simple DoS attacks (SYN flood, UDP flood). For DoS attack detection, the
proposed system showed low precision (high false positive (FP)) and low recall (high false
negative (FN)). Therefore, it does not deliver promising results for detecting attacks.

Ye et al. [18] combined the SVM classification algorithms with the simulation platforms
of mininet and floodlight to construct the Software-Defined Networks (SDN) environment,
and the 6-tuple characteristic values of the switch flow table were extracted. They also
implemented deep packet analysis for detecting DDoS attacks in SDN by analyzing flow
entries (such as source IP, destination IP, source port, destination port, and number of
packets). Since the characteristic values are attack-dependent, they fail for other types of
attacks besides DDoS attacks. Using the proposed IDS, the false alarm rate reaches 0%,
which is virtually impossible in reality. Based on their experiments, the accuracy rate of
their method is 95.24% with a small amount of data collection.

Kostas [19] proposed an anomaly detection network using ML methods. CICIDS2017
was used as a dataset since it is up-to-date and has a wide variety of attacks. An RF
regression algorithm was used for feature selection on this dataset. A total of seven ML
algorithms were used in the application step, all of which produced high performance.
These are the following ML algorithms and success rates: Naive Bayes (86%), Quadratic
Discriminant Analysis (QDA) (86%), RF (94%), ID3 (95%), AdaBoost (94%), MLP (83%),
and KNN (97%).

Alsheikh et al. [20] proposed a framework that integrates RF algorithms for classifi-
cation jobs and additive regression techniques for anomaly detection in medical wireless
sensor networks (WSNs). The framework was tested on real medical datasets available
from reliable sources and achieved both spatial and temporal anomaly detection. The
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research team found that ML algorithms and techniques can be instrumental in devising a
framework for fault and anomaly detection in medical WSNs.

Hasan et al. [21] analyzed several ML models to predict attacks and anomalies on IoT
systems. A number of ML algorithms were used, including LR, SVM, DT, RF, and artificial
neural networks (ANN). In comparing performance, accuracy, precision, recall, and F1
score are used as evaluation metrics. A 99.4% test accuracy was achieved for DT, RF, and
ANN. Even though these three techniques have similar accuracy, other metrics suggest that
RF performs better.

Ramadan et al. [22] proposed a hybrid IDS system that detects IoT network attacks.
Preprocessing and classification are the two stages of the proposed system. Data prepro-
cessing is performed on the NSL-KDD dataset by encoding, scaling, and removing noise.
Enhanced Shuffled Frog Leaping (ESFL) is then used to extract relevant features. A hybrid
IDS system known as the Light Convolutional Neural Network with Gated Recurrent
Neural Network (LCNN-GRNN) is used for classification. An anomaly class or a normal
class depends on this classification. Based on the experimental results, the proposed system
performed better than the existing methods.

Aversano et al. [1] proposed a DL-based anomaly detection method for IoT scenarios.
Using a DNN architecture and 70 features, they detected anomalies in network traffic
and identified the type of attack. Additionally, an autoencoder and a hyperparameter
optimization analysis are used to reduce the number of features. To conduct experiments,
they developed an integrated dataset based on public IoT traffic traces. In all the scenarios
analyzed, the results show good performance. With all features included in the binary
classification, the best accuracy is obtained at 99.89% in the top hyperparameter permuta-
tion. Furthermore, feature reduction leads to stable classifier performance (using a PCA
and a 9-layer autoencoder, for example, to obtain accuracy greater than or equal to 99.2%
when there are greater than 35 features). The 70 considered features in the multinomial
classifier are too many, and fewer features are likely to provide better and more reliable
results. However, when using a 9-layer autoencoder for feature reduction, the best accuracy
is 98.9% obtained when the number of features is 60. When the number of features is
between 35 and 60, this feature reduction approach ensures better performance. Finally,
the optimized DNN architecture is evaluated in a noisy scenario that involves some of
the features considered. It was also found that adding Gaussian noise in up to 40% of the
features considered did not affect performance too much, especially for the binary case.

Lopez-Martin et al. [23] propose a new network intrusion detection method for IoT
networks. Based on a conditional variational autoencoder, the proposed method integrates
intrusion labels within the decoder layers. It provides better classification results than
other familiar classifiers and is less complex than other unsupervised methods based on
variational autoencoders. Furthermore, the method recovered missing features from the
incomplete training datasets by performing feature reconstruction. The Network Intrusion
Detection System (NID), which is part of network monitoring systems, and IoT networks
can use both capabilities. This model performs exceptionally well for both tasks, performing
better on the NSL-KDD test dataset, for example, than well-known algorithms: RF, linear
SVM, multinomial logistic regression, and multilayer perceptions. The model creates a
single model in a single training step, regardless of the labels associated with the training
data. Classifiers based on variational autoencoders need to create as many models as there
are distinct label values, each requiring a different training step. It takes a great deal of
computational effort and resources to complete the training steps. Models can recover
missing categorical features with three, 11, and 70 values, respectively, with 99%, 92%, and
71% accuracy. Multilabel classification and feature reconstruction problems are evaluated
using extensive performance metrics. For predicted or reconstructed labels, they provided
aggregated and one-versus-rest metrics, such as accuracy, F1, precision, and recall.

Yihunie et al. [24] analyzed anomaly-based IDS using ML techniques. A total of
five ML classifiers were applied to the NSL-KDD dataset: stochastic gradient descent, RF,
logistic regression, SVM, and sequential model. In spite of the fact that the NSL-KDD
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dataset does not accurately represent current network traffic, it is used in that research
due to the lack of a publicly available dataset. Five different classification algorithms were
tested with and without one-hot encoding. Based on the results, RF outperformed the other
four classifiers. The RF classifier achieved near-perfect results. The RF model achieved the
highest recall, indicating that a minimum number of false negatives were encountered.

Kim et al. [25] presented a GA to improve the detection model in network IDSs based
on SVM. In addition, IDS should be able to handle misuses as well as novel attacks, and
it should process audit data with minimal overhead on the computer system and IDS
itself. The performance of SVMs has been shown to be better than that of traditional
classification methods. It is true that SVM-based IDS can improve IDS performance in
terms of detection rates and learning speed compared to conventional algorithms like
neural networks (NNs), but there is still room for improvement. It is often the case that
the overall performance of IDS is severely degraded as the number of features in the audit
data increases. In order to overcome these problems, they employed the GA technique,
which provides fast and excellent optimization for IDS, to determine the optimal detection
model. On the KDD99 intrusion detection dataset, they demonstrated the feasibility of the
proposed system. Finally, the paper method is not only capable of determining the optimal
detection model but also minimizes the number of features that an SVM classifier should
process and therefore maximizes detection rates.

Meng [26] conducted a broader and deeper experiment to compare the performance
of NNs, SVM, and DT with the aim of demonstrating the practice and exploring the
issues of using such types of approaches to detect network anomalies. Also discussed and
analyzed are the effects of feature selection. Their experimental results indicate that ML
approaches are capable of identifying anomalies with proper training, but the performance
may vary depending on the algorithm. The wide use of ML schemes in real-life operational
environments is hindered by fluctuations in capability, false alarm rates, and training data
difficulties. In order to enhance detection performance, ML schemes should be applied in
an appropriate manner.

