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Abstract: Supervised machine learning algorithms usually require huge labeled data sets to produce
sufficiently good results. For many applications, these data sets are still not available today, and the
reasons for this can be manifold. As a solution, the missing training data can be generated by fast
simulators. This procedure is well studied and allows filling possible gaps in the training data, which
can further improve the results of a machine learning model. For this reason, this article deals with
the development of a two-dimensional electromagnetic field simulator for modeling the response of
a radar sensor in an imaging system based on the synthetic aperture radar principle. The creation of
completely random scenes is essential to achieve data sets with large variance. Therefore, special
emphasis is placed on the development of methods that allow creating random objects, which can
then be assembled into an entire scene. In the context of this contribution, we focus on humanitarian
demining with regard to improvised explosive devices using a ground-penetrating radar system.
This is an area where the use of trained classifiers is of great importance, but in practice, there are
little to no labeled datasets for the training process. The simulation results show good agreement
with the measurement results obtained in a previous contribution, demonstrating the possibility of
enhancing sparse training data sets with synthetic data.

Keywords: computational EM; SAR; ground-penetrating radar (GPR); landmine detection; full-wave
simulation

1. Introduction

In recent times, supervised learning algorithms such as deep neural networks (DNNs)
and convolutional neural networks (CNNs) have proven to be quite powerful tools with
regard to target classification tasks, as demonstrated in [1–3]. However, the huge potential
of supervised learning approaches comes with the requirement of a much more complicated
training process. In general, such algorithms require huge labeled data sets, with the
number of data points scaling with the task to be solved. For instance, it was shown in the
context of a classification problem in [4] that the amount of training samples for a nearly
optimal solution should be from approximately 30 · d · (d + 1) to 60 · d · (d + 1). Here, d
denotes the amount of nodes in the input layer. When evaluating the amount of necessary
samples based on the found formulas, it turns out that generating sufficient training data
sets for complex problems becomes a tedious task. While this is a time-consuming but
manageable task in many applications, there are measurement environments that do not
allow collecting huge data sets or even no training data at all. The reasons for this could
be manifold. A typical problem is that the true state of the system is quite difficult to
determine in advance, preventing adding labels to the data set. Furthermore, the number of
possible states is often too large to generate meaningful training data, covering all possible
states of the system. For those cases, the available training data sets are usually too small.

Sensors 2024, 24, 836. https://doi.org/10.3390/s24030836 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24030836
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5198-480X
https://orcid.org/0000-0003-0262-2922
https://doi.org/10.3390/s24030836
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24030836?type=check_update&version=1


Sensors 2024, 24, 836 2 of 21

As an exemplary application scenario, we focus in this paper on the field of humani-
tarian demining, since this application usually lacks comprehensive labeled data sets. This
is caused by the complexity and uncertainty in labeling a measurement without interact-
ing with the environment. While this is a general problem in the field of demining, it is
often possible to simplify the problem if only a certain type of landmine is expected in
the measurement environment. As this is often the case, there are multiple publications
that propose systems and classifiers which aim to detect professionally built landmines as
in [5]. However, a much more complicated task is the detection of improvised explosive
devices (IEDs). In contrast to professionally built landmines, IEDs are built out of everyday
objects and are often used by paramilitary groups, such as those in Colombia, due to their
comparatively simple production. This type of landmine is significantly harder to detect,
as basically all IEDs are unique in their structure, and a sensor system responds differently
to each realization of an IED. For this reason, the requirements for training data sets are
significantly greater in comparison with data sets for professionally built landmines, as not
only must the variation of the measurement environment be modeled but also the variation
of the IED itself. Furthermore, the sensor system must be designed carefully to detect all
features of buried IEDs.

Recent publications have suggested the use of ground-penetrating radar (GPR) for
landmine detection. GPR systems provide a raw data matrix obtained from multiple mea-
surements carried out by a moving platform. In principle, all platforms that allow spatial
displacement of the sensor are suitable for carrying out the measurements. A common
approach is the use of unmanned aerial vehicles (UAVs), such as in [6–9], as these do
not interact with the earth surface during the measurement process. This approach is
particularly advantageous in large, non-vegetated environments. However, in environ-
ments with heavy vegetation, the use of flying platforms is difficult to realise. The use
of robots [10] and handheld sensors [11] is particularly important here. In the context of
humanitarian demining, a landmine leads to specific spatial reflection signatures in the
GPR raw data, as shown in [12–14]. A system that applies a similar measurement method is
ground-penetrating synthetic aperture radar (GPSAR), which uses a more advanced signal
processing procedure following a synthetic aperture radar (SAR) approach. Such systems
as the one in [6,8,9] allow one to form high-resolution images of objects beneath an earth
surface. However, this requires accurate modeling of the wave propagation, where it is
mandatory to measure the soil material parameters in advance. The great advantage of
radar-based systems is that they allow one to obtain information on buried objects without
mechanically interacting with the measurement environment, which is of importance in
humanitarian demining. Furthermore, they are especially of importance for detecting
IEDs since they respond to changes in wave impedance, whereby non-metallic, irregularly
shaped objects can also be detected. On the downside, radar approaches typically suffer
from clutter in multi-target environments, which is inflicted by multiple reflections. As was
shown in [15] by means of simulations, the amount of clutter in the received signal heavily
depends of the orientation of the antenna. In general, it can be stated that a down-looking
radar configuration provides a better resolution with an increased amount of clutter, while
the resolution of a side-looking radar is typically smaller but provides a lower clutter
level. Another disadvantage of radar-based systems is the fact that the penetration depth
decreases considerably if the ground material has high losses, which is why extremely
deeply buried objects are lost in the noise and therefore, cannot be detected. In order to
minimize losses, radar sensors with a transmission signal in a relatively low frequency
range up to around 5 GHz are typically used.

Aside from radar-based systems, there are several other approaches to designing a
sensing system for humanitarian demining. This primarily involves the use of magnetome-
ters and metal detectors [11,16], which aim to detect the magnetic field generated by buried
metal pieces in the presence of a time-varying electromagnetic field. Although this method
is frequently used, it is often difficult to distinguish landmines from other metal objects, and
thus the sole use of metal detectors leads to a high false alarm rate. Furthermore, IEDs can
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be manufactured with a rather small amount of metal pieces, which is why the use of metal
detectors alone is not effective. Another approach to humanitarian demining is infrared
sensors, which aim to track the heat signatures of landmines. It was shown in [17] that this
procedure works well if the landmines are placed on top of the surface, but the detection
accuracy decreases the deeper the mine is buried underground, as the thermal signatures
are increasingly influenced by the surrounding material. Since all named sensors, including
the radar approach, are prone to errors, it is a current research topic to design systems
which rely on several complementary sensors. An example is the system in [18], which
relies on a GPR approach combined with a magnetometer.

