
Citation: Li, Z.; Yang, J.; Guo, C.; Xiao,

J.; Tao, T.; Li, C. A Joint Scheduling

Scheme for WiFi Access TSN. Sensors

2024, 24, 2554. https://doi.org/

10.3390/s24082554

Academic Editor: Jorn Mehnen

Received: 16 January 2024

Revised: 27 March 2024

Accepted: 10 April 2024

Published: 16 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Joint Scheduling Scheme for WiFi Access TSN
Zhong Li, Jianfeng Yang * , Chengcheng Guo, Jinsheng Xiao , Tao Tao and Chengwang Li

School of Electronic Information, Wuhan University, Wuhan 430072, China; 2017301200337@whu.edu.cn (Z.L.);
netccg@whu.edu.cn (C.G.); xiaojs@whu.edu.cn (J.X.); tt1295@whu.edu.cn (T.T.); licw980824@126.com (C.L.)
* Correspondence: yjf@whu.edu.cn

Abstract: In the context of Industry 4.0, industrial production equipment needs to communicate
through the industrial internet to improve the intelligence of industrial production. This requires
the current communication network to have the ability of large-scale equipment access, multiple
communication protocols/heterogeneous systems interoperability, and end-to-end deterministic
low-latency transmission. Time-sensitive network (TSN), as a new generation of deterministic Ether-
net communication technology, is the main development direction of time-critical communication
technology applied in industrial environments, and Wi-Fi technology has become the main way of
wireless access for users due to its advantages of high portability and mobility. Therefore, accessing
WiFi in the TSN is a major development direction of the current industrial internet. In this paper, we
model the scheduling problem of TSN and WiFi converged networks and propose a scheme based
on a greedy strategy distributed estimation algorithm (GE) to solve the scheduling problem. Com-
pared with the integer linear programming (ILP) algorithm and the Tabu algorithm, the algorithm
implemented in this paper outperforms the other algorithms in being able to adapt to a variety of
different scenarios and in scheduling optimization efficiency, especially when the amount of traffic to
be deployed is large.

Keywords: time-sensitive network; WiFi; scheduling scheme; queuing model

1. Introduction

As the current industrial production becomes intelligent and informatized, the demand
for interconnection and interoperability between industrial equipment is increasing, and
it is also necessary to continuously develop network technology to meet its needs [1].
Early applications in industrial production transmission protocols are usually specialized
protocols, such as TTEthernet [2], EtherCAT, PROFINET [3,4], etc. These protocols in
the link layer or the application layer make specific modifications to meet the needs of
specific industrial equipment for data transmission and have limitations on how they can
interconnect with each other. Therefore, the IEEE 802.1 Time-Sensitive Networking Working
Group proposed a new Ethernet protocol standard in 2012, which introduces time-sensitive
features on Ethernet, including precise time synchronization [5], traffic scheduling [6–8],
frame preemption [9], flow supervision [10], frame duplication and elimination [11], and
network management [12], to support the requirements of real-time and deterministic data
transmission and to support devices with high real-time and deterministic requirements or
multiple different protocols accessing the same LAN to form a deterministic network with
low jitter and latency.

With the rise of smart factories, mobile and collaborative robots, digital twins, and
visual perception of swarms of unmanned aircraft, which are scenarios that need to accom-
plish deterministic and low-latency communication, in industrial environments [13], the
current deployment of TSNs in industrial environments faces a problem: as the layout of
devices on the factory floor becomes more dynamic, the wired Ethernet communication
method is difficult to satisfy the demand of mobility, and the wireless communication
method is more favorable than the wired Ethernet. Therefore, introducing a wireless

Sensors 2024, 24, 2554. https://doi.org/10.3390/s24082554 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24082554
https://doi.org/10.3390/s24082554
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2002-9073
https://orcid.org/0000-0002-5403-1895
https://doi.org/10.3390/s24082554
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24082554?type=check_update&version=1

Sensors 2024, 24, 2554 2 of 21

transmission method into the TSN is a major issue facing the current TSN working group.
WiFi technology has become the mainstream wireless communication method in homes,
enterprises, and public places due to its high-speed rate, low cost, and easy deployment.
However, as IoT application scenarios continue to expand, traditional WiFi technology is
facing more and more challenges, such as network congestion in high-density environ-
ments, bottlenecks in real-time and deterministic requirements.

In the field of industrial automation, the commonly used wireless transmission pro-
tocols are WirelessHART, ISA100.11a, WIP-PA, ZigBee, and so on. These protocols also
suffer from the problem of being too specialized to interconnect and meet the needs of other
kinds of applications. With the progress of IEEE 802.11 [14] research, WiFi is emerging as
another major option, and WiFi networks are widely used by home users as well as in some
industrial scenarios. Compared with other wireless communication technologies, WiFi
has the following advantages: (1) wide transmission range, with a radius of up to several
hundred meters; (2) low cost and easy access to the internet and other networks; (3) high
throughput; (4) good openness and scalability. The WiFi hardware platform supports
the deployment of multiple applications and the modification of MAC layer protocols
and can be easily customized according to one’s own needs to achieve network security,
QoS support, resource management, and other functions, which is especially important
in the context of Industry 4.0 open interconnection. However, WiFi is not designed for
industrial applications. Due to its CSMA/CA access mechanism, the mechanism listens to
the channel before data are sent, and data transmission takes place if it is idle; otherwise, it
will wait for a random period of time. Moreover, communication under wireless channels
inevitably faces the problem of packet loss. This approach makes the data transmission
delay uncertain and is a best-effort delivery method, which makes it difficult to meet the de-
mand for reliable transmission in areas with high network delay transmission requirements.
With the continuous expansion of industrial internet application scenarios, traditional WiFi
technology faces more and more challenges, such as network congestion in high-density
environments, bottlenecks in real-time and deterministic requirements, etc., which require
many adjustments to WiFi to meet the industrial demands, both at the protocol level and
at the device level. Therefore, combining WiFi protocol with the TSN is very valuable for
research and application.

The rest of the paper is organized as follows: Section 2 presents related work. Section 3
states the problem. Section 4 discusses the modeling scheme. Section 5 describes how the
GE algorithm can solve the problem. Section 6 gives the experimental results. Section 7
provides the conclusion.