Al-Janabi et al. [27] developed an anomaly-based IDS that uses artificial NLs to detect
and classify attacks. Three main modes of operation are available for the developed
system: detection mode (for distinguishing normal from abnormal actions), detection and
classification mode (for further categorizing abnormal events into four types of attacks:
DOS, PROB, U2R, or R2L), and detailed classification mode (for dividing abnormal events
into 29 types of sub attacks). Additionally, anomaly intrusion detection parameters are
applied to packet behavior. IDSs can learn a system’s behavior using several methods. To
learn the behaviors of a system, the proposed IDS uses a back propagation ANN. KDD99
was used in their experiments, and the results were obtained to meet the objectives.

Shurman et al. [28] introduced a hybrid-based intrusion detection system (IDS) frame-
work for IoT networks that can identify suspicious network traffic from any node. They
ran datasets of IPs against the design to determine how it could identify strange packets on
the network and block undesirable IPs before they become an initial DoS threat.

Mamatha et al. [29] proposed an intrusion acknowledgment system that is character-
ized by four essential stages: Aggregation of data, where groupings of framework packages
are gathered. In the second stage, data preprocessing is performed, in which getting ready
and test data are prepared and fundamental features are selected to distinguish between
classes. During the period of data gathering, data is first compiled to make the central
features, like those in the KDD Cup 99 dataset. The third stage involves preparing the
classifier, where the model for the request is prepared. Lastly, the readied classifier is used
to detect intrusions on the test data during attack affirmation. A channel-based fragment
affirmation calculation, explicitly based on Flexible Mutual Information Feature Selection
(FMIFS), has been proposed. The FMIFS calculations are adjusted according to Battiti’s
figures in order to diminish the number of highlights. In order to reduce the plenitude
of highlights, FMIFS proposes an adjustment as per Battiti’s calculations. In FMIFS, the
excess parameter that is required in Mutual Information Feature Selection (MIFS) and
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Modified Mutual Information Feature Selection (MMIFS) is discarded. In spite of the fact
that there is no set framework or rule for determining the best inspiration, this can be
intriguing a little while later. To create an IDS, FMIFS and least-squares support vector
machines (LSSVM) are combined. LSSVM works with correspondence objectives rather
than distinction obstacles as an alternative to quadratic programming problems for solving
social event issues. LSSVMIDS and FMIFS were studied using three well-understood
impedance disclosure datasets: KDD Cup 99, NSL-KDD, and Kyoto 2006+. LSSVMIDS is
computationally efficient when using the proposed feature selection algorithm.

Albulayhi et al. [30] developed and implemented a novel approach to feature selection
and extraction for anomaly-based IDS. To select and extract relevant features, two entropy-
based approaches are used: information gain (IG) and gain ratio (GR). After that, the best
features are extracted using mathematical set theory: union and intersection. Four ML
algorithms are used to train and test the model framework on the IoT intrusion dataset
2020 (IoTID20) and NSL-KDD datasets: bagging, multilayer perception, J48, and IBk. Based
on the intersection and union, 13 and 28 relevant features (out of 86) were obtained for
IoTID20 and 15 and 25 relevant features (out of 41) for NSL-KDD, respectively. In addition,
they compared the proposed approach with other state-of-the-art studies. Based on the
comparison, their proposed model scores a very high 99.98% classification accuracy.

Krishnan et al. [31] evaluated a number of supervised feature selection methods in
order to predict malicious network traffic against IoT devices. Three different methods
of feature selection were employed: sequential backward processing, sequential forward
processing, and recursive feature elimination (RFE). Furthermore, for each selection method,
three different logistic regression techniques were implemented. According to the study,
all three methods of logistic regression (Support Vector Classifier (SVC), RF, and XGBoost)
performed well with high accuracy. As a result, these techniques can be used in a supervised
learning setting to predict an attack on IoT devices.

Qaddoura et al. [32] proposed a three-stage approach involving clustering with re-
duction, oversampling, and classification using a single-hidden layer feed-forward neural
network (SLFN). A novel aspect of the paper is how the data reduction technique and the
oversampling technique are combined to generate useful and balanced training data and
the hybrid approach used for detecting intrusion activities. As part of the experiments,
accuracy, precision, recall, and G-mean were evaluated. They were divided into four steps:
assessing the impact of data reduction with clustering, evaluating the framework with basic
classifiers, evaluating the effect of oversampling, and comparing it to basic classifiers. It is
found that SLFN classifications and SVM with Synthetic Minority Oversampling Technique
(SVM-SMOTE) with 0.9 ratio and k value 3 for the k-means++ clustering technique produce
better results than other classification techniques and other values.

Choudhary et al. [33] propose an IDS based on deep learning using SVM and DNN.
Since SVMs are binary classifiers, only two routes were classified at a time for the appro-
priate route to be shown. Cosine similarity measures and deployment models have been
introduced to understand route similarity. Measurements of precision, recall, F-measure,
and accuracy have been performed to assess the proposed work. A comparison of the
proposed architecture with other state-of-the-art techniques has been conducted to deter-
mine its effectiveness. Compared with other approaches, precision, recall, F-measure, and
accuracy improved by 13%, 74%, 71%, and 76%, respectively.

Mohan Sai et al. [34] utilized a Raspberry Pi to implement a lightweight intrusion
detection technique using a ML approach. Their method of classifying attack traffic and
normal traffic was based on an SVM. To reduce the number of features in a dataset, a CFS
algorithm is used. The dataset used was UNSW-NB 15, and the features were reduced
from 44 to 3. These three features were used to train the model. The CFS model was
compared to the non-CFS model using a laptop since it was impossible to train the model
using all 44 instances on a Raspberry Pi, resulting in system failure. In the evaluation,
the DoS attack instances are extracted from UNSWNB 15 and evaluated using the WEKA
application. By reducing the number of features in the system, the CFS algorithm makes
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the system lightweight by enhancing detection accuracy. As a result of their experiments,
they have found that their approach for detecting a DoS attack has a satisfactory detection
rate and accuracy.

Naung Soe et al. [8] also developed an IoT cyber-attack detection system using ML
technology. For the feature selection, they employed a lightweight and efficient feature
selection algorithm, CFS, and a well-known DT version, the J48 algorithm, to carry out the
classification. The system was implemented on a Raspberry Pi, and its performance was
evaluated using UNSW-NBI5. During the experiment, the system was able to handle all
the instances in this dataset and had a much faster training speed while retaining almost no
degradation in detection accuracy. Moreover, if the step of feature selection was not taken,
the system would only be able to handle 80% of the instances. The analysis of the above
works is listed in Table 1.

Table 1. Analysis of related work.

Author Year of Publication Detection Model Targeted Environment Attacks Identified

Aversano et al. [1] 2021 DNN IoT Systems
Scanning, TCP DoS, UDP DoS,
TCP DDoS, UDP DDoS, HTTP

DoS, Mirai, and Xbash

Verma et al. [3] 2020

RF, ad boost, gradient
boosted machines,

extremely randomized
trees, classification and

regression trees, and
multi-layer perceptron

IoT Applications DoS attack

Khatib et al. [6] 2021
LDA, SVM, KSVM,

Nystroms, DT, RF, and
LRand adaboost

IoT Networks

Fuzzers, Analysis, Backdoors,
DoS, Exploits, Generic,

Reconnaissance, Shellcode, and
Worms

Naung Soe et al. [8] 2020 SVM IoT Networks

Fuzzers, Analysis, Backdoors,
DoS, Exploits, Generic,

Reconnaissance, Shellcode, and
Worms

Khammassi et al. [12] 2017 LR, GA, DT IoT system
Attack types included in the

KDD99 and UNSW-NB15
datasets

Mukherjee et al. [13] 2022 LR, Naïve Bayes (NB), DT,
RF, ANN IoT Networks

DoS, Data Type Probing (DTP),
Malicious Control (MC),

Malicious operation (MO), Scan,
Spying, and Wrong Setup (WS)