All mentioned sensors provide data that are difficult for the user to interpret, and a
trained classifier is required. In this paper, we focus on the problem of generating training
data for GPR and GPSAR systems, as these systems are the most promising ones for the
detection of IEDs. Here, we investigate handheld devices, where the sensor is typically
placed at a short distance from the earth surface in a down-looking configuration. This
work builds on measurement campaigns carried out by our research group in the past. The
processed measurement results recorded by our GPSAR system in an environment with
buried IEDs can be found in [19].

To tackle the problem of missing training data, one possible solution is to manufac-
ture artificial mines that behave as much as possible like real landmines. These artificial
mines can then be buried in an environment that behaves like the intended measurement
environment to collect realistic labeled measurements. An example can be found in [5],
where true measurements were recorded with professionally manufactured landmines.
Here, online dictionary learning was used for advanced feature extraction before feeding
the preprocessed data to a support vector machine (SVM). It was shown that the proposed
algorithm outperformed conventional deep learning methods while requiring significantly
less training data. However, building data sets based on true measurements requires cap-
turing all possible realizations of a landmine. As stated, this is possible for professionally
manufactured landmines but rather challenging for IEDs due to the huge amount of possi-
ble realizations. Therefore, the procedure of collecting true measurements is not effective,
as only a small amount of possible IEDs can be investigated. For instance, in [20], a total
of 30 different IEDs were manufactured to obtain realistic training data. Afterward, an
SVM trained with the measured training data reached an accuracy of up to 87.02%. While
this is a promising result, classifiers for humanitarian demining must reach an accuracy
of almost 100%, especially if handheld devices are used. Another approach to get around
the problem of missing data is to handle landmines as anomalies, as shown in [21]. Here,
an autoencoder was trained purely on measurement data that did not contain a landmine,
reaching an accuracy of up to 93 %.

A well-studied solution to dealing with missing training data is to use synthetic data
generated by an appropriate simulator which is designed to mimic the true measurement
environment. This approach provides the advantage that the user has complete control
over the simulation environment, where automatic labeling of the data is an easy task.
However, it was shown in [22] that training a classifier purely based on simulated data
sets leads to bad results. The reason for this can be found in the circumstance of it being
nearly impossible to model a realistic scenario including the measurement system itself.
On the other hand, it was also shown that enhancing sparse data sets with simulated
data increases the performance of the neural network, outlining the possibility of filling
gaps with simulated data sets. A related approach is transfer learning, where a machine
learning model is pretrained with an available data set that does not necessarily belong
to the true measurement environment. In practice, this shows that data-driven machine
learning models are able to transfer the knowledge from the pretrained model to the actual
data, allowing one to use sparse training data sets. For instance, it was shown in [23] in
the context of motion classification that it is beneficial to use training data generated by
a sufficiently accurate simulator to pretrain the classifier. Here, the classification results
improved by 9% using simulated data. In [24], it was shown that a CNN intended for



Sensors 2024, 24, 836 4 of 21

target recognition could be trained with data generated by a commercial three-dimensional
simulator, leading to faster convergence when trained with the real data set. Another
example can be found in [25], where the CNN was pretrained with simulated SAR images,
showing that the fine-tuned neural network outperformed a conventional CNN when the
training data set was enhanced by simulated data.

The principle of using synthetic data is also a common approach in landmine detection
systems. For this, there are multiple publications using the solver gprMax, such as [26–29],
to simulate a fully three-dimensional GPR environment by applying a GPU-accelerated
finite-difference time domain (FDTD) method. In [30], it was shown by means of a region-
based convolutional neural network (R-CNN) that the classification accuracy of a GPR
system can be increased if the true measurements are extended by simulated data. In [31],
a CNN was trained exclusively with data obtained from gprMax while being tested on
real measurements. It was shown that the classifier was capable of reaching a classification
accuracy of 83% by only using synthetic data for training. Furthermore, it was shown that
adding the true measurements of scans without landmines to the training data increased
the detection accuracy up to 95%. Aside from these examples, there are also publications
that explicitly deal with modeling IEDs in simulations. In [14], an R-CNN was trained with
real and simulated data to detect the characteristic hyperbolic patterns of IEDs. Here, the
simulated data consisted of simulations with gprMax as well as hand-drawn hyperbolas,
while the accuracy was evaluated with the intersection over union (IoU) metric. It was
shown that the trained R-CNN model reached an IoU of up to 96.68%. In [12], an IED was
modeled with a camping cylinder to investigate the possibility of knowledge transfer from
different sensing environments. Here, it was shown that the trained least squares support
vector machine (LS-SVM) was capable of transferring the learned model to other measure-
ment environments by only using a rather limited amount of new training data. In [13], a
total of five different landmines were modeled. The IEDs were modeled, for instance, as
plastic canisters filled with the explosive material. However, all publications concerned
with IEDs have in common that the IEDs had to be modeled by hand, and thus only a few
specific building types could be investigated. To the authors’ best knowledge, there are no
publications until today that not only model a random measurement environment but also
take care of the random building type of the IED itself. For this reason, this publication
aims to develop a simulation framework that allows generating fully randomized training
data sets by also applying a randomized mine model for IEDs.

While three-dimensional simulators like gprMax allow more accurate modeling of the
problem, they suffer from a much slower computation time. Regarding two-dimensional
simulation schemes, the simulator presented in [32] applies a two-dimensional FDTD
method to generate the raw data. The measurement environment is modeled by a ran-
domized earth surface and a randomly distributed soil permittivity while including bullets
as false alarm targets. However, the authors of [26–29,32] dealt with professionally built
landmines by calculating the time domain raw data matrix. In contrast, this contribution
aims to model IEDs while applying an appropriate postprocessing of the raw data. Further-
more, the model presented in this publication includes statistically generated targets and a
randomly generated mine model, resulting in a more complex simulation environment.

The simulation environment presented here refers to the system we proposed in [19].
This is a handheld M-sequence radar device that emits electromagnetic waves in the low-
frequency range of up to 5 GHz. In general, however, the underlying simulation approach
is independent of the radar system and can also be applied to other frequency ranges.
Therefore, the presented simulation approach allows modeling the received signals of
future modern radar sensors in numerous applications. Figure 1 shows the basic principle
of the proposed training process. The describing parameters of the environment, like
the relative permittivity εr, and the parameters of the measurement system are passed
to a randomizer. This generates a random scenario of the environment, which is used to
calculate the received signal by means of a full-wave simulation. The simulation results are
validated by measurements of the sensing environment to ensure that the simulated data
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match the measured data with sufficient accuracy. Afterward, the simulated data and the
true measurements are used to train the classifier.