2. Related Work
2.1. TSN Scheduling-Related Research

The Time-Sensitive Networks Working Group specifies the four main traffic scheduling
mechanisms: credit-based shaping (CBS) as specified in IEEE 802.1Qav, cyclic queue forwarding
(CQF) as specified in IEEE 802.1Qch, MAC preemption as specified in IEEE 802.1Qbu, and
time-aware shaping as specified in IEEE 802.1Qbv (TAS). One of the most widely studied
scheduling mechanisms is TAS. The TAS mechanism requires the computation of routing and
opening and closing of gate control switches based on a given network as well as time-sensitive
flows, as shown in Figure 1. When the traffic enters the switch, it enters into different queues
according to the priority, and the subsequent opening and closing of the gate control switches
is carried out according to the gate control switching sequence computed by the scheduling
algorithm for a specified time. In ref. [15], it is stated that the solution of the gate control switch
sequence is an NP-hard problem. There are more solution methods designed for this problem,
in general, and they are mainly divided into two kinds: one is the ILP method which traverses
the solution space to find a reasonable scheduling scheme, and the other is the ILP method.

Sensors 2024, 24, 2554 3 of 21
Sensors 2024, 24, x FOR PEER REVIEW 3 of 21

O

...

Queue7 Queue6 Queue0

Transmisson Selection

Gate Control List

T000：COCCOCCO
T001：OCOOOOOC
T002：CCOCOOOC

…
C：Gate close
O：Gate open

C C

miss

advance

frame1

frame2

Figure 1. Queuing model timing disorder problem due to packet loss.

Some representative papers are [16]. Craciunas S. S. in paper [17] develops a sched-
uling model for TAS and solves it using satisfiability mode theory (SMT). Ref. [17] uses
the CPLEX solver to jointly solve for time slots and routing of time-sensitive flows. An-
other approach is the heuristic algorithm approach for solving—such algorithms do not
explore the entire solution space but start generating a new solution from some initial
solution and subsequently keep iterating to generate a new solution based on the new
solution as well as the updated generating law, which is capable of obtaining a higher
quality solution using a shorter period of time. The use of the GRASP algorithm to solve
the scheduling problem of AVB streams has been proposed in ref. [18]. In [19], a method
is proposed to solve the TSN scheduling problem using a genetic algorithm, which models
the joint scheduling of routing time slots when all streams are of the same period. This
method solves it using the GA, and the results for the transport stream spanning are im-
proved by 31% compared with the common LS algorithm, but the solution time is too long
compared with LS. In ref. [20], a greedy algorithm based on local shortest delay and a
heuristic algorithm based on ant colony are proposed for solving the TSN scheduling
problem, and the algorithms have better performance in terms of delay and jitter. Ref. [21]
models no-wait transmission for wired TSNs with homogeneous periodic flows and opti-
mizes the scheduling flow span using a taboo algorithm, which is shown to be effective in
reducing the guard band in scheduling. An approach based on local space exploration is
proposed in ref. [22], and the algorithm is able to achieve better scheduling results in sce-
narios with larger network sizes. Ref. [23] proposes a DoC-aware streams partitioning
(DASP)-based approach, which computes the flow paths by partitioning the network,
thereby reducing the conflicts among the flows, and designs an iterative integer linear
programming-based scheduling (IIS) technique for incremental scheduling of flows. The
method effectively reduces the conflicts of network flows and significantly improves the
schedulability of flows.

2.2. Research Related to Wireless Time Sensitive Networks (WTSN)
In the context of the new generation of WiFi technology (IEEE 802.11be) that proposes

to introduce time-sensitive transmission mechanisms in WiFi [24], WTSNs are starting to
receive a lot of attention. A blueprint for WTSN development is discussed in ref. [25],
which proposes that the difficulty of WTSN is that there is currently no better scheme to
manage the retransmission of failed frames. A key aspect of WTSN research is the inte-
gration of WiFi. A hybrid solution combining a wired TSN with a new communication
system for 802.11g WiFi is proposed in [26], which extends TSN functionality to WiFi in
an interference-free environment. The solution defines a new physical layer (PHL) and a
TDMA MAC layer. The drawback of this model is the low amount of traffic that can be

Figure 1. Queuing model timing disorder problem due to packet loss.

Some representative papers are [16]. Craciunas S. S. in paper [17] develops a schedul-
ing model for TAS and solves it using satisfiability mode theory (SMT). Ref. [17] uses the
CPLEX solver to jointly solve for time slots and routing of time-sensitive flows. Another
approach is the heuristic algorithm approach for solving—such algorithms do not explore
the entire solution space but start generating a new solution from some initial solution and
subsequently keep iterating to generate a new solution based on the new solution as well as
the updated generating law, which is capable of obtaining a higher quality solution using a
shorter period of time. The use of the GRASP algorithm to solve the scheduling problem
of AVB streams has been proposed in ref. [18]. In [19], a method is proposed to solve the
TSN scheduling problem using a genetic algorithm, which models the joint scheduling of
routing time slots when all streams are of the same period. This method solves it using the
GA, and the results for the transport stream spanning are improved by 31% compared with
the common LS algorithm, but the solution time is too long compared with LS. In ref. [20],
a greedy algorithm based on local shortest delay and a heuristic algorithm based on ant
colony are proposed for solving the TSN scheduling problem, and the algorithms have
better performance in terms of delay and jitter. Ref. [21] models no-wait transmission for
wired TSNs with homogeneous periodic flows and optimizes the scheduling flow span
using a taboo algorithm, which is shown to be effective in reducing the guard band in
scheduling. An approach based on local space exploration is proposed in ref. [22], and
the algorithm is able to achieve better scheduling results in scenarios with larger network
sizes. Ref. [23] proposes a DoC-aware streams partitioning (DASP)-based approach, which
computes the flow paths by partitioning the network, thereby reducing the conflicts among
the flows, and designs an iterative integer linear programming-based scheduling (IIS)
technique for incremental scheduling of flows. The method effectively reduces the conflicts
of network flows and significantly improves the schedulability of flows.