Brun et al. [14] 2018 RNN IoT Networks
UDP flood, TCP SYN, sleep
deprivation, barrage, and

broadcast

Tyagi et al. [15] 2021 KNN, LR, SVM, MLP, DT,
and RF IoT Networks DDoS, DoS, reconnaissance, and

information theft

Thamilarasu et al. [16] 2019 Deep Neural Network
(DNN) IoT Networks Blackhole, Opportunistic Service,

DDoS, Sinkhole, and Wormhole

Anthi et al. [17] 2018 NB IoT Networks Network scanning, probing, and
simple forms of DoS attacks

Ye et al. [18] 2018 SVM Software-defined network DDoS attack

Kostas [19] 2018
Naive Bayes, QDA, RF,

ID3, AdaBoost, MLP, and
KNN

Software-defined network

Bot, DDoS, DoS GoldenEye, DoS
Hulk, DoS Slowhttptest, DoS

slowlorFTPPatator, Heartbleed,
Infiltration, PortSca, SSH-Patator,

and Web Attack

Alsheikh et al. [20] 2014 J48, RF, and KNN Medical wireless sensor
networks Not mentioned

Hasan et al. [21] 2019 LR, SVM, DT, RF, and
ANN IoT Sensors

DOS, Data Type Probing,
Malicious Control, Malicious
Operation, Scan, and Spying
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Table 1. Cont.

Author Year of Publication Detection Model Targeted Environment Attacks Identified

Ramadan et al. [22] 2020

Light Convolutional
Neural Network with

Gated Recurrent Neural
Network (LCNNGRNN)

algorithm

IoT Networks DoS, U2R, and R2L Probe

Lopez-Martin et al. [23] 2017 Conditional variational
autoencoder IoT Networks DoS, U2R, and R2L Probe

Yihunie et al. [24] 2019

Stochastic Gradient
Decent, RF, Logistic

Regression, SVM, and
Sequential Model

Not mentioned DoS, U2R, and R2L Probe

Kim et al. [25] 2005 SVM Not mentioned DoS attack

Meng [26] 2011 Neural networks, SVM,
and DT Not mentioned Probe, DoS, U2R, and R2L

Al-Janabi et al. [27] 2011 ANN Wireless Networks DoS, Probe, U2R, and R2L

Shurman et al. [28] 2019
A hybrid design of

signature-based IDS and
anomaly-based IDS

IoT Networks DoS

Mamatha et al. [29] 2019 LSSVM Not mentioned
Attack types included in the

KDD99 and UNSW-NB15
datasets

Albulayhi et al. [30] 2022 Bagging, Multilayer
Perception, J48, and IBk IoT system Mirai, DoS, scan, and MAS

Krishnan et al. [31] 2021 SVM, Random Forest, and
XGBoos IoT system DoS and spoofing

Qaddoura et.al. [32] 2021
SVM Gradient Descent

(SGD), LR, NB, SLFN, and
oversampling

IoT system DoS, Mirai, MITM, and scan

Choudhary et al. [33] 2021 DNN and SVM IoT Networks DDoS, DoS, and Replay

Mohan Sai et al. [34] 2021 SVM IoT Networks DoS attack

In Table 2, the related literature is compared to our proposed system based on the
following characteristics:

• Dataset: name of the dataset used to train the system.
• Feature selection approach: approach or algorithm used to select the best feature for

detecting and classifying the attacks.
• Performance metrics: the metrics used to evaluate the performance of the system.
• Average detection rate or accuracy: the average or best detection or accuracy rate the

system achieved.

Table 2. Experimental comparison of related work.

Author Dataset Performance Metrics Feature Selection
Approach

Average Detection Rate or
Accuracy

Aversano et al. [1] Integrated dataset based
on public IoT traffic traces Accuracy and F-measure

Autoencoder and a
hyperparameter

optimization analysis

The best accuracy is
obtained (0:9989 for the top

hyperparameter
permutation).

Verma et al. [3] CIDDS-001, UNSW-NB15,
and NSL-KDD

Accuracy, specificity,
sensitivity, false positive
rate, and area under the

receiver operating
characteristic curve

Random search algorithms 96.74%
By using CART

Khatib et al. [6] UNSW-NB15 Accuracy, recall, F1 score,
and ROC AUC curve Not mentioned 95% accuracy with DT, RF,

and Nystrom-SVM
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Table 2. Cont.

Author Dataset Performance Metrics Feature Selection
Approach

Average Detection Rate or
Accuracy

Naung Soe et al. [8] UNSW-NB 15 Processing time and
detection accuracy CFS Not mentioned

Khammassi et al. [12] KDD99 dataset and the
UNSW-NB15 dataset Accuracy, Recall, DR, FAR Wrapper, GA, and LR

With a subset of only
18 features, the KDD99
dataset showed 99.90%

accuracy of classification,
99.81% DR, and 0.105% FAR.

Mukherjee et al. [13]
From the ML data

repository Kaggle, which
was provided by Xavier.

Accuracy Not mentioned
99.4% accuracy in the first

case and 99.99% accuracy in
the second case

Brun et al. [14] Own a simulated dataset

Time series of the
difference between the

numbers of initiated and
established TCP

connexions per time slot,
attack probability

predicted by the dense
RNN

Not mentioned

Time-series of the difference
between the numbers of
initiated and established

TCP connections per time
slot (10 s)

Tyagi et al. [15] BoT-IoT dataset Accuracy, precision, recall,
F-Score, and ROC Manual

There is no difference in
accuracy between the

DT:99.9% and RF: 99.9%
classifiers.

Thamilarasu et al. [16]
The dataset consists of

5 million network
transactions.

Precision, recall, and F1
Score

The selected features are
transmission rate,

reception rate,
transmission-to-reception

ratio, duration,
transmission mode,

source-IP, destination-IP,
and data-value

information.

Avg. Precision = 96.88%,
Avg. Recall = 98.02%, F1

Score = 0.974

Anthi et al. [17] Own a simulated dataset Precision, recall, and
F-measure - Precision: 97.7%; recall:

97.7%; F-measure: 97.7%

Ye et al. [18] Own a simulated dataset Detection accuracy rate,
false alarm rate

Source IP, Destination IP,
Source Port, Destination

Port, and Number of
Packets

Average detection accuracy
rate: 95.24%; average false

alarm rate: 1.26%

Kostas [19] CICIDS2017 Accuracy, precision,
F-measure, and recall

Random Forest Regressor
algorithm

NB: 86%; QDA: 86%; RF:
94%; ID3: 95%; AdaBoost:

94%; MLP: 83%; KNN: 97%

Alsheikh et al. [20] Real medical dataset ROC curve, absolute error,
and run-times Not mentioned Not mentioned

Hasan et al. [21] An open-source dataset
was collected from Kaggle

Accuracy, precision, recall,
F1 score, and area under

the receiver operating
characteristic curve

No ML approach has been
used for feature selection

99.4% test accuracy for DT,
RF and ANN

Ramadan et al. [22] NLS-KDD

False Positive Rate (FPR),
accuracy, True Positive

Rate (TPR), False Negative
Rate (FNR)

The feature selection
process is done by using
the Enhanced Shuffled
Frog Leaping (ESFL)

algorithm.