Figure 1. Procedure of the training process. The description parameters are passed to a randomizer,
which generates the scene for the simulator. The simulator generates the training data, which are
cross-validated with the real measurements and then used to train the classifier.

This manuscript is organized as follows. Section 2 gives insight into radar imaging
using the backprojection algorithm, including the refraction compensation in a GPR sys-
tem. In Section 3, we introduce the basic simulation concept, namely the FDFD method.
Afterward, two approaches are presented in Section 4 which allow generating random
objects by means of filtered noise. Furthermore, the generation of randomized IED models
is presented in this chapter. Section 5 provides an overview of the implementation of
the simulator, while Sections 6 and 7 then show some selected simulation results for a
simplified mine model and the IED models, respectively. Finally, Section 8 provides a
conclusion of the obtained results.

2. Radar Imaging

In the following, we will give a brief introduction into the postprocessing procedure
of the raw data obtained by the simulation. Here, we will start with the range-compressed
raw data s(τ) and focus on the radar imaging algorithm to obtain images from objects
beneath the earth surface. For a more in depth discussion on the underlying signal model,
we refer to [33].

Assuming that the wave propagates with the speed of light c0, the target is at a constant
distance R and the round-trip time is given by τ0 = 2·R

c0
, the range-compressed signal can

be described as follows:

s(τ) = sinc
(Ω

2
(τ − τ0)

)
· exp(−j2π f0τ) (1)

where Ω denotes the bandwidth of the system, while f0 is the center frequency of the
emitted signal. By following this approach, one can achieve one-dimensional range infor-
mation from a single measurement. However, to obtain two- or three-dimensional results,
one has to carry out several measurements. For instance, in case of a synthetic aperture,
a single radar sensor is moved above the target area, while multiple measurements are
taken at different positions along the trajectory. Afterward, the image of the measurement
environment is formed by applying a pulse compression in the range and cross-range
directions. Assume that the sensor moves along an arbitrary trajectory and carries out M
measurements, where r⃗a,m denotes the mth measurement. For a point scatterer at the posi-
tion r⃗, the round-trip time can be found with τm = 2∥⃗ra,m−⃗r∥2

c0
. With the system parameters

known a priori, the range-compressed signal can be found by substituting the round-trip
time into Equation (1). After range compression, cross-range compression can be achieved
by means of the backprojection algorithm, among others. For this, we assume that the
target area can be approximated by a set of discrete point scatterers. Following this, the
reflection at a discrete point in space can be found by adding up the corresponding values
in the range-compressed signals after compensation of the phase term. By repeating this
for all M measurements at a sufficiently large amount of points in space, one can form an
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image I (⃗r) of the measurement environment. For a single discrete point r⃗t in space, the
formula is as follows:

I (⃗rt) =
1
M

M

∑
m=1

s(τm) · exp(j2π f0τm) (2)

The found formula is a straightforward solution for the imaging problem. However,
backprojection of the range-compressed signal relies on the modeling of the wave prop-
agation and the according round-trip time τm. In case of a GPR system, the surrounding
medium is inhomogeneous, where the refraction effects at the earth surface and varying
propagation speeds have to be taken into account. Therefore, provided that the soil per-
mittivity is known a priori, the main problem is to find the refraction point on the earth
surface. As was shown in [34], this can be achieved by evaluating Snell’s law. Figure 2
shows the measurement scenario of an antenna located at r⃗a over the soil material and the
observation point r⃗t below the earth surface. We denote the overall horizontal distance
between the antenna and the observation point with X and the horizontal distance between
r⃗t and the refraction point with x1. Similarly, Y denotes the vertical distance between the
antenna and the observation point, and y1 is the distance between r⃗t and the earth surface.
In reference to Figure 2, the problem reduces to finding x1. According to Snell’s law, and by
applying some calculations, the following equation can be derived:

x4
1(N2 − 1) + 2Xx3

1(1 − N2) + x2
1(N2X2 + N2y1 − X2

−Y2 + 2Yy1 − y2
1)− x1(2Xy2

1N2) + N2X2y2
1 = 0

(3)

Here, N is the ratio of the refraction index n1 of the material above the earth surface
and the refraction index n2 of the soil material. In the literature, there are solutions to
find the roots of such functions, and the theory ensures Equation (3) always provides
four complex roots. However, in the case of the given GPR problem, the solution can be
restricted to the positive real-valued root. After calculating x1, the round trip time can be
found as follows:

τ =

√
(X − x1)2 + (Y − y1)2

c0
n1 +

√
x2

1 + y2
1

c0
n2 (4)

Finally, substituting Equation (4) in Equation (2) solves for the refraction problem,
allowing the forming of images of objects below the earth surface.

Figure 2. Refraction situation for a single antenna position with an idealized point target buried in
soil material with a flat surface.

3. Simulation Concept

In this section, we provide an introduction to the simulation of radar signals using
the FDFD algorithm. For a more detailed discussion of the numerical method and the
implementation, we refer to [35,36].
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It can be shown that the received signal of the radar sensor is equal to the transfer
function of the measurement environment, except for a constant factor. This is a generally
valid relationship that is not limited to the field of GPR. Therefore, the problem is equivalent
to calculating the field distribution at the receiver for a given excitation of the source. For
this, one could rely on asymptotic simulation concepts like ray tracing or physical optics to
calculate the received signal. However, the named methods are powerful approaches for
free space applications but usually lack accuracy in more complex environments. Therefore,
we rely on mesh-afflicted methods, which can be adopted to all simulation scenarios
at the cost of much larger computational complexity. As it is known from theory, the
description of electromagnetic phenomena in the time and frequency domains is completely
equivalent. Therefore, the simulation domain can be chosen arbitrarily as long as the
boundary conditions provide a unique solution. However, effects like losses and dispersion
are usually introduced in the frequency domain, whereas modeling the scenario in the
frequency domain is the more straightforward solution.

While time domain methods like the FDTD method aim to propagate an incoming
wave along a discrete grid over time, frequency domain solvers produce a linear equation
system, which must be solved independently for each frequency. Through this, the received
signal of the radar sensor can be evaluated at discrete samples, where each sample is found
by a separate simulation. Regarding full-wave solvers in the frequency domain, the finite
element method (FEM) is state of the art. This can mainly be justified by the ability to adopt
the underlying mesh to the simulation environment, resulting in a sparse equation system.
However, generating a good variational grid is a complex task, especially when dealing
with inhomogeneous materials like in this contribution. Therefore, we rely on the FDFD
method, since the mesh can be generated comparatively quickly for an arbitrary material
distribution. In terms of the investigated simulation environment, this is a significant
advantage that simplifies the simulation considerably but at the price of a larger system of
equations to solve.