2.2. Research Related to Wireless Time Sensitive Networks (WTSN)

In the context of the new generation of WiFi technology (IEEE 802.11be) that proposes
to introduce time-sensitive transmission mechanisms in WiFi [24], WTSNs are starting to
receive a lot of attention. A blueprint for WTSN development is discussed in ref. [25], which
proposes that the difficulty of WTSN is that there is currently no better scheme to manage
the retransmission of failed frames. A key aspect of WTSN research is the integration of
WiFi. A hybrid solution combining a wired TSN with a new communication system for
802.11g WiFi is proposed in [26], which extends TSN functionality to WiFi in an interference-

Sensors 2024, 24, 2554 4 of 21

free environment. The solution defines a new physical layer (PHL) and a TDMA MAC
layer. The drawback of this model is the low amount of traffic that can be transmitted
by a WiFi node compared with the normal use implementation of WiFi. An approach to
reduce the latency and jitter performance of WiFi systems in industrial automation use
cases by introducing higher priority access classes at the WiFi MAC layer is proposed
in [27]. The scheme enables the downlink to show good performance in transmitting TSN
messages; however, non-TSN packets are not served within the required timing range. An
improved Transmission of Opportunity (TXOP) scheme, S-TXOP, is proposed in [28], which
reduces the latency of predictable time-sensitive traffic by providing a deterministic plan
scheduling scheme for it and, also, reduces the control overhead of scheduling the uplink
and downlink in IEEE 802.11ax. A solution called dynamic traffic classification is proposed
in [29] to provide faster-dedicated access to the wireless medium for randomly generated
packets of highly time-sensitive flows.

Overall, most of the proposed schemes for WiFi-TSNs are aimed at increasing the
priority of time-sensitive flows in the WiFi MAC layer or isolating time-sensitive flows
from non-time-sensitive flows. These schemes mainly discuss the traffic transmission
performance after modifying the access mechanism in a single WiFi AP and do not discuss
the traffic scheduling scenarios in industrial scenarios with WiFi access to the whole LAN.
In this paper, based on the above work, we propose a network scheduling model based
on the IEEE 802.11-based TSN and design algorithms to solve the problem by taking the
industrial real-time control application traffic scheduling as the scenario that provides a
new solution idea.

3. Problem Statement

In order to get a network that can simultaneously have the determinism and reliability
of TSN and the portability of WiFi and to improve the network performance and application
experience, researchers have begun to explore how to combine TSN and WiFi technologies.

The main difficulties in combining WiFi and TSN are as follows:

1. The oversimplified traffic control methods in conventional Ethernet can lead to cache
congestion or even blocking in the WiFi device at the receiving end, seriously affecting
the transmission of time-sensitive service data streams.

2. Shared wireless links between access points (AP). Unlike Ethernet, wireless terminals
experience channel contention when they are uploading data, which increases the
latency and decreases the reliability of time-sensitive streams. Therefore, wireless
terminals need to upload time-sensitive streams to wireless APs according to the
specified time slots.

3. Queue resource division problem. In order to improve the transmission quality of
delay-sensitive data, Enhanced Distributed Coordinated Access (EDCA) has been
introduced in WiFi, which divides all the traffic into four different access classes, each
with a different Transmission Opportunity (TXOP), arbitrated inter-frame space num-
ber (AIFSN), and minimum and maximum contention window (CWmin and CWmax),
respectively. EDCA is able to increase transmission opportunities for high-priority
traffic by reducing the backoff time and arbitration inter-frame space. The switches
in a time-sensitive network are divided into eight priority queues, each of which is
controlled by a gate control queue (GCL) that controls the queue’s transmission and
wait states. This means that WiFi transmissions cannot control their QoS by queuing
up data with different priorities into different queues. The sending mechanism for
both is shown in Figures 1 and 2.

4. Wireless link transmission uncertainty problem. Wireless links always face the prob-
lem of data transmission failure; the solution in WiFi is to introduce the ACK mecha-
nism for retransmission to ensure the certainty of data transmission, but this method
increases the delay substantially.

Sensors 2024, 24, 2554 5 of 21Sensors 2024, 24, x FOR PEER REVIEW 5 of 21

AC Mapping

AC_BK AC_BE AC_VI AC_VO

CW[AC_BK]
AIFS[AC_BK]

CW[AC_BE]
AIFS[AC_BE]

CW[AC_VI]
AIFS[AC_VI]

CW[AC_VO]
AIFS[AC_VO]

Channel Access

AC_TSN

CW[TSN]
AIFS[TSN]

Figure 2. A new access category introduced in EDCA.

4. Description of the System Model
In this paper, we use the no-wait transmission model for traffic transmission. No-

wait constraints have been widely discussed in the job shop scheduling problem, which
is a well-known operations research problem, with a given set of jobs and machines, where
each job consists of a set of operations that can only be executed on the machines in a given
order. In addition, each machine can only process one operation at a time and explores
how to obtain the minimum completion time. The no-wait constraint requires that there
is no waiting time between two consecutive processes of a job, which allows each opera-
tion in a process to be processed consecutively. Under the no-wait constraint, as soon as
the start time of a job is determined, its processing time on each machine as well as the
completion time of the job are also determined. For control traffic with high real-time re-
quirements, the no-wait transmission model provides the theoretically lowest latency and
is the most desirable transmission scheme. In the problem of combining 802.11 with TSN,
the no-wait model also has the following advantages:
(1) Time-sensitive traffic does not stay in the switch or AP, avoiding traffic congestion in

the AP due to different wired-wireless transmission rates.
(2) The no-wait transmission model allows time-sensitive traffic to occupy only one

queue for transmission, which avoids mutual interference between traffic flows.
Since wireless transmission inevitably encounters packet loss, retransmission of time-
sensitive flows can result in increased jitter and wasted bandwidth. The scenarios
addressed in this paper assume that the packet loss rate of wireless transmission is
within the tolerance of the control system, considering that most control applications
allow for a small number of packet losses or deadline misses without significantly
affecting their performance. However, in the queuing model, packet loss can cause
timing disruption, as shown in Figure 1, in queue 7: if according to the transmission
time scheduled by TAS scheduling, frame 1 should start transmission and frame 2 is
in the waiting queue and if packet loss occurs because of the wireless transmission of
frame 1, then it will lead to the early start of the transmission of frame 2, which leads
to the failure of the time window scheduling and increases the jitter and delay of the
transmission.
Considering that the IEEE 802.11 protocol is implemented differently from the wired

TSN technology, this paper adapts the EDCA to make WiFi adaptable to the transmission
of time-sensitive streams.