Accuracy of 90.25% in attack
detection compared to

existing methods

Lopez-Martin et al. [23] NSL-KDD Accuracy, F1 score,
precision, and recall

Latent multivariate
probability distribution

Accuracy of 99%, 92%, and
71%, respectively

Yihunie et al. [24] NSL-KDD Precision, recall, F1 score,
ROC curve, and accuracy One-hot encoding

Accuracy: 99%, precision:
0.9992, recall: 0.9969, F1

score: 0.9980

Kim et al. [25] KDD99 Detection rates GA Detection rates are more
than 99%.
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Table 2. Cont.

Author Dataset Performance Metrics Feature Selection
Approach

Average Detection Rate or
Accuracy

Meng [26] KDD99 Accuracy and detection
rate Manual

All three algorithms achieve
a very high detection rate,

more than 94%.

Al-Janabi et al. [27] KDD99 Detection Rate (DR) and
False Positive Rate (FP) Manual Not mentioned

Shurman et al. [28] Dataset of IPs Detection time, accuracy Not mentioned Not mentioned

Mamatha et al. [29] KDD99, NSL-KDD, and
Kyoto 2006+

Accuracy, affirmation rate,
false positive rate, and

F-measure

Flexible Mutual
Information Feature

Selection (FMIFS)
100%

Albulayhi et al. [30] IoTID20 and NSL-KDD Accuracy, recall, precision,
F1 Score, and ROC

Information gain (IG) and
gain ratio (GR)

99.98% classification
accuracy

Krishnan et al. [31] IoTID20 Accuracy, F1 score, recall,
RMSE

Sequential Backward
Processing, Sequential

Forward Processing, and
Recursive Feature
Elimination (RFE)

Best accuracy: 99.79%

Qaddoura et al. [32] IoTID20 Accuracy, precision, recall
and G-mean

Not Applied (all features
used) 98.42%

Choudhary et al. [33] Own a simulated dataset Accuracy, recall, precision,
and F-measure Not mentioned

Precision: 98.12%, recall:
98.04%, F-measure: 94.88%,

accuracy: 98.68%

Mohan Sai et al. [34] UNSW-NB 15

F-measure, recall,
precision FPR, TPR, TNR,
True Negative Rate (TNR),

and accuracy

CFS Accuracy: 98%

Discussion of Related Work

Based on the studies reviewed in the previous sections, we found the following:

• Most papers targeted the IoT network environment when designing their systems
(e.g., [6,8,13,18,22,23,28,33]). Few papers targeted other environments, such as wireless
medical sensor networks (e.g., [20]).

• Some papers used only one ML classifier for detection (e.g., [8,34], while others used
multiple algorithms and compared their performance to determine the best one (e.g., [26]).

• In terms of the types of attacks identified, most of the papers trained their systems
on multiple attacks, while only a few papers focused on specific attacks like DoS
(e.g., [3,8]) and DDoS (e.g., [18]) attacks.

• As for the datasets used to train the system, most papers (e.g., [3,8,24]) used the UNSW-
NB15, NLS-KDD, and KDD99, which are considered good but outdated datasets, while
other papers built their own datasets ([14,17,18]). In some papers, however, the IoTID20
and Bot-IoT datasets, which collect data in real time, were used (e.g., [15,32,33]).

• In most of the studies, accuracy, recall, F1 score, and precision were used as metrics
for evaluating system performance (e.g., [15,16,19,23]).

• Some of the papers that performed feature selection steps to select the important
and relevant features [12] combined GA and LA, ref. [19] used RF, ref. [25] used GA,
ref. [29] used the FMIFS algorithm, and ref. [8,34] used the CFS algorithm.

• Additionally, most of the papers in the review achieved high levels of accuracy in
detecting their targeted attacks.

4. Methodology

To detect anomalies in IoT devices, ML classification algorithms will be used to build
an IDS. This IDS will continuously monitor network traffic for any deviation from normal
network profiles based on anomaly detection. There are three types of IDSs that can be
used: signatures, anomalies, and specifications. Due to its ability to detect new attacks, an
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anomaly-based IDS is preferred over a signature- or specification-based IDS. However, it
comes with a high false alarm rate. The effectiveness of an anomaly-based IDS depends
on the quality of its detection engine (model or classifier) [3]. An anomaly-based IDS
continuously monitors network traffic for deviations from the normal profile. As soon as a
deviation exceeds the threshold, an alarm signals the detection of a DoS attack.

This study will have several key stages, as shown in Figure 2. To train the system, we
will use the IoTID20 dataset, which contains recent types of attacks on IoT networks. We
will do some preprocessing on this dataset to improve its quality and prepare it for feature
selection and training. Data preprocessing includes cleaning and transformation of the data.
Data cleaning involves removing null values and their entries. Whenever there are missing
values, the ML algorithm has a difficult time handling them, and the model may produce
an incorrect prediction. In addition, the data transformation will include encoding, noise
removal, and scaling. In the initial dataset, there are many columns with multiple labels. A
label can be defined in the form of a number or a word. Encoding refers to converting labels
from a human-readable to a machine-readable format. With the help of filters, noise in the
form of irrelevant features is removed by the noise removal process. Scaling is used to scale
large amounts of numerical data based on distance values. Following these methods, the
final features will be selected from these prepossessed features.
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The scaled data will be used as input in the feature selection phase to select the most
relevant and important features using a CFS algorithm and GA. After that, we will make a
comparison between the feature selection algorithms and select the most appropriate one.
After the features are selected, the dataset will be divided into two subsets: the training
subset and the test subset. By selecting the right testing and training data, classification
accuracy will be improved. The training data is the set of instances trained on the model,
while the test data is used to determine the model’s ability or execution. Classification
determines whether the information belongs to a normal class or a DoS attack. In order
to achieve the best classification approach, a variety of algorithms, such as KNN, SVM,
DT, and RF, will be compared. Finally, we will validate our proposed scheme using
a confusion matrix.

4.1. Dataset

There are many datasets that can be used to train the system to detect DoS attacks. The
dataset must contain real-time network traffic. It is essential that the dataset be versatile
and extensive. In addition, the dataset should cover a variety of attack vectors and include
the most recent DoS attacks [35]. According to the literature analysis in Section 2, the most
commonly used datasets are UNSW-NB15, KDD 99, NSL-KDD, IoTID20, and Bot-IoT. We
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compared these available datasets in Table 3 to select the dataset with the highest quality to
train our system.

Table 3. Compare publicly available datasets.

Dataset Name Year of Creation Number of DoS
Instances

Number of
Features Advantages Disadvantages

UNSWNB15 2015 16,353 47

- The testing set does not contain
any duplication

- Some http connections and
TCP/IP attributes are included
in the content characteristics

- Training set with
high-duplicated records

- Has scarce data

KDD 99 1998 3,883,370 41 - Highest records for the DoS
class

- Outdated data
- Huge number of redundant

records

NSL-KDD 2000 53,385 42

- Improved version of the
KDD99

- The train set does not include
redundant records

- Prevents bias in the ML
algorithm during training

Outdated data

IoTID20 2020 59,391 86

- It replicates a modern trend of
IoT network communication

- It contains various types of IoT
attacks and families

- Up-to-date dataset
- Attack traffic is collected in

real-time

The data types and formats of some
features are not suitable for ML
algorithms

Bot-IoT 2018 33,003,929 46

- Resolving the existing
drawbacks of capturing
network information in current
datasets

- Accurate labeling Diverse and
recent attacks

- Does not reflect a realistic IoT
network

- Normal traffic is generated by
botnet VMs

- The attacks were not unique to
IoT networks

According to this compression, the IoTID20 was selected in this study to train the IDS
to detect DoS attacks, as it contains the most recent traffic attacks collected in real-time and
scans simulate attacks on IoT networks.