The basis of the FDFD method is the approximation of the differential operator by
a finite difference. We are using a central finite difference, which can be formulated as
follows for a differentiable function f (x):

∂ f (x)
∂x

≈
f (x + ∆

2 )− f (x − ∆
2 )

∆x
(5)

Here, ∆x denotes the spacing between two function values used for the approximation.
The result in Equation (5) is an important one, but it leads to the problem that the function
values used for the approximation are only known at integer multiples of ∆x, where the
values at x ± ∆x

2 must be interpolated. However, from Maxwell’s equations it is known that
E⃗ ∝ ∇× H⃗ and H⃗ ∝ ∇× E⃗, through which it becomes clear that E⃗ and H⃗ can be staggered
in space with a spacing of ∆x

2 . In practice, this is solved by applying the Yee grid as was
shown in [37]. Aside from the problem of staggered fields, this grid also assures that the
divergence equations of the electromagnetic field are fulfilled automatically while allowing
an efficient approximation of the curl equation.

To transfer the finite difference principle to the scattering problem in the GPR context,
we evaluate the wave equation for the electric field E⃗(⃗r, ω) in the frequency domain:

∇× µ−1∇× E⃗(⃗r, ω) + ω2εE⃗(⃗r, ω) = 0 (6)

Here, µ and ε denote the permeability and permittivity, respectively, while ω denotes
the angular frequency. The equation describes the field distribution of the electric field
in the absence of sources. However, this equation cannot be solved on a computer since
we are dealing with a continuous spatial variable r⃗. To reduce this to a manageable prob-
lem, one can introduce the Yee mesh cells, whereas the curl operator can be described
as a multiplication with the matrices CH, CE ∈ RN×N . Here, CH is the finite difference
approximation for the magnetic field on a discrete grid with N Yee cells. Accordingly, CE
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denotes the matrix for the electric field. Substituting the electric field in Equation (6) with
its discrete equivalent and the curl operators with the according matrices leads to a fully
three-dimensional solver for the problem setting. However, applying a three-dimensional
simulation of the problem leads to high demands for memory and computational power.
Therefore, we meet a two-dimensional approximation by ensuring ∂

∂ z E⃗(⃗r, ω) = 0. Follow-
ing this, the wave equation decouples in two independent modes, namely the E and H
modes. In the further explanations of this section, we refer to the E mode with the field
components Hx, Hy, and Ez. The formulas for the H mode can be found in a similar way.

After introducing the material parameters µf and εf of the free space, the discrete wave
equation for the E mode is as follows:

(CHµ−1CE + ω2ε)E⃗z,sc = −(CHµ−1
f CE + ω2εf)E⃗z,inc (7)

For this solution, it was assumed that the field could be divided into the incoming
field E⃗z,inc and the scattered field E⃗z,sc, with E⃗z = E⃗z,inc + E⃗z,sc. Equation (7) finally allows
calculating the electric field by introducing the source by means of the incoming field
and solving the equation system afterward. However, attention must be placed on the
boundary conditions, since the finite difference approach in Equation (5) naturally requires
field components outside of the discretized space, leading to eventual reflections. An
effective approach to avoiding such reflections is the perfectly matched Layer (PML). Here,
an anisotropic lossy material is placed around the simulation domain that allows inducing
losses without applying reflections to the incoming wave.

Finally, after implementing the finite difference approximation of the wave equation
including the PML, the scattered field can be calculated by using a total-field scattered-field
(TFSF) implementation of the source. Using this implementation ensures that the emitted
wave can only propagate in the TF region, while the SF region only contains the scattered
wave components. Therefore, one can separate those two field components at the receiver

and find the received signal by calculating the ratio E⃗z,sc

E⃗z,inc
.

4. Randomized Simulation Scenes

As already mentioned in Section 1, it is of great importance that the generated data
contain large variance, meaning that the generated scenes are as diverse as possible. To
ensure this, a mechanism is required that allows scenes to be generated randomly. Therefore,
we will introduce two related methods in this section which allow generating random
objects. Here, we trace the problem back to white noise, which can be generated effortlessly
nowadays.

4.1. Randomizing Contours

Formally, we consider a stochastic process where Ω is the set of possible outcomes,
while ω ∈ Ω denotes one specific outcome. We limit ourselves to discrete stochastic
processes and define X(ω, n) = [X1, . . . , XN]

T as a mapping of the outcome ω on a set
of N random variables. For the sake of simplicity, we drop the dependency on ω and
simply denote the stochastic process with X(n). Let X(n) be normally distributed for all
n ∈ [1, N] with a mean value of EX(n) = 0, a variance EX(n)2 = σ2, and the covariance
Cov(Xn, Xm) = 0 ∀n ̸= m. In this case, we call X(n) white noise, and it can be shown that
X(n) has a constant power density spectrum.

We now aim to generate a random curve by applying an appropriate filter. Filtering can
either be carried out by evaluating a convolution in the time domain or a multiplication in
the frequency domain. Here, we use the frequency domain solution because the calculation
is usually faster due to efficient implementation of the fast Fourier transform (FFT).

As already stated, white noise provides a constant power density spectrum, while the
absolute majority of all Fourier coefficients is not equal to zero. This leads to curves with
rather high slopes, as can be shown for a continuous function x(t). Assume that there is a
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pair x(t) c sX( f ). One can show that the following expression holds for a symmetrically
defined Fourier transform: ∣∣∣dx(t)

dt

∣∣∣ ≤ √
2π

∫ ∞

−∞
|X( f ) · f |d f (8)

Therefore, there is an upper bound for the slope which can be expressed by the
spectrum. Following this, for a fixed spectrum X( f ), one can decrease the upper bound by
applying a low-pass filter with the impulse response H( f ), leading to a continuous curve
with a decreased slope. For this reason, we define the discrete filter transfer function H( fm)
as a Gaussian filter:

H( fm) =
1√

2πσ2
· exp(− f 2

m
2σ2 ) (9)

with σ2 denoting the variance of the filter and m ∈ [−M
2 , M

2 − 1] for an FFT length of M. Let
X( fm) = F{X(n)} be the frequency domain representation of a stochastic process. Then,
the filtered signal X̃(n) in the time domain can be found as follows:

X̃(n) = F−1{H( fm) · X( fm)}(n) (10)

Since the generated noise is real-valued, the spectrum is symmetric, and due to the
symmetry of the filter, the resulting signal X̃(n) is real-valued as well. In fact, applying the
filter in Equation (9) sets most Fourier coefficients to zero or at least close to zero, except
for only a few coefficients close to the origin of the spectrum. Subsequently, X̃(n) can be
mapped to a certain co-domain [xmin, xmax] by applying the following transformation:

X̂(n) =
X̃(n)− min{X̃}

max{X̃} − min{X̃}
· (xmax − xmin) + xmin (11)

Based on the randomized curve X̂(n), one can build random objects by transferring
the concept to the desired form of the object. For instance, objects from the field of GPR
that can be modeled by line elements, such as branches, can easily be modeled by the
presented concept. However, the presented method is also a powerful tool for generating
random two-dimensional contours, as can be seen in Figure 3. Here, Figure 3a shows a
random curve generated by filtered noise, where the curve can be interpreted as the radius
r ∈ [rmin, rmax] depending on the angle ϕ(n) ∈ [0, 2π]. Afterward, the curve is fitted on a
two-dimensional grid as shown in Figure 3b, with the contour given by

C(n) = X̂(n) · (cos(ϕ(n)), sin(ϕ(n)))T (12)

Subsequently, the object is filled with ones everywhere inside the contour and zeros
elsewhere, resulting in a binary mask of the object. Since most real-world objects that
can be found in GPR systems are strongly inhomogeneous, randomized objects cannot be
modeled by setting the relative permittivity to a constant value. One can account for this
fact by generating two-dimensional noise like in Figure 3c and applying a two-dimensional
Gaussian filter, which results in the distribution shown in Figure 3d. Here, the values
inside the matrix are scaled to an interval [−∆ε, ∆ε] by Equation (11), which accounts for
the dispersion of the permittivity within a given interval. Subsequently, the final object
is formed by multiplying the filtered noise in Figure 3d by the binary mask in Figure 3b.
Thereby, the filtered noise is set to zero everywhere outside the object. Furthermore, we
add a mean relative permittivity value ε̄r, while we obtain the final object in Figure 3e,
which contains a random contour and a randomized relative permittivity distribution.
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Figure 3. Generation of a random object. (a) Randomized curve which can be interpreted as the
radius, depending on the angle. (b) Interpolation of the curve on a two-dimensional grid using
a polar coordinate system. (c) Two-dimensional noise. (d) Filtered noise using a Gaussian filter.
(e) Final object.

The arising problem in designing randomized objects is to select the parameters in
the presented procedure so that the generated objects are close to the real targets. The two
important parameters that have to be chosen in the proposed algorithm are the standard
deviation σ of the applied filter transfer function as well as the permittivity of the objects.
In practice, choosing these parameters requires a detailed analysis of the measurement
environment. Here, material characterization is of central importance, as parameters such
as the relative permittivity have a great influence on the simulation results and must be
known a priori for as many objects as possible. Regarding the standard deviation of the
filter, there are no fixed exact values, as these values strongly depend on the geometry
of the intended object. However, regarding two-dimensional objects like in Figure 3, for
example, the rule of thumb is to choose σ to be relatively small, with σ < 50 Hz if the
object is close to a sphere. The larger the standard deviation, the larger the curvature of
the resulting filtered curve will be, and the more the resulting two-dimensional object will
differ from a sphere. As with the relative permittivity, the standard deviation is ideally
selected on the basis of an investigation of the possible geometries in the environment.
However, following the approach of transfer learning in the introduction, it is not of central
importance to exactly recreate the overall structure of all possible objects exactly but to
present the classifier training data with a certain variance, since machine learning models
are typically able to transfer knowledge from one problem to another. For instance, the
R-CNN in [14] was trained to classify the hyperbolic pattern of IEDs while being partially
trained with hand-drawn hyperbolas. Furthermore, in [12], it was shown that a classifier
trained for detection in a certain environment can be transferred to another environment
with only a few new training samples.

4.2. Including a Priori Knwoledge

The presented method in Section 4.1 is well suited for generating objects with com-
pletely random contours, as shown in Figure 3. However, many real-world objects contain
sharp edges or can be modeled as a variation of a specific geometrical shape. For instance,
IEDs are often build from bottles or plastic containers, which usually do not offer a com-
pletely random shape. Therefore, it is of great importance to consider a priori knowledge
of the shape in the randomized generation process. However, modeling such objects with
the presented method in Section 4.1 is a tedious task, since it requires manipulating the
obtained random curve. A more suitable method for including a priori knowledge is to
model the object with a continuous deformation of a reference object. In the following,
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we will describe the procedure for the case of a continuous variable since it simplifies the
discussion. We will then transfer the method to the discrete domain.

Let t ∈ [0, 1] be a continuous variable and F⃗(t) be a closed continuous curve in R2,
which we will call the reference. Furthermore, let ϕ(t) ∈ [0, 2π] be a continuous curve with
ϕ(0) = ϕ(1). We now want to create a new curve based on a continuous deformation of
the reference F⃗(t). Therefore, we define the following curve using polar coordinates:

D⃗(t) = (cos(ϕ(t)), sin(ϕ(t)))T (13)

Using this result, a continuous deformation F⃗ ′(t) of F⃗(t) can be expressed as a
weighted sum of F⃗(t) and D⃗(t):

F⃗ ′(t) = F⃗(t) + α(t) · D⃗(t) (14)

Here, α(t) is a weighting factor, which can be chosen arbitrarily. However, we demand
that F⃗ ′(t) should be closed and continuous, which forces α(t) to be continuous with
α(1) = α(0). Figure 4 shows the principle of the procedure, using a circle as the reference
object. In this illustration, the dashed line represents the deformed contour.

Figure 4. Continuous deformation of a reference object.

The presented method can easily be transferred to the given problem by choosing ϕ(t)
and α(t) as random curves. This can be accomplished by choosing randomized curves
from the method presented in the previous section, since those curves always fulfill the
requirements placed on ϕ(t) and α(t) due to the nature of the FFT. However, this procedure
forces the use of discrete variables. For this reason, we define the reference object on a
discrete grid using only N discrete values. Afterward, the deformation can be calculated as
shown in Equation (14) by using discrete functions ϕ(n), α(n) n ∈ [1, N].

Figure 5 shows some results for the procedure in the case of a square reference on
the left side and a reference consisting of two nested squares on the right side. Here,
the parameters α(t) and ϕ(t) were selected as random curves, following the approach
in Section 4.1. For instance, for the container, the parameter α(t) was calculated using
a standard deviation of σ = 3 Hz. It is clearly visible that the deformed objects are still
closed contours, while the original reference has a strong influence on the final shape of
the object. For instance, the number and positions of the edges remain, while straight
lines are mapped onto curves. In the following, we will use the two references to build
randomized IED models, with some realizations shown in Figure 5b. Here, the mine was
modeled as a random plastic container built from an object close to a rectangle for the two
mines on the left side. On the other hand, one can build bottle-shaped IEDs from the nested
squares reference as shown for the two objects on the right side. In practice, however, IEDs
usually have a symmetrical container, as IEDs are usually made from everyday objects,
and most available containers are made symmetrically. Therefore, the deformed contours
were mirrored to ensure the container of the mine was symmetric. Aside the container,
the mine includes the explosive material, a small air gap between the explosive material
and the containment, as well as a detonator and a battery, which are used to trigger the
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explosion. Furthermore, in practice, mines can be filled with additional small pieces of
metal to increase the destructive power of the mine when detonated.