Figure 2. A new access category introduced in EDCA.

4. Description of the System Model

In this paper, we use the no-wait transmission model for traffic transmission. No-wait
constraints have been widely discussed in the job shop scheduling problem, which is a
well-known operations research problem, with a given set of jobs and machines, where
each job consists of a set of operations that can only be executed on the machines in a given
order. In addition, each machine can only process one operation at a time and explores how
to obtain the minimum completion time. The no-wait constraint requires that there is no
waiting time between two consecutive processes of a job, which allows each operation in a
process to be processed consecutively. Under the no-wait constraint, as soon as the start
time of a job is determined, its processing time on each machine as well as the completion
time of the job are also determined. For control traffic with high real-time requirements,
the no-wait transmission model provides the theoretically lowest latency and is the most
desirable transmission scheme. In the problem of combining 802.11 with TSN, the no-wait
model also has the following advantages:

(1) Time-sensitive traffic does not stay in the switch or AP, avoiding traffic congestion in
the AP due to different wired-wireless transmission rates.

(2) The no-wait transmission model allows time-sensitive traffic to occupy only one queue
for transmission, which avoids mutual interference between traffic flows. Since wire-
less transmission inevitably encounters packet loss, retransmission of time-sensitive
flows can result in increased jitter and wasted bandwidth. The scenarios addressed
in this paper assume that the packet loss rate of wireless transmission is within the
tolerance of the control system, considering that most control applications allow for
a small number of packet losses or deadline misses without significantly affecting
their performance. However, in the queuing model, packet loss can cause timing
disruption, as shown in Figure 1, in queue 7: if according to the transmission time
scheduled by TAS scheduling, frame 1 should start transmission and frame 2 is in
the waiting queue and if packet loss occurs because of the wireless transmission of
frame 1, then it will lead to the early start of the transmission of frame 2, which leads
to the failure of the time window scheduling and increases the jitter and delay of the
transmission.

Considering that the IEEE 802.11 protocol is implemented differently from the wired
TSN technology, this paper adapts the EDCA to make WiFi adaptable to the transmission
of time-sensitive streams.

Sensors 2024, 24, 2554 6 of 21

On the basis of no-wait scheduling, time-sensitive streams only need to occupy one
queue for transmission without interfering with each other. Therefore, in this paper, we
introduce a new priority AC_TSN in EDCA, as shown in Figure 2. The QoS parameters
of this priority level are selected as CWmin = 0 and CWmax = 0, AIFSN = 0. After the WiFi
access point receives the TSN packet, the AP will send out the data as soon as it senses that
the channel is idle without waiting for any backoff time because the AIFSN[TSN] is zero.

Real-time networks have strict end-to-end communication delays as well as deter-
ministic requirements, so an effective method is to use a time-triggered (TT) approach for
communication, i.e., each node to be transmitted sends a message at a given time, and the
switch sends the message based on the node’s streaming information by controlling the
opening or closing of different queues to prevent frames from competing for the link on the
network, thus effectively reducing the jitter of the stream.

The IEEE 802.1Qbv standard divides network planning into two phases: routing and
scheduling. In TSNs, routing and scheduling are usually performed separately. A specific
routing scheme (e.g., shortest path routing) determines the data transmission path for each
TT flow in the routing phase. On the other hand, the scheduling phase determines the
covariance of the switches, i.e., the timing plan for opening and closing time-controlled
gates along the predetermined path. In the scheduling phase, the algorithm may not be
able to find an available schedule for a path.

The resource scheduling problem for TSNs is a linear programming problem and
ref. [30] proves that such problems are NP-hard. Since all the constraints elaborated in
this paper are linear functions, when the scheduling objective is also linear, the problem
becomes an integer linear programming (ILP) problem, which can be solved directly by
an ILP solving. Although the problem can be solved directly by the ILP solver, it needs to
obtain the optimal solution by traversing the entire solution space defined by the constraints,
so the time complexity is high, and the algorithm performs poorly when the problem size is
large. In addition, for nonlinear objective functions, the ILP is unable to solve this problem,
which has greater limitations in applications.

Ref. [31] gives a descriptive model of time-triggered systems, which is currently the main
modeling approach for TSN scheduling models. Meanwhile, we follow the WTSN network
model given in the literature [32,33], which is a network model designed based on the 802.1Qcc
protocol. In this case, the centralized user configuration (CUC) unit and the centralized network
configuration (CNC) unit globally configure the network as shown in Figure 3.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 21

On the basis of no-wait scheduling, time-sensitive streams only need to occupy one
queue for transmission without interfering with each other. Therefore, in this paper, we
introduce a new priority AC_TSN in EDCA, as shown in Figure 2. The QoS parameters of
this priority level are selected as 𝐶𝑊௠௜௡ = 0 and 𝐶𝑊௠௔௫ = 0, AIFSN = 0. After the WiFi
access point receives the TSN packet, the AP will send out the data as soon as it senses
that the channel is idle without waiting for any backoff time because the AIFSN[TSN] is
zero.

Real-time networks have strict end-to-end communication delays as well as deter-
ministic requirements, so an effective method is to use a time-triggered (TT) approach for
communication, i.e., each node to be transmitted sends a message at a given time, and the
switch sends the message based on the node’s streaming information by controlling the
opening or closing of different queues to prevent frames from competing for the link on
the network, thus effectively reducing the jitter of the stream.

The IEEE 802.1Qbv standard divides network planning into two phases: routing and
scheduling. In TSNs, routing and scheduling are usually performed separately. A specific
routing scheme (e.g., shortest path routing) determines the data transmission path for
each TT flow in the routing phase. On the other hand, the scheduling phase determines
the covariance of the switches, i.e., the timing plan for opening and closing time-controlled
gates along the predetermined path. In the scheduling phase, the algorithm may not be
able to find an available schedule for a path.