IoTID20 Dataset

In the IoTID20 dataset, there are different types of IoT attacks (e.g., DDoS, DoS, Mirai,
and ARP Spoofing) as well as normal (benign) traffic. IoTID20 is a dataset collected from
smart home IoT ecosystems. Smart homes typically incorporate a variety of interconnected
components, including artificial intelligence speakers (SKTNGU), Wi-Fi cameras (EZVIZ),
laptops, smartphones, tablets, and wireless access points (Wi-Fi). In this dataset, the
cameras and artificial intelligence speakers were the IoT victim equipment, and the other
equipment was the attacking equipment. Using Nmap tools, attacks such as DoS, scanning,
and man in the middle were simulated. Mirai botnet attacks were generated separately
on a laptop, and then changed to simulate their origin on IoT devices [36]. Using the
CICFlowMeter, the IoTID20 dataset created CSV files from these packet files. Based on
the IP addresses, the CSV files were labeled according to their anomalous behavior and
types of attacks. Tables 4 and 5 show the distribution of the dataset. The dataset contains
86 features.

Table 4. Normal and attacked instances in the IoTID20 dataset.

Binary Label Distribution Instances

Normal 40,073

Anomaly 585,710
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Table 5. IoTID20 anomaly data distribution.

Category Label Distribution Instances

Normal 40,073

DoS 59,391

Mirai 415,677

MITM 35,377

Scan 75,265

4.2. Feature Selection Algorithms

In order to improve the detection accuracy and training speed of our system, we
needed to use a feature selection algorithm. Feature selection involves eliminating irrelevant
and redundant features and selecting those that are most pertinent and relevant. For the
feature selection phase, we decided to use two feature selection algorithms and compress
between them, which are GA and CFS.

4.2.1. Genetic Algorithm

The first algorithm is GA, which is a natural selection-based optimization technique. In
GA, a set of optimal values is determined based on evolution. The first step in feature selection
is to create a population from subsets of the possible features. Based on this population, subsets
are evaluated using a predictive model. In order to determine which subsets of the population
will continue into the next generation, each member of the population is considered in a
tournament. The next generation is made up of the tournament winners with some cross-over
(the winning feature sets are updated with features from other winners) and mutation (some
features are introduced or removed randomly) [37]. Figure 3 shows how the algorithm works.
As a result of the algorithm running for a set number of generations (iterations), the optimal
member of the population becomes the selected feature.
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4.2.2. Correlation-Based Feature Selection

The CFS algorithm is a filter approach used to evaluate the correlation between outputs
and input features [38]. According to empirical evidence, irrelevant or redundant information,
which can increase computation time and result in poorer detection accuracy, should also be
eliminated [8]. Redundant features are those that are highly correlated with other features.
According to the CFS algorithm, a good feature subset consists of features that are highly
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correlated with the class and uncorrelated with each other [8]. The CFS algorithm supports
most attribute types, including binary, date, nominal, empty, or unary value attributes [39].
As shown in Table 6, both algorithms have advantages and disadvantages.

Table 6. Advantages and disadvantages of GA and CFS algorithm.

Algorithm Advantages Disadvantages

GA
- A quick and accurate way to find a

good quality solution
- Easy to code

- No guaranteed optimal solution
- Parameter selection is difficult

CFS

- Tests the predictive power of genes
- Comparatively less computational

complexity than GA
- Overfitting is less likely than GA

- Due to the heavy reliance on the
model, the data may not fit well

4.3. Classification Algorithms

There are two types of ML algorithms: supervised and unsupervised. In supervised
algorithms, predefined (classified) objects are used to predict the object class. Unsupervised
algorithms, in contrast, find the natural grouping of unlabeled objects [40]. In order to
obtain the best performance in our IDS, we will use and compare four types of supervised
learning algorithms for classification.

4.3.1. Decision Tree

The first classification algorithm chosen to determine its performance in classifying
the DoS attack is DT. This technique is used for solving both classification and regression
problems, but generally, it is used for classification problems [41]. This classifier is tree-
structured, where the internal nodes represent the dataset’s features, the branches represent
the decision rules, and the leaves represent the outcome [42]. DT has two nodes: the
decision node and the leaf node. Leaf nodes are the outputs of decision nodes and do not
contain any further branches, whereas decision nodes are used to make decisions and have
multiple branches. Dataset features are used to make decisions or perform tests. This is a
way of getting all the possible solutions based on given conditions for a problem or decision.
DT is similar to trees in that it begins with a root node, which expands into branches and
creates an overall tree-like structure. In a decision tree, a question is asked, and based on
the answer (yes or no), a subtree is created. Figure 4 explains the general structure of DT.
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4.3.2. Random Forest

The second classifier algorithm that was selected is RF. Using the RF classifier, a subset
of the training set is randomly selected to create a set of decision trees. This method



Sensors 2024, 24, 713 17 of 30

basically involves building multiple DTs from a randomly selected subset of the training
set and then combining the votes from each tree to make a final prediction [43]. Taking
data input, a classifier model assigns it to one of several categories. As an example, a
classifier can be used to predict whether an image is that of a dog or cat, given a set of
images containing images of dogs and cats. Basically, an RF algorithm creates multiple DTs,
each based on a random subset of data. A DT is a type of algorithm that determines which
category data inputs fall into based on the data inputs. By creating multiple decision trees
and averaging their results, RFs go one step further. In this way, overfitting is reduced,
which occurs when the algorithm only works well with the training data and not with the
new data [43].

It is possible to think of the RF as an ensemble of several DTs. A final outcome is created
by aggregating the predictions of multiple decision trees (majority voting) and averaging
them. As a result, the RF model generalizes better to a larger population. Furthermore, the
model becomes less prone to overfitting or high variance [44]. The RF algorithm steps are
shown in Figure 5.
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4.3.3. Support Vector Machine

The third classifier was SVM. SVM is generally considered a classification approach,
but it can also be used to solve regression problems. In addition to handling continuous
variables, it can also handle categorical variables easily [45]. To separate different classes,
SVM constructs a hyperplane in multidimensional space. Iterative SVM generates optimal
hyperplanes, which minimizes errors. SVM is based on finding a maximum marginal
hyperplane (MMH) to divide the dataset into classes [45].

The main objective is to separate the dataset as effectively as possible [46]. The distance
between two points is known as the margin in SVM. Using the dataset given, the objective
is to find a hyperplane with the greatest margin between support vectors. SVM undertakes
the next steps to determine the MMH:

1. Create hyperplanes that segregate classes in the best way.
2. Select the right hyperplane that should have the maximum separation from the nearest

data point.
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4.3.4. k-Nearest Neighbors

The kNN algorithm is a supervised ML algorithm that learns from labeled input
data and uses that knowledge to produce accurate outputs with unlabeled data. kNNs
are used to predict test data sets based on the characteristics (labeled data) of training
data. Predictions are made by calculating the distance between test data and training
data, assuming that the data points have similar characteristics [47]. The kNN algorithm
is similar to a voting system, in which the majority class label determines the class label
of a new data point among its nearest k (k is an integer) neighbors. Suppose you live in
a small village with a few hundred residents, and you must decide which political party
to support [47]. For this, you might ask your nearest neighbors which political party they
support. Generally, if most of your nearest neighbor’s support party A, you will vote for it
as well [47]. Similar to kNN, a new data point’s class label is determined by its k nearest
neighbors by determining the majority class label.