(a)

(b)

Figure 5. Generation of randomized objects by deformation of a reference object. (a) Deformation
using a rectangular reference or a reference of nested squares. (b) Mine models built from the
references. The numbers shown in the mine model on the left side denote the following components:
(1) plastic container, (2) additional metal pieces, (3) detonator, (4) explosive material, (5) air gap, and
(6) battery.

The mine models shown were generated completely randomly, as only the battery
and the detonator had a constant rectangular shape. However, the placement for the mine
was purely random. The metal pieces and the air gap were created using the method in
Section 4.1, and the placement of the metal pieces was also assumed to be random, with
the density following a gradient as metal pieces typically sink to the bottom of the mine.

5. Simulation Procedure

After introducing the basic principle of the FDFD method in Section 3 and the proce-
dure for creating randomized objects in Section 4, this section aims to give an overview of
the implementation steps of the simulator. For this, Figure 6 shows a block diagram of the
basic implementation.

The implementation of the simulation framework can be divided into two parts: the
one that can be calculated serially on a CPU and the main part, where the equation system
is solved in parallel. In this implementation, setting up the simulator and the randomizer
can be accomplished independently from each other before merging the outputs of the
two blocks. Setting up the empty simulator in the upper left block in Figure 6 requires the
system parameters and the simulator variables as the input. Here, the system parameters
are the variables describing the radar system itself, namely the operating frequency f of the
system, which is in the range f ∈ [ fmin, fmax], and the spatial position of the radar sensor
during each measurement. The simulator variables, on the other hand, are parameters such
as the grid spacing of the Yee grid, the parameters required for setting up the boundary
conditions, and the overall dimension of the scene. These parameters are used to create
the empty discrete Yee grid and calculate the corresponding difference matrices CH and
CE from the finite difference approximation introduced in Section 3. Afterward, the TFSF
source and the PML are calculated as shown in [35,36] for each discrete frequency point in
a for loop. Following this, the outputs of the simulator block are the empty grid with the
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boundary condition, the excitation source, and the difference matrices. All variables up to
this point are independent of the actual material distribution.

Input: System Parameters Input: Material

Simulator Variables Geometrical

Set up discrete Grid

Parameters
Parameters

Calculate Difference Matrices

C & C
E H

for f=f ... fmin max

Calculate Boundary Condition (PML)

Calculate Source

Set Landmine?

Build IED by reference deformation

Build Soil from filtered Noise

& place at random position

Build dielectric & metalic scatterers

from filtered Noise

Place scatterers at random position

Position valid?

Interpolate random distribution

on Yee-Grid of the Simulator

Antenna 1
f=fmin

Antenna 1
f=fmax

Antenna N
f=fmin

Antenna N
f=fmax

s1,1

Output: Grid with PML,
Excitation Sources,
Difference Matrices

Output: Random Permittivity/
Permeability Distribution

Parallel Calculation of

Simulator

s1,N sM,1 sM,N

N samples of first measurement N samples of M-th measurement

............

.... .... ....

field at receiver

Randomizer

f=fmax

f<fmax

yes

no

no
yes

Labeled position of IED

Figure 6. Implementation of the proposed simulation approach.

In the randomizer block on the upper right side, the material distribution is built on a
fine grid. This requires the material parameters as the input, which must be determined
by material characterization in advance or can be found in the literature for some selected
regions, such as in [38]. Furthermore, the geometrical information for the randomized
modeling of targets is required. However, as discussed in Section 4.1, it is not of central
importance to model all objects exactly but to present scatterers with a large variance to
the classifier. As already mentioned, it is usually a good choice to apply filters with a
low standard deviation in the randomizer if no geometric information about the targets
is available. To set up the simulation environment, the soil material was calculated with
filtered two-dimensional noise as the background material. In the next step, it was decided
if the simulated scene contained an IED. If this was the case, then the IED was built as
demonstrated in Section 4 and placed at a random position on the grid. Furthermore, if
the IED was set, then the position in the simulated environment was stored, since this
information is important for the training process. If, on the other hand, the simulated scene
did not contain an IED, then the step was skipped, and the scene was labeled accordingly.
In the next step, all dielectric and metallic scatterers were calculated and stored separately.
Since the scatterers had random sizes and had to be placed at random positions on the grid,
the most straightforward approach to achieving this was to place them at random positions
and store the coordinates on the grid occupied by the scatterer. Since the scatterers could
not overlap in practice, this could be repeated for all scatterers. However, if a collision was
detected, then a new random position had to be calculated. As the output, the randomizer
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block provided a random material distribution of complex permittivities and permeabilities
as well as the labeled position of the landmine.

After interpolating the material distribution provided by the randomizer on the empty
Yee grid of the simulator, the equation system could be calculated according to Equation (7),
and inverting the system for each frequency point led to the electromagnetic field at the
receiver. However, since the equation system is independent for each frequency sample
and for all positions, the simulation could be parallelized. Therefore, for M measurements
and N samples per measurement, the overall simulation could be divided into M · N
independent equation systems. Following this, the simulation framework provided the
frequency domain samples sm,n , m ∈ [1, M] , n ∈ [1, N] of the received signal, which could
be transformed back into the time domain to obtain the range information.

To test the framework, the simulator was implemented for a parallel calculation on an
AMD Ryzen Threadripper 2990WX 32 core processor. In the implementation, the simulation
of 32 samples could be calculated in parallel. The total run time of the simulation was
determined to be 619 s, and this time was divided into 19 s for the random generation
on the grid, 585 s for solving the equation systems during the simulation, and 15 s for
postprocessing. This shows that inversion of the equation system was the most time-
consuming step during the simulation. However, the calculation in the frequency domain
allows a completely parallel calculation of all frequency samples. Therefore, for practically
generating data sets, a calculation on the GPU is advantageous since this allows a massive
parallel calculation with which the simulation can be accelerated greatly.

6. Randomized Measurement Environment

In the following two sections, we will provide the simulation results of multiple IED
realizations. Since the simulations shown here refer to our measurement system, we refer
to [19] for a comparison of the obtained simulation results with real measurements of a
manufactured test IED in a realistic measurement environment. In reference to [39], we
will give a brief overview of the results, since all further simulations are a modification to
further adapt the achieved simulation results to the measurement environment.