The resource scheduling problem for TSNs is a linear programming problem and ref.
[30] proves that such problems are NP-hard. Since all the constraints elaborated in this
paper are linear functions, when the scheduling objective is also linear, the problem be-
comes an integer linear programming (ILP) problem, which can be solved directly by an
ILP solving. Although the problem can be solved directly by the ILP solver, it needs to
obtain the optimal solution by traversing the entire solution space defined by the con-
straints, so the time complexity is high, and the algorithm performs poorly when the prob-
lem size is large. In addition, for nonlinear objective functions, the ILP is unable to solve
this problem, which has greater limitations in applications.

Ref. [31] gives a descriptive model of time-triggered systems, which is currently the
main modeling approach for TSN scheduling models. Meanwhile, we follow the WTSN
network model given in the literature [32,33], which is a network model designed based
on the 802.1Qcc protocol. In this case, the centralized user configuration (CUC) unit and
the centralized network configuration (CNC) unit globally configure the network as
shown in Figure 3.

Figure 3. WTSN network model.

CUC

CNC

End
Device

End
Device

End
Device

End
Device

TSN
Bridge

Wireless TSN
Access Point

Wireless TSN Domain

Wired TSN Domain

Figure 3. WTSN network model.

Sensors 2024, 24, 2554 7 of 21

The CUC is responsible for collecting the requested information from the flows. The
CNC communicates with the CUC and receives the communication requests from the
network sent from the CUC. The CNC aggregates all the requests, calculates the route for
each communication request, schedules the end-to-end transmission of each TSN flow,
and finally sends the computed scheduling to each TSN bridge. The process of collecting
information and scheduling flows for this network is as follows:

First, CNC collects all the node parameters of the network, including switches, AP
bandwidth, and network topology.

Second, the CUC collects all traffic access requests.
Third, the CUC sends all traffic request information to the CNC, and the CNC calcu-

lates the scheduling result based on the network parameter information.
Fourth, the CNC configures the GCL and the routing table for each switch in the

network and informs the AP of the sending time of each traffic flow, and the AP will
inform the stations accessing the AP of the time slot allocation information by periodically
broadcasting the beacon frames.

Fifth, the device in the terminal sends the traffic at the specified time.
The network model is abstracted as a graph G(V, E) where V represents the set

of network nodes (TSN switches, wireless APs, terminals), and E represents the set of
communication links connecting the nodes, including wireless links and wired links. The
communication link between nodes vm, vn is defined as

evm ,vn =< c, d, mt > vm, vn ∈ V (1)

where c denotes the bandwidth capacity of the link and d denotes the propagation delay of the
link. mt denotes the time granularity of the processing between the nodes at both ends of the
link. In addition to the propagation delay of the link, the processing delay of the data by the
switch or AP also needs to be taken into account. For simplicity of analysis, in this paper, it is
assumed that the processing delay of all nodes, the propagation delay of links, and the time
granularity of link processing are equal, denoted as dproc, dprop, mt, respectively.

Denote the set of all TT flows by F:

F = { fi, i ∈ [0, N − 1]} (2)

where N is the number of TT flows to be scheduled, fi is represented by the tuple:

fi = (src, dest, T, route, D, IT, L), i ∈ [0, n− 1] (3)

where src denotes the sending node of the stream, dest denotes the destination node to
which the stream is sent, T denotes the period of the stream, route denotes the path of the
stream through the network, and it is stored in an array with the elements of the array as
links. D denotes the maximum delay that can be tolerated by each transmission instance of
the stream. IT denotes the injection time of the stream fi under one network scheduling
cycle. L denotes the length of the time-triggered stream. Using len(fi.route) to denote the
number of hops that stream fi transmits to the target node, the transmission time of the
stream fi on its link fi.route[j], j ∈ [1, len(fi.route)] can be expressed as:

d fi .route[j] =
fi.L

c fi .route[j]
(4)

Thus, the delay accumulated by the stream fi to complete propagation over the link
fi.route[j], j ∈ [1, len(fi.route)] is:

D fi .route[j] = j×
(
dproc + dprop

)
+

j

∑
k=0

d fi .route[k] (5)

Sensors 2024, 24, 2554 8 of 21

The scheduling period of the network is defined as the least common multiple of all
flow periods:

Tsche = LCM(fi.T), i ∈ [0, n− 1] (6)

Each component in the network repeats the act of sending, forwarding, and receiving
according to this cycle, so the scheduling problem simplifies how the scheduling is per-
formed under this scheduling period. Tsche is the minimum time interval over which the
schedule repeats. If Tsche is the length of this interval, then for any integer k > 0, scheduling
in [0, Tsche] is the same as scheduling in [kTsche, (k + 1)Tsche]. For a set of periodic tasks acti-
vated synchronously at the moment t = 0, the hyperperiod is given by the least common
multiple of the period, as shown in Equation (6).

During the Tsche time, the stream fi sends the following number of frames:

N fi
=

Tsche
fi.T

(7)

The flow fi has been successfully deployed in the network if all Ni frames of the flow
fi are sent within Tsche time and received within the specified delay.

Traffic transmission in the network will be subject to a number of conditions to ensure
that the flow can complete the transmission, the following are the core constraints of the
flow in the network to achieve no-wait transmission. Additional constraints can be added
as needed.

1. Time slot reservation constraints

A certain time slice needs to be reserved between the WiFi and the stations for beacon
frame decentralization, which is a type of management frame that is used for broadcasting
control information within the BSS, completing time synchronization between APs and
STAs, etc. The time slot reservation constraint ensures that beacon frames can be decentral-
ized. Time slot information decentralization requires network-wide synchronization, so
in the time slot structure designed in this paper, the first TBeacon time of each transmission
cycle is used to perform beacon frame decentralization and, therefore, cannot be used to
transmit data. The mathematical form of the constraint is: ∀ fi ∈ F:

TBeacon < f i.IT (8)

2. Injection time constraints

Considering the periodicity of TT streams, it is ensured that the streams can send the
corresponding transmission instances in each cycle. There must be a frame sent within one
cycle time of the stream; therefore, it is chosen to limit the injection time of the stream fi to
0 to fi.T. This limit can reduce the search space. ∀ fi ∈ F:

0 ≤ f i.IT < fi.T (9)