4.4. Evaluation Metrics

Our proposed system was evaluated on accuracy, precision, recall, and F1 score. The
evaluation metrics such as accuracy, precision, recall, and the F1 score are computed using
these four parameters: true positive (TP), false negative (FN), false positive (FP), and
true negative (TN).

4.4.1. Confusion Matrix

A confusion matrix is a table used to describe the performance of a classifier within
the context of a set of observations known to have actual (monitored) values. A change in a
box refers to a skill in a lesson, and a change in a column refers to a skill in the intended
course (or vice versa). A confusion matrix consists of the following terms:

• TP: Both the actual and predicted values are positive.
• TN: Both the actual and predicted values are negative.
• FP: The actual value is negative, but the model predicted it to be positive.
• FN: The actual value is positive, but the model predicted it to be negative.

We calculated several measures from the confusion matrix to quantify and compare
the quality of the models, including the following:

Accuracy

The accuracy indicates that the flow manifests are accurately categorized around the
entire traffic trace. It is the proportion of correctly classified cases above all N cases. The
accuracy formula is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
×100

Precision

Precision refers to how many intrusions an IDS predicts. A higher P indicates a lower
alarm. The percentage of positive classifications made in the right direction. Following is
the formula for calculating precision:

Precision =
TP

TP + FP

Recall

Recall measures how much of an intrusion was expected versus how many intrusions
actually occurred, so a high R-value is needed. This is the percentage of positive examples
that have been classified correctly. Following is the formula for calculating recall:

Recall =
TP

TP + FN
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F1 Score

The F1 score provides an overall score by combining precision and recall. The model
correctly identifies threats when the number of false alarms is minimal. The F1 score is good
when there are false positives and false negatives. Below is the formula for the F1 score.

F1 score = 2 × Precision × Recall
Precision × Recall

5. Experiment

The software has been developed on a machine operated with 64-bit Windows 11
Home and equipped with an 11th Gen Intel® i7-11370H four-core CPU having a 3.30 GHz
clock speed and 16 GB of main memory. In order to implement the system, we first set
up the development environment. PyCharm was chosen as our main IDE to code, run,
and test the system. Additionally, the Skit-Learn platform was used to implement and test
machine learning algorithms for classification. Our first step was to download Python 3.9.13
and PyCharm Professional in order to work with Jupyter Notebooks. We also imported
and used several Python modules for the system’s functionality. The experiment process
breaks down into multiple steps, including loading the data, data preprocessing, feature
selection, splitting the dataset into training and testing sets, classification algorithms, and
evaluating performance.

5.1. Load the Data

For training our system to detect DoS attacks, we chose the IoTID20 dataset due to its
richness of features, as shown in Table 4. First, we downloaded the dataset from site [48]
and saved it to our local computer. Since we only need to work with DoS and normal data
from the dataset, in the next step, we filtered our dataset to retain only the data from the
DoS and normal categories.

5.2. Data Preprocessing

For the data preprocessing, we performed a number of manipulations to enhance the
data for training purposes including cleaning, feature removal, and encoding.

5.2.1. Cleaning

In data cleaning, null values should be removed along with their entries. It is difficult
for ML algorithms to handle missing values, so the model may produce incorrect predic-
tions when missing values are present [4]. Because of that, we checked for null values with
the help of the .isnull() function. The output of our dataset was 0 for all fields, and no null
files were found.

5.2.2. Features Removal

For the model to perform well, it was important to remove flow identifiers such as
source and destination IP addresses, flow IDs, and timestamps. It will fail to generalize well
if the model is trained using these features since attackers may use different IP addresses
and times to launch attacks. So, we dropped them from the dataset. In addition to this,
label and subcategory features are also deleted as they are not useful for achieving high
accuracy and are difficult to handle in the next phases. The deleted features are mentioned
in Table 7, and the remaining 80 features are in our dataset.

Table 7. Deleted features.

Features Deleted ‘Src IP’, ‘Flow ID’, ‘Sub Cat’, ‘Dst IP’, ‘Timestamp’, ‘Label’
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5.2.3. Encoding

Labels are encoded to convert them from a human-readable to a machine-readable
format. In this phase, we needed to convert every string to a numerical value. By using
the .map() function, we mapped each “DoS” string to 1 and each “Normal” string to the
numerical value 0, as shown in Table 8.

Table 8. Encoding.

Category Numerical Value

DoS 1

Normal 0

We observed that there is no need for scaling or noise removal steps in our case. The
dataset has more integers and no outliers, so scaling is not useful. Additionally, noise
removal is not required since the dataset has no noise.

5.3. Feature Selection

As we mentioned in Section 4.2 for the feature section, we decided to use two feature
selection algorithms and compress between them. These algorithms are GA and CFS.

In GA, a population of potential feature subsets is iteratively evolved toward an
optimal solution. Its functions are as follows: An initial set of features is generated in
several subsets. Following that, individuals (feature subsets) are selected based on an
evaluation metric that determines their fitness. An individual’s features are then enhanced
by crossing with those of another individual, similar to genetic crossover. To maintain
diversity, some individuals undergo random mutations. Individual fitness levels are
reevaluated. Eventually, the process terminates after a certain number of generations
(e.g., the process iterates until a termination criterion has been met) [37]. There are several
variables in GA to consider. Population Size: the number of potential feature subsets in
each generation. A crossover rate is the probability that two individuals will cross over.
Mutation Rate: the likelihood of an individual becoming mutated [37].

In CFS, features are analyzed by their relationship to the target variable and their
interrelationships. As a result, it functions as follows: A feature is evaluated independently
based on its correlation with the target variable. Then, the evaluation of subsets of features
involves considering both their correlation with the target variable and their redundancy.
A merit function determines the overall worth of a feature subset by combining the eval-
uations of each individual feature and each subset [38]. An important variable in CFS
is the Correlation Threshold, which defines the threshold at which individual features
are correlated with the target variable. Subset Evaluation Metric, which is a measure
used for evaluating the worth of feature subsets, is typically a combination of correlations
and intercorrelations [39].

Both GA and CFS were influenced by adjusting these variables in the context of
feature selection.

When we ran the GA as a feature selection algorithm with our dataset, the algorithm
selected 13 out of 80 features as relevant and most important features to train our system.
These features and their descriptions are listed in Table 9.

Table 9. GA features.

SI Feature Name Data Type Description

1 Src _Port Int64 Source Port Number

2 Dst _Port Int64 Destination Port Number

3 Tot _Fwd_Pkts Int64 Total packets in the forward direction
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Table 9. Cont.

SI Feature Name Data Type Description

4 Tot _Bwd _Pkts Int64 Total packets in the backward direction

5 Fwd_ Pkt_ Len _Max Float64 The maximum size of the packet in the
forward direction

6 Flow_IAT _Mean Float64 Mean time between two packets sent in
the forward direction

7 Bwd_IAT_Std Float64 Standard deviation time between two
packets sent in the backward direction

8 Bwd_URG_Flags Int64
Number of times the URG flag was set in
packets travelling in the backward
direction (0 for UDP)

9 SYN_Flag_Cnt Int64 Number of packets with SYN

10 URG_Flag_Cnt Int64 Number of packets with URG

11 Down/Up_Ratio Float64 Download and upload ratio

12 Idle_Mean Float64 Mean time a flow was idle before
becoming active

13 Idle Max Float64 The maximum time a flow was idle before
becoming active

The CFS algorithm, on the other hand, arranges the features from the most impor-
tant to the least important when applied to our dataset. However, we used only the
first 13 important features selected by the CFS algorithm to make a fair comparison with
the GA algorithm. These 13 features selected by the CFS algorithm are listed in Table 10.