As stated in the introduction, we assumed a handheld device was used according
to [19], which moved with a constant distance of approximately 0.15 m above the earth sur-
face. The great advantage of such a system is the possibility to adapt it to environments with
strongly developed vegetation, where flying platforms like drones are useless. However, to
penetrate the earth surface, low frequencies are required, since increasing the frequency also
leads to increased losses, and thus the earth surface becomes non-transparent. Therefore,
the frequency range of the proposed system ranged from 0.4 GHz up to 4 GHz. The number
of antenna positions was chosen to satisfy a sampling of the aperture with a spacing of
λmin

4 according to SAR theory. Here, λmin denotes the minimum wavelength belonging to
the highest frequency in the simulated signal. Furthermore, to accelerate the simulation,
the number of simulated samples was iteratively increased until the processed images
converged. It shows that this was approximately satisfied with a total of N = 100 samples.
It is known from signal theory that the number of samples has to be chosen in consideration
of the highest expected frequency in the signal. For a radar sensor, however, the frequency
is directly coupled to the distance from the target. Therefore, increasing the amount of
samples also increases the amount of simulation iterations, while the final imaging result
remains unaffected as long as the scene is not extended in the range direction. However,
it has to be mentioned that increasing the soil permittivity also forces an increase in the
number of frequency samples.

In contrast to the measurement system, modeling the measurement environment is
a tedious task, since the quantity and form of possible disruptors are basically unlimited.
Even if we limited ourselves to only a small set of different interferers, the permittivities
could vary strongly. Therefore, we chose to investigate one possible realization of a ground
scene with the permittivity values from Table 1.
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Table 1. Permittivity values used for simulation [39].

Subject ε′r ε′′r

Vegetation [40] 10 3.8
Branches [41] 5.2 1.5

Stones [42] 5.5 0.2
Soil [43] 9 0.045

Soil around mine 7 0.045
Explosive [44] 4.5 1

Figure 7 shows four different ground scenes and the related normalized radar images
obtained from the simulation after applying a range and cross-range compression on the
simulated raw data. Here, the complexity of the scenes increased from a homogeneous
lossless ground material with a flat surface in Figure 7a to a more complex measurement
environment with numerous additional scatterers and vegetation in Figure 7d. The mine
was approximated as a simple rectangular plastic container including the explosive material
as well as a metal detonator and an air gap. Furthermore, the mine model included a
simplified battery package, which is typically required to trigger the explosion. However,
the modeling of more complex mine models is crucial and will be discussed in the further
proceedings of this paper.
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Figure 7. Simulated ground scenes with the corresponding normalized SAR images including the
contour of the mine. (a) Reference image containing the mine model in a perfectly homogeneous
material. All losses were neglected. (b) Mine model in an inhomogeneous soil material with
a non-planar surface, considering dielectric losses. (c) Mine model under the considerations of
additional dielectric scatterers inside the ground material. (d) Complete scene under the assumption
of additional metal interferers and vegetation on the earth surface [39].
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As can be seen in Figure 7a, the simplified scene with a flat homogeneous ground
material resulted in two local concentrated reflections, which can mainly be attributed to
the air inclusion and the battery. There was neither a visible concentrated reflection of the
detonator nor any disturbing clutter. Removing the detonator and repeating the simulation
showed that a small part of the lower reflection associated with the battery was actually
caused by the detonator inside the explosive material. However, the resolution of the
simulated system was not able to locally resolve the weak reflection for this arrangement.
This result can basically be interpreted as the best case scenario, since the flat surface
allowed a perfect inversion of the imaging problem while all dielectric losses in the soil
material were neglected. In order to better represent reality, the scenario in Figure 7b
includes an inhomogeneous lossy material with a non-flat surface. Here, the ground
material and the surface were drawn from a random distribution. Comparing the processed
image to the previous result in Figure 7a shows that the results were almost similar, since
the two reflections were still clearly identifiable. On the downside, the inhomogeneous
ground material led to additional clutter, which degraded the image quality. However,
the influence of small inclusions in the soil material seems negligible as long as they are
small in reference to the wavelength. If we include larger dielectric scatterers like stones
and branches in Figure 7c, then this shows that the clutter further increased while the mine
reflections were still clearly separable from the background noise. Additionally, Figure 7c
includes a slightly different soil material around the mine, which resulted from the digging
process. The burial of a landmine typically leads to small air inclusions which decrease
the overall relative permittivity. With regard to the processed image, it is shown that the
varying permittivity values led to a shift in the battery reflection toward the earth surface.
The reason for this can be found in the imaging algorithm, since the varying permittivity
values can not be considered in the imaging process.

Finally, the worst case scenario in Figure 7d includes additional metallic scatterers
buried in the soil material as well as vegetation on the earth surface. Metallic scatterers
in particular present a huge problem in practice, since conventional systems like metal
detectors typically have problems identifying mines in the presence of metal pieces. In
our case, we implemented a metallic can and various smaller scatterers. Regarding the
processed image, it is shown that the strongest reflection was induced by the buried can,
while the mine reflection was significantly less pronounced. The small metal scatterers,
however, did not lead to strong reflections, which can again be explained by the small
diameter in reference to the wavelength. The vegetation on the other side decreased the
signal-to-noise ratio inside the soil material significantly since it implied strong losses to
the incoming wave.

7. Randomized Mine Model

Until now, we investigated the influence of a randomized measurement environment.
However, as discussed in Section 1, another critical point is the modeling of the IEDs
themselves. The reason for this is the unique building type, which drastically complicates
the classification process in comparison with professionally built landmines. We already
demonstrated previously in Section 4.2 that IEDs can be modeled as continuous deforma-
tions of a reference object, with some realizations shown in Figure 5. In this section, we will
investigate the behavior of randomized IED models in the simulated measurement envi-
ronment. This is carried out based on the simplified measurement environment containing
a flat earth surface and homogeneous lossless soil material. Subsequently, we evaluate the
imaging results in a more complex environment, including dielectric scatterers such as
stones and branches, vegetation on the earth surface, and some additional metal scatterers.
For the simulation, we limited ourselves to small metallic scatterers, since the simulation
of large metallic scatterers in Figure 7d induced a strong distortion of the imaging results.
The permittivity values were chosen in reference to Table 1. and the normalized imaging
results of the simulation are shown in Figure 8. Here, we used two IED models, where the
models in Figure 8a,c are derived from a square reference while the mines in Figure 8b,d
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were derived from a nested squares reference. Again, the presented IEDs included a metal
detonator, as well as a battery and some additional metal pieces. To allow a comparison
to the results in Figure 7, the IEDs were placed in the same position, meaning that the top
side of the IED was buried at the same distance from the earth surface.
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Figure 8. Simulation of randomly generated IEDs in a GPR environment. (a) IED build from a
square reference in a homogeneous and lossless soil material under the assumption of a flat earth
surface. (b) IED build from a nested square reference representing a bottle. (c,d) IEDs in a complex
environment containing dielectric and metallic scatterers as well as plants on the earth surface.