3. Transmission instance sending time constraints

Once the injection time is determined, the sending moment of subsequent transmission
instances can be derived in conjunction with the flow period. Equation (10)

f route[k]
i,j , i ∈ [0, N − 1], j ∈ [0, Ni − 1], k ∈ [0, len(fi.route)− 1] (10)

denotes the jth transmission instance of the stream fi on its kth transmission path where
len(fi.route) denotes the number of links through which the stream fi is transmitted to the
target node. f route[k]

i .IT denotes the injection time of the initial transmission instance of the

stream on the link fi.route[k], and f route[k]
i,j .IT denotes the time of the start of transmission of

Sensors 2024, 24, 2554 9 of 21

the jth transmission instance of the stream on the link evm ,vn , and the relationship between
the two is shown below:

f route[k]
i,j .IT = f route[k]

i .IT + j× fi.T,

i ∈ [0, N − 1], j ∈ [0, Ni − 1], k ∈ [0, len(fi.route)− 1] (11)

4. Flow transmission constraint

The flow transmission constraint specifies a constraint on the start time of a stream
transmission on a given path. Since the transmission considered in this paper is a no-wait
transmission, the constraint is as follows:

∀ fi ∈ F, k ∈ [0, len(fi.route)− 2]

f route[k+1]
i .IT = f route[k]

i .IT + d fi .route[k] + dproc + dprop (12)

5. Link conflict-free constraints

The link conflict-free constraint requires that any two streams on the same link cannot
overlap with each other during transmission. Since this model takes into account the
no-wait scheduling, each switch receives a frame and immediately forwards it after the
processing delay dproc. Then, any stream when its injection time is determined is able to
determine the sending time of the stream on each switch. On the common link of the two
streams, there are two kinds of relationships between any pair of transmission instances of
the stream fi and the stream f j: one is that the transmission instance of fi is transmitted first
and then the transmission instance of f j is transmitted; the other is that the transmission
instance of f j is transmitted and then the transmission instance of fi is transmitted. We
denote by D fi .route[k] the accumulated delay when the flow fi finishes the propagation on
the link fi.route[k]. Then according to the constraint in Section 4, there is:

D fi .route[k] = k×
(
dproc + dprop

)
+

k

∑
l=0

d fi .route[k] (13)

Thus, the link conflict-free constraint is expressed as:

∀ f i, f j ∈ F, fi ̸= f j, ∀m, n, s.t. fi.route[m] = f j.route[n],
∀a ∈

[
0, N fi

− 1
]
, ∀b ∈

[
0, N f j

− 1
]

:

fi.IT + b× fi.T + D fi .route[m−1] + dproc + dprop ≥
f j.IT + b× f j.T + D f j .route[n]

or
f j.IT + b× f j.T + D f j .route[n−1] + dproc + dprop ≥

fi.IT + a× fi.T + D fi .route[m]

(14)

6. Delay constraints

A delay constraint requires that the delay accumulated by a flow propagating along a
path does not exceed its specified delay limit: ∀ fi ∈ F:

fi.IT + D fi .dest ≤ fi.D (15)

where D fi .dest denotes the cumulative delay of the stream fi transmission to the target node:

D fi .dest = len(fi.route)×
(
dproc + dprop

)
+

len(fi .route(j))−1

∑
k=0

d fi .route[k] (16)

Sensors 2024, 24, 2554 10 of 21

7. Flow Span Constraints

The flow span, which is represented by the time at which the last transmission instance
of a stream completes its transmission, is denoted by the flow span of the stream fi:

C fi
= fi.IT + D fi .dest + (N fi

− 1
)
× fi.T (17)

The maximum value of the flow span is expressed as

Cmax = max
{

C fi

∣∣∣ fi ∈ F
}

(18)

If the network is still delivering the traffic from the previous cycle before the start of a
cycle of scheduling, then there is a possibility that the traffic may be preempted by beacon
frames or cause the sending of data frames to be queued up in the network. In order to
avoid this problem, the flow span should be restricted to be within the network scheduling
cycle [34]; thus, the flow span constraint is formulated as:

Cmax ≤ Tsche (19)

The scheduling target should be selected with reference to the requirements of the
actual scenario application, such as a business requiring the sampling period to be as
stable as possible, the total transmission delay to be as small as possible, and so on. The
scheduling function can be adjusted according to the characteristics of the business focus.
In this paper, we choose to minimize the flow span as the goal of flow scheduling, which is

minimize Cmax (20)

There are several reasons for choosing flow span as the optimization objective. First,
the scheduling adopted in this paper is no-wait scheduling, which is a theoretical scheduling
scheme with the lowest latency, so there is no need to select latency as the optimization
objective. Second, it is mentioned in ref. [21] that switching the gate control switches
several times can lead to an increase in the number of protection bands of the flow and,
thus, reduce the transmission efficiency, so by optimizing the flow span, the flow can be
made as compact as possible, which reduces the frequency of gate control switch switching
and increases the transmission efficiency. And since the flow span is optimized, the links
within the network have more room to transmit resources continuously, which makes the
network more capable of transmitting best-effort traffic. Third, wireless accesses will have
more device changes compared with wired accesses, and lower flow spans will allow newly
added traffic to be scheduled faster according to the greedy algorithm.

5. Algorithm Design

In this paper, we propose a scheme based on the greedy strategy distributed estimation
algorithm (GE) to solve the scheduling problem. Estimation of distribution algorithms
(EDA) is a statistically based optimization method that continuously updates the proba-
bilistic model by building a probabilistic model from a population macroscopic point of
view for describing the distribution information of the solution in the search space, learning
the parameters of the sample distribution, generating new samples, and evaluating their
fitness to find the optimal solution. Compared with genetic algorithms, EDA has stronger
global search capability and faster convergence speed. The implementation process of the
standard EDA algorithm is as follows [35]:

1. Initialize a population of candidate solutions {x i}, i ∈ [1, N].
2. Repeat Step 3–Step 5 and loop until the termination criterion is reached.
3. According to the size of fitness, select M individuals from {x i}, where (M < N)
4. Based on the statistics of the M individuals selected above.
5. Generate a new population {x i}, i ∈ [1, N] from the statistics.