Table 10. CFS features.

SI Feature Name Data Type Description

1 Idle_Min Float64 The minimum time a flow was idle before
becoming active

2 Bwd_Header_Len Int64 Total bytes used for headers in the backward
direction

3 Fwd _IAT_Mean Float64 Mean time between two packets sent in the flow

4 TotLen_Fwd_Pkts Int64 The total size of the packet in forward direction

5 Fwd_ Pkt_ Len _Max Float64 The maximum size of the packet in forward
direction

6 Fwd Pkts/s Float64 Number of forward packets per second

7 Flow_IAT _Std Float64 Number of forward packets per second

8 Pkt_Len_Var Float64 Variance length of a packet

9 Idle_Std Float64 Standard deviation time a flow was idle before
becoming active

10 Fwd_IAT_Max Float64 The maximum time between two packets sent
in the forward direction

11 Pkt_Len_Max Float64 The maximum length of a packet

12 Flow_IAT_Min Float64 The minimum time between two packets sent
in the flow

13 Flow_IAT_Mean Float64 Mean time between two packets sent in the
forward direction

There is only one feature that both algorithms selected in common, which is the
Flow_IAT_Mean. The other 12 features are different for each.
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5.4. Split the Dataset to Training and Testing Sets

The dataset must be divided into two subsets: a training subset and a testing subset.
It is possible to improve classification accuracy by selecting the right testing and training
data [49]. In training data, the model is trained on instances, while testing data determines
the model’s ability to execute. We have split the dataset into 33% for testing and 67%
for training. As a result, we had 66,640 data points in the training set and 32,824 in
the testing set.

5.5. Classification Algorithms

Afterward, we worked with classification algorithms to determine if a packet belongs
to the normal category or if it is a DoS attack. The best classification algorithm was
determined by comparing a variety of algorithms, including DT, RF, KNN, and SVM. They
were evaluated based on evaluation metrics, which include accuracy, precision, recall, and
F1 score. Each of these algorithms will be trained in three ways: first, using all features
(without applying any feature selection techniques), and then using features selected by
GA. Finally, we will train it with features selected by CFS.

5.6. Evaluate the Performance

Our evaluation of the performance was based on the confusion matrix. Which will
help us to compare classifier algorithms with and without feature selection algorithms
(GA and CFS). In addition, to evaluate the classifier algorithms, we chose to use accuracy,
precision, recall, and the F1 score.

6. Results and Analysis

This section presents and analyzes the experiment results, including the training and
testing times, and evaluates the performance metrics.

6.1. Training and Testing Time

Table 11 presents the training and testing time with 12 models comprising four clas-
sifiers (DT, RF, SVM, and kNN) across three cases (trained with all features in the data
set, trained with features selected by the GA, and trained with features selected by the
CFS algorithm).

Table 11. Training and testing times.

Classifier
Training Time (s). Testing Time (s).

All Features GA CFS All Features GA CFS

DT 0.1718 0.0644 0.0743 0.0626 0.0099 0.0637

RF 1.0024 0.7264 0.8992 0.0700 0.1862 0.2008

SVM 4.1583 5.2146 45.0077 1.5224 5.8803 63.2915

kNN 0.01241 0.2128 0.1597 2.7450 7.2853 6.7626

In Figure 6, the training time is compared across four classifiers (DT, SVM, RF, and
kNN) and three features’ cases (trained with all features, trained with GA-selected features,
and trained with CFS-selected features). The kNN and DT algorithms were faster in the
training process, with less than one minute in all cases. This is because one of the advantages
of the DT is that it is very fast, and the kNN is known as a lazy algorithm because it does
not use the training data to generalize, which makes it faster. The faster training time
was achieved when training KNN with all features (0.1241 s). On the other hand, the
slowest training time was obtained when training the SVM with features selected by CFS
algorithms (45.0077 s). Because SVM training complexity varies greatly with the size of the
dataset, it is not suitable for the classification of large datasets that have strong correlations
between features, which is part of how CFS algorithms work and select the features.
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Figure 7 depicts a comparison of testing times for the four classifiers (DT, SVM, RF,
and kNN) and the three feature scenarios (trained with all features, trained with GA chosen
features, and trained with CFS-selected features). When GA chose the features for DT, the
testing time was reduced to 0.0099 s. The slowest training time was obtained when the
SVM was trained with features picked by CFS methods (63,2915 s). DT and RF algorithms
provide the fastest testing times. Even though KNN took less training time, it took a longer
testing time than DT and RF. This happened because, during prediction time, distances to
the original training data are calculated (to determine which one is its closest neighbor),
while training time does not need to calculate very expensive distances. It is mostly about
moving from .fit() to .predict(). Trying to predict the train schedule takes more time.
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From these results, we can conclude that the best classifier, which provided the optimal
time for both training and testing, is the DT algorithm.

6.2. Evaluate the Performance

Figure 8 illustrates the results of confusion matrix terms, including TP, TN, FP, and FN.
The true statement indicates that the values were accurately predicted, whereas the false
statement indicates that the prediction was incorrect. For a good-quality classifier model,
TP and TN must be high, while FP and FN must be low.
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According to Figure 8, the best results were achieved with DT and RF when trained
with features selected by GA. High false alarms were obtained with SVM and kNN
models, especially when training the SVM algorithm with features selected by the CFS
algorithm (616). A false negative refers to 225; an actual value is positive, but the model
predicted negative; the worst value was obtained with the SVM model (11,511). For the TP,
when the actual value is positive and the predicted value is also positive, the best values
were achieved with DT and RF when trained with GA features (59,391). For the TN, the
best results (400,703) were obtained with DT when trained with both CFS and GA features,
and also when trained with RF models with GA and SVM with CFS. According to these
results, the highest confusion matrix scores were obtained when DT and RF classifiers were
trained using GA-selected features.

To quantify and compare the quality of the models, we calculated different measures
from the confusion matrix, which include accuracy, precision, recall, and F1 score. The first
measure is accuracy, where the accuracy of a model is a measure of how often it is correct.
Table 12 compares the accuracy achieved across four classifiers (DT, SVM, RF, and kNN)
and three features’ cases (trained with all features, trained with GA-selected features, and
trained with CFS-selected features). A clear comparison can be seen in Figure 9. When
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trained with features selected by GA, the DT and RF algorithms showed the best results
with 100% accuracy. However, the SVM model with GA features achieved less accuracy
(88.2922%); this occurred because SVMs do not work well with large datasets with strong
correlations between features, in contrast to DT and RF classifiers.

Table 12. Accuracy results.

Classifier Without Feature Selection With GA With CFS

DT 99.936% 100% 99.9859%

RF 99.9482% 100% 99.9859%

SVM 99.7106% 88.2922% 99.3807%

kNN 99.8081% 99.8964% 99.8512%
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Precision is another metric used to identify the quality of models, namely how many
intrusions a model predicts with a lower FP. In Table 13, precision is shown for four
classifiers (DT, SVM, RF, and kNN) with three feature cases (all features, GA-selected
features and CFS-selected features). Figure 10 compares classifiers in terms of precision.
Precision results were outperformed for DT models trained with GA and CFS features,
RF models trained with GA-selected features and SVM models trained with GA (100%).
However, the SVM model with GA features achieved the lowest precision (83.7342%), and
SVM is not robust with a large dataset, which caused this.

Table 13. Precision results.