With regard to the mine model in Figure 8a, it is shown that the strongest reflections
were still induced by the top side of the mine and the battery. However, compared with the
results in Figure 7, it is shown that both reflections were significantly weaker. This can be
explained by the fact that the surfaces were not perfectly aligned to the trajectory of the
radar system. Therefore, a part of the power was not reflected to the radar system, which
finally resulted in a lower amplitude in the range-compressed signal. Another result which
can be drawn from Figure 8a is the circumstance that both the detonator and the metal pieces
did not lead to significant reflections in the investigated arrangement. This behavior is
explainable by the large losses in the explosive material, as the reflected wave was damped
to a negligible level before reaching the receiver. Therefore, building an electromagnetic
sensing system purely based on detecting metal scatterers is not a promising approach.
Furthermore, one could argue that the metal pieces inside the mine are negligible in the
given context and can therefore be excluded from the simulation. However, the permittivity
values used for the explosive material presented only one possible realization. It was shown
in [44] that the losses of commonly used explosive materials vary strongly, with the losses
approaching zero for some realizations.

To summarize, it is shown that the reflection pattern of the IED in Figure 8a was close
to the reflection pattern of the reference in Figure 7. The main differences were the weaker
reflections of the individual components of the IED and the relative shift of the reflections
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due to the shift of the outer metallic parts. However, the influence of slightly altering the
non-metallic geometry of the IED was comparatively small, since it did not significantly
influence the reflection pattern for the given IED realization.

The second IED in Figure 8b can be interpreted as a worst case scenario. Here, the
mine consisted of a bottle with a height chosen to be 19 cm. Furthermore, compared
with Figure 8a, the size of the battery was decreased, which resulted in a decreased radar
cross-section for both the containment and the battery. Regarding the processed image,
it is shown that the reflections of the IED still resulted from the battery and the parallel
aligned components on the top of the IED. In comparison with Figure 8a, it turns out that the
decreased size of the IED had an effect on the reflection, as all visible reflections were weaker
compared with the other investigated IED models, which can be attributed to the smaller
radar cross-section. Furthermore, this IED geometry also clearly shows that the internal
metal parts led to negligible small reflections. However, when comparing the result to the
reference mine architecture in Figure 7 and the IED in Figure 8a, it becomes clear that the
reflection pattern changed significantly. The reference mine model and the IED in Figure 8a
could both be approximated with two concentrated reflections. The deviating geometry of
the second IED model in Figure 8b, on the other hand, showed further deviating reflections,
resulting in a new reflection pattern. The additional reflections can be attributed to the
fact that the container provided multiple parallel surfaces at different distances, leading to
individual reflections of the incoming wave. It can therefore be stated that the geometry of
the container is not negligible and must be taken into account during the training process
of a classifier. This shows that a classifier for IEDs cannot be trained for a specific mine
geometry but must cover many different geometries.

Enhancing the scene with additional dielectric and metallic scatterers as well as
vegetation in Figure 8c,d clearly reduced the image quality. In both cases, the mine was not
clearly separable from the clutter since the reflection pattern from Figure 8a,b could not be
retrieved. Again, the reason can be found in the losses in the plants on the earth surface
and the missing compensation of the strongly inhomogeneous soil material. In general,
this scene was the closest to the true measurement environment but obviously the hardest
to handle in a humanitarian demining scenario.

Overall, the simulations in Sections 6 and 7 showed good agreement with the previ-
ously obtained measurement results with the underlying measurement system presented
in [19]. Here, an IED was manufactured from a bottle using home-brew ANFO as the
explosive material. Furthermore, the IED contained a battery package on the outside and a
detonator inside the explosive material. Carrying out the measurement in a realistic mea-
surement environment and processing the obtained raw data by means of a SAR algorithm
showed that the IED could be identified by multiple concentrated reflections that could be
assigned to the top of the IED and the outer battery package.

The scenes considered here represent only one possible realization by the simulator.
By building up the scene through noise, new scenarios continuously arise, which in turn
shows the diverse applicability of the simulation environment.

In summary, the following statements can be derived on the basis of the simulations:

(1) Using a simple mine model in an idealized environment like in Figure 7 leads to a
unique radar signature. This signature clearly stood out from the background noise
when dielectric interferers were added to the scene.

(2) If the simplified mine is replaced by randomly generated IEDs, then the radar signa-
ture is affected. Figure 8a,b shows that the reflection distribution clearly depended on
the mine realization. If the transition is made to realistic measurement environments,
then a specific signature must still be present in the image, but this can no longer be
clearly identified visually.

(3) Since detecting the radar signature of an IED in a realistic measurement environment
is a complex task, the use of a trained classifier is of great importance. Even for
simplified scenes it was shown that limiting the training data to only one specific type
of landmine was not sufficient to cover all types of IEDs.
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8. Conclusions

In this paper, we presented a statistical simulation concept for the generation of
labeled training data using the example of humanitarian demining. The simulator allows
generating a realistic scene from a given input of parameters like the soil permittivity and
loss tangent, which could also be dispersive since we were applying a frequency domain
simulation. Both the system and scene parameters could be chosen arbitrarily, and due to
the 2D approximation, rather large extended scenes could be simulated. Furthermore, since
the training data for supervised learning applications typically need to be as diverse as
possible, two solutions for the generation of random objects were introduced. The methods
presented were based on the generation of filtered noise by means of a low-pass filter,
exploiting the statistical behavior of white noise in the frequency domain. In addition,
more advanced concepts were introduced that could be used to generate random contours
through deformation of a reference object, allowing a priori knowledge to be incorporated
into the generation process. Subsequently, complex mine models were created based on the
presented methods. In the following, more complex scenes were built and simulated by
applying a SAR imaging approach including the compensation of the refraction behavior
in postprocessing. It was shown by means of simulations that simplified mine models can
be reliably detected with the help of GPR systems even under the condition of additional
dielectric scatterers. However, further investigations revealed the vulnerability of the GPR
principle to highly reflective metal targets. On the other hand, randomized IED models
resulted in much weaker reflections, making it harder to distinguish them from background
noise. All in all, the presented simulator has been proven to be an effective method for
generating diverse training data for supervised learning classifiers, for example in the field
of humanitarian demining.
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