Sensors 2024, 24, 2554 11 of 21

EDA has been shown to achieve good results in job shop scheduling problems [36]. In this
paper, we take the approach of a distribution estimation algorithm to solve the job shop schedul-
ing problem to design a scheduling algorithm to realize the no-wait wireless TSN scheduling
algorithm. In this algorithm, we first give the information about the network topology and
the streams that need to be scheduled and generate the scheduling order through EDA. Based
on this order, we find the minimum stream injection time for each stream according to the
greedy strategy until all the streams have been scheduled. This method significantly reduces
the search space of the problem, and the algorithm is able to approximate the minimum flow
span according to the proofs in ref. [37]. The algorithm is shown in Algorithm 1.

Algorithm 1: Inject Time Based on Flow Sequence.

Input: Flow information F,
Network topology model G(V, E),
Sequence of flow Seq(F) generated by EDA

Output: Flow span Cmax
1: Cmax ← 0
2: for each flow in Seq(F):
3: startTime = Earliest possible start time(fi.IT)
4: Cmax ← max

(
Cmax, fi.IT + D fi .dest

)
5: endfor
6: return Cmax

The function ‘Earliest possible start time()’ finds the minimum flow start time by
generating a constraint expression based on the flows already deployed in the current
network and finding the minimum flow start time based on the link’s time granularity mt
as the smallest unit.

The algorithm for applying EDA to generate the flow order is shown below:

1. Stream order-based codecs

The method proposed in this paper uses scheduling stream order as the goal of EDA
computation. It is assumed that there are a total of |F| streams to be scheduled, and the
number of all possible species of stream ordering reaches |F|! number of streams. The size
of the solution space rises sharply after the size of the streams reaches a certain level, based
on which we use EDA to search the solution space. In this paper, we use a vector:

X =
(

x1, x2, . . . , x|F|
)

(21)

to represent the stream scheduling order, the number of elements of this vector is |F|. Its
internal elements are numbers from 1 to |F| − 1 that do not repeat each other, and any element
xi in the vector represents the ith position in the scheduling queue of the stream fxi .

2. Initialize the probability matrix

Unlike genetic algorithms with crossover and mutation, EDA uses a probability matrix
for sampling to generate offspring, and in this paper, the kth generation probability matrix
is expressed in the following form:

P(k) =
{

pij
}

i, j ∈ [1, |F|] (22)

where pij denotes the probability that stream fi is placed at the position j, i.e., P(k) is set
as a metric used to indicate how the streams are better ordered under the current and
iterative information.

The initial probability matrix is set as:

P(0) =
{

pij =
1
|F| , ∀i, j ∈ [1, |F|]

}
(23)

Sensors 2024, 24, 2554 12 of 21

This matrix indicates that the ordering of the streams in the initial state is randomly
generated without preference.

3. Generate children through the probability matrix

In order to reasonably generate individuals on the basis of the probability matrix, this
paper adopts the roulette way to sample the matrix to generate individuals. The specific
method is to traverse each column of the probability matrix, add up the probability of the
column, select the flow placed in the position through the roulette way, and set all the rows
to zero. Using this method, a flow scheduling order can be obtained, which is continuously
followed to generate a population containing N individuals:

Pop(k) = {X1(k), X2(k), . . . , XN(k)} (24)

4. Calculate the fitness of children

With the flow-ordered population obtained in Step 2, the fitness is calculated for each
individual in the population according to Algorithm 1, and M individuals are selected to
form a set according to the size of the fitness:

S(k) = {Xu1(k), Xu2(k), . . . , XuM (k)} (25)

Subsequently, the best-fit individuals are updated based on this set.

5. Probability matrix update method

Update the statistics of these M individuals selected above according to Heb’s rule:

P(k + 1) = (1− α)P(k) + α
1
M

M

∑
l=1

Iul (k) (26)

where 0 < α < 1 is the learning rate. Iul (k) is an indicator matrix calculated from the
individual Xul (k), representing the probability that flow fi occurs before or at the position j
of the sequence vector of the kth generation flow scheduling sequence. It is computed as
follows:

Iul
ij (k) =

{
1 i f fi appears be f ore or in position j

0 else
(27)

6. Loop

Jump to Step 3 and repeat the loop until the loop termination condition is reached.
The entire algorithm flow is shown in Algorithm 2.

Algorithm 2: Flow Sequence Generator Based on EDA.

Input: Flow information F,
Network topology model G(V, E)

Output: minimum flowspan best
1: P = Initial probability matrix(F)
2: best = max fitness(population)
3: while Iterations < maxIterations do:
4: selection result = selection(population)
5: P = update probability model(selection result)
6: If max fitness(selection result) > best:
7: best = max fitness(selection result)
8: population = sampling(P)
9: Iterations = Iterations + 1
10: EndWhile
11: return best

Sensors 2024, 24, 2554 13 of 21

6. Evaluation of Experimental Results
6.1. Description of Experimental Conditions

To evaluate the algorithms designed in this paper, we built a Python-based (Python 3.10.5)
simulation platform and used NetworkX 2.8 [38] developed in Python as a network-building and
generating tool. To make comparisons, we also designed two different comparison algorithms
based on the scenarios in this paper, which are the Tabu-based algorithm designed in reference [21]
and the ILP-based algorithm in reference [16] for the ILP-based approach. All experiments were
run under an Intel Core™ i7-6850K CPU processor with 3.60 GHz and 64 GB RAM.

We designed three different network topologies: linear, ring, and grid. The switch connec-
tions of all three network topologies are linear in structure; each switch connects to two WiFi
nodes, and several stations are connected under the WiFi nodes, as shown in Figure 4. The
linear topology has 3 switch nodes and 6 WiFi nodes; the ring topology has 6 switch nodes and
12 WiFi nodes; and the grid topology has 9 switch nodes and 18 WiFi nodes. After selecting
the topology, we start generating the flow request. First, we select a period from [10 ms, 20 ms,
40 ms] as the flow. Subsequently, we select the corresponding number from [0.5 ms, 1 ms, 2 ms]
as the latency requirement for its flow request and randomly select two different endpoints in
the network as the flow sending site and receiving site. Next, these conditions are calculated to
generate the constraints and imported into the algorithm for computation. The experimental
conditions are shown in Table 1.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 21

6. Evaluation of Experimental Results
6.1. Description of Experimental Conditions

To evaluate the algorithms designed in this paper, we built a Python-based(Python
3.10.5) simulation platform and used NetworkX 2.8 [38] developed in Python as a net-
work-building and generating tool. To make comparisons, we also designed two different
comparison algorithms based on the scenarios in this paper, which are the Tabu-based
algorithm designed in reference [21] and the ILP-based algorithm in reference [16] for the
ILP-based approach. All experiments were run under an Intel Core™ i7-6850K CPU pro-
cessor with 3.60 GHz and 64 GB RAM.