Classifier Without Feature Selection With GA With CFS

DT 99.9341% 100% 100%

RF 99.9544% 100% 99.9949%

SVM 99.797% 83.7342% 100%

kNN 99.8782% 99.9562% 99.946%
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The third metric chosen to evaluate models is recall. The recall value is the ratio of
attacks that were expected to those that actually occurred, so a high R-value is needed to
determine what proportion of attacks were actually detected. In Table 14, recall is shown for
four classifiers (DT, SVM, RF, and kNN) with three feature cases (all features, GA-selected
features, and CFS-selected features). Figure 11 compares classifiers in terms of recall. The
best recall results were obtained by training DT and RF with features selected by GA (100%).
In contrast, when SVM classifiers were trained with features selected using CFS algorithms,
it produced the worst recall result (98.9628%). With the results of DT and RF classifiers,
using them in IDS makes sense.

Table 14. Recall results.

Classifier Without Feature Selection With GA With CFS

DT 99.9594% 100% 99.9764%

RF 99.9594% 100% 99.9815%

SVM 99.7211% 99.7744% 98.9628%

kNN 99.8022% 99.8704% 99.8047%

Sensors 2024, 24, x FOR PEER REVIEW 27 of 31 
 

 

The third metric chosen to evaluate models is recall. The recall value is the ratio of 
attacks that were expected to those that actually occurred, so a high R-value is needed to 
determine what proportion of attacks were actually detected. In Table 14, recall is shown 
for four classifiers (DT, SVM, RF, and kNN) with three feature cases (all features, GA-
selected features, and CFS-selected features). Figure 11 compares classifiers in terms of 
recall. The best recall results were obtained by training DT and RF with features selected 
by GA (100%). In contrast, when SVM classifiers were trained with features selected using 
CFS algorithms, it produced the worst recall result (98.9628%). With the results of DT and 
RF classifiers, using them in IDS makes sense. 

Table 14. Recall results. 

Classifier Without Feature Selection With GA With CFS 
DT 99.9594% 100% 99.9764% 
RF 99.9594% 100% 99.9815% 

SVM 99.7211% 99.7744% 98.9628% 
kNN 99.8022% 99.8704% 99.8047% 

 
Figure 11. Recall results. 

The last metric is the F1 score; it combines precision and recall, providing an overall 
score. In Table 15, F1 score results are presented for four classifiers (DT, SVM, RF, and 
kNN) in three feature cases (all features, GA-selected features, and CFS-selected features). 
Figure 12 compares the classifiers in terms of the F1 score. DT and RF achieved the best 
F1 scores (100%) when they were trained with GA-selected features. By contrast, SVM was 
trained with GA features, resulting in the lowest F1 score. Based on the given results of 
the SVM classifier, it is not ideal for IDS due to its difficulty in dealing with large datasets 
and its sensitivity to kernel type. 

Table 15. F1 score results. 

Classifier Without Feature Selection With GA With CFS 
DT 99.9594% 100% 99.9764% 
RF 99.9594% 100% 99.9815% 

SVM 99.7211% 99.7744% 98.9628% 
kNN 99.8022% 99.8704% 99.8047% 

Figure 11. Recall results.



Sensors 2024, 24, 713 27 of 30

The last metric is the F1 score; it combines precision and recall, providing an overall
score. In Table 15, F1 score results are presented for four classifiers (DT, SVM, RF, and
kNN) in three feature cases (all features, GA-selected features, and CFS-selected features).
Figure 12 compares the classifiers in terms of the F1 score. DT and RF achieved the best
F1 scores (100%) when they were trained with GA-selected features. By contrast, SVM was
trained with GA features, resulting in the lowest F1 score. Based on the given results of the
SVM classifier, it is not ideal for IDS due to its difficulty in dealing with large datasets and
its sensitivity to kernel type.

Table 15. F1 score results.

Classifier Without Feature Selection With GA With CFS

DT 99.9594% 100% 99.9764%

RF 99.9594% 100% 99.9815%

SVM 99.7211% 99.7744% 98.9628%

kNN 99.8022% 99.8704% 99.8047%
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According to the overall comparisons of 12 models, the best accuracy, precision, recall,
and F1 scores were achieved by both DT and RF classifiers when they trained with GA
features (13 features) with 100% across all metrics. Based on training and testing time, we
found that DT outperformed the RF with (0.0644 s) training for DT and (0.7264 s) for the RF.
Consequently, the best model was achieved when GA was used to select the features and
DT was used as the classifier algorithm. Due to the high-performance results, they were
achieved with our selected dataset to detect DoS attacks in IoT networks. Furthermore, the
GA finds features quickly and accurately and works simply. In terms of the DT classifier,
it is simple, fast, and efficient. The lowest results, however, were obtained with the SVM
algorithm, especially when GA selected the features. This occurred as a result of the SVM
algorithm’s inability to cope with large datasets that have strong correlations between
features. We were able to achieve 100% accuracy values in some cases; however, these
results were obtained when the models were trained with a specific dataset and under
specific conditions. We understand the need for comprehensive validation and testing in
real IoT environments and different datasets to ensure the generalizability and robustness
of our proposed model as part of our future work.
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Compared to other machine learning-based security solutions for IoT networks, our
work provides more information about using anomaly IDS in IoT networks. Further,
many previous studies used outdated datasets, lacked IoT traces, lacked modern attack
types, and hardly contained features related to IoT. In this paper, we compared available
datasets for this purpose and selected the dataset that included the most recent traffic
attacks collected in real-time and simulated attacks on IoT networks. Also, instead of
training the classifier with all features in the dataset, we selected the most related features
to detect different types of DoS attacks. Particularly for improving detection accuracy and
training speed, we selected the most relevant and important features (13 out of 86 features).
In order to select the most appropriate feature selection algorithms, we compared two
well-known algorithms, which are GA and CFS, with four classifiers (DT, RF, SVM, and
kNN). As well, we trained the classifiers with all dataset features in order to compare them.
Furthermore, most of the previous studies did not consider time spent training and testing
as an important measure for benchmarking classifiers. To evaluate the performance of
different models, we used four metrics: accuracy, precision, recall, and F1 score, in addition
to training and testing time.

7. Conclusions and Future Work

IoT systems are susceptible to a wide range of security attacks, and of those that
prevent legitimate IoT network users from accessing their services, DoS is one of the most
common. Therefore, to ensure that systems, devices, and data are secured and protected
effectively, robust techniques and mechanisms to counter attacks against IoT networks
are needed. To address these issues and prevent hackers from attacking IoT networks
successfully by using DoS attacks against devices, this study aimed to propose a hybrid
defense mechanism based on anomaly detection, IDS, and ML techniques. In this study, we
compared and selected the optimal dataset for training the system to detect DoS attacks in
the IoT network. Then, we compared two feature selection algorithms to select the relevant
and most important features. In order to obtain the best performance for our IDS, we
used the most well-known supervised ML algorithms: KNN, DT, RF, and SVM. Each of
these selected algorithms were trained in three ways: first, using all the features (without
applying any feature selection techniques), and then using features selected by GA. Finally,
we trained it with features selected by CFS. Additionally, we evaluated and compared the
algorithm’s performance using a confusion matrix. We found that the best performances
are obtained when training the DT and RF using the features selected by GA with 100%
across the four metrics.

For future work, we will try selecting fewer features and experimenting with other
feature selection algorithms. We will also test our system by downloading the selected
model to the Raspberry Pi microcontroller board. Moreover, we will conduct experiments
and evaluate our proposed model’s performance using other datasets, such as the new
dataset CIPMAIDS2023-1, or build our own dataset containing new attack data collected
from real-world IoT environments and implement other types of classifier algorithms, such
as deep learning.
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