We designed three different network topologies: linear, ring, and grid. The switch
connections of all three network topologies are linear in structure; each switch connects to
two WiFi nodes, and several stations are connected under the WiFi nodes, as shown in
Figure 4. The linear topology has 3 switch nodes and 6 WiFi nodes; the ring topology has
6 switch nodes and 12 WiFi nodes; and the grid topology has 9 switch nodes and 18 WiFi
nodes. After selecting the topology, we start generating the flow request. First, we select a
period from [10 ms, 20 ms, 40 ms] as the flow. Subsequently, we select the corresponding
number from [0.5 ms, 1 ms, 2 ms] as the latency requirement for its flow request and ran-
domly select two different endpoints in the network as the flow sending site and receiving
site. Next, these conditions are calculated to generate the constraints and imported into
the algorithm for computation. The experimental conditions are shown in Table 1.

(a)

(b)

Figure 4. Cont.

Sensors 2024, 24, 2554 14 of 21
Sensors 2024, 24, x FOR PEER REVIEW 14 of 21

(c)

Figure 4. Network topology diagram schematic: (a) linear; (b) ring; (c) grid.

Table 1. Experimental conditions.

Parameter Value or Range
Topology Linear, Ring, Grid

Request time period [10 ms, 20 ms, 40 ms]
Latency requirement [0.5 ms, 1 ms, 2 ms]

Frame size [125 B, 250 B, 500 B]
Wireless Tx speed 100 Mbps

Wired Tx speed 1000 Mbps
Node processing time 10 μs

Link propagation delay 10 μs
Reserve transmission time for beacon frames 100 μs

6.2. Performance Evaluation of the Algorithm in This Paper
The searching ability of EDA is greatly affected by the learning rate 𝛼. After many

experiments, the learning rate is taken as 0.2. Under this condition, this paper first gives
the scheduling results given by the EDA and ILP algorithms in the case of 60 streams and
the linear network topology, as shown in Figures 5 and 6, where the horizontal axis de-
notes the links—where links 0–15 are the wired links and links 16–27 are the wireless links.
The vertical axis represents the occupancy of link resources under the scheduling cycle.
Comparing the two results, it can be seen that the ILP algorithm does not take the flow
span as the optimization objective but only searches for the existence of the solution under
the given constraints, and the scheduling result is looser in the whole network, which
results in frequent door control switches and wastes the bandwidth. With a flow span of
40,000 µs., the algorithm in this paper has a more compact scheduling result, which effec-
tively reduces the openings and closings of the door control switches and has a flow span
of 30,344 µs.

Figure 4. Network topology diagram schematic: (a) linear; (b) ring; (c) grid.

Table 1. Experimental conditions.

Parameter Value or Range

Topology Linear, Ring, Grid

Request time period [10 ms, 20 ms, 40 ms]

Latency requirement [0.5 ms, 1 ms, 2 ms]

Frame size [125 B, 250 B, 500 B]

Wireless Tx speed 100 Mbps

Wired Tx speed 1000 Mbps

Node processing time 10 µs

Link propagation delay 10 µs

Reserve transmission time for beacon frames 100 µs

6.2. Performance Evaluation of the Algorithm in This Paper

The searching ability of EDA is greatly affected by the learning rate α. After many
experiments, the learning rate is taken as 0.2. Under this condition, this paper first gives
the scheduling results given by the EDA and ILP algorithms in the case of 60 streams
and the linear network topology, as shown in Figures 5 and 6, where the horizontal axis
denotes the links—where links 0–15 are the wired links and links 16–27 are the wireless
links. The vertical axis represents the occupancy of link resources under the scheduling
cycle. Comparing the two results, it can be seen that the ILP algorithm does not take the
flow span as the optimization objective but only searches for the existence of the solution
under the given constraints, and the scheduling result is looser in the whole network,
which results in frequent door control switches and wastes the bandwidth. With a flow
span of 40,000 µs., the algorithm in this paper has a more compact scheduling result, which
effectively reduces the openings and closings of the door control switches and has a flow
span of 30,344 µs.

Sensors 2024, 24, 2554 15 of 21

Sensors 2024, 24, x FOR PEER REVIEW 15 of 21

Figure 5. The occupancy effect of the GE algorithm scheduling result on the link.

Figure 6. The occupancy effect of the ILP algorithm scheduling result on the link.

To evaluate this paper’s algorithm in detail, this paper generates 60 streams under 3
different network topologies and observes the process of the GE algorithm in solving the
stream span under different iteration steps as well as the time it takes. Figure 7 gives the
optimization effect of the flow span with iteration steps under different topologies and
Figure 8 provides the trend of solution time with iteration steps under different topolo-
gies. From the figure, it can be seen that for the same number of streams, the linear net-
work topology solving result has the largest stream span, followed by the toroidal net-
work topology, and the mesh network has the smallest span. In terms of network solving
time, the linear network topology has the longest solving time, followed by the ring net-
work topology and the mesh network has the shortest time. This is mainly due to the fact
that the more complex the network, the more the traffic will be dispersed in the various
edge nodes of the network and the more links will be circulating in the network, so the

Figure 5. The occupancy effect of the GE algorithm scheduling result on the link.

Sensors 2024, 24, x FOR PEER REVIEW 15 of 21

Figure 5. The occupancy effect of the GE algorithm scheduling result on the link.

Figure 6. The occupancy effect of the ILP algorithm scheduling result on the link.

To evaluate this paper’s algorithm in detail, this paper generates 60 streams under 3
different network topologies and observes the process of the GE algorithm in solving the
stream span under different iteration steps as well as the time it takes. Figure 7 gives the
optimization effect of the flow span with iteration steps under different topologies and
Figure 8 provides the trend of solution time with iteration steps under different topolo-
gies. From the figure, it can be seen that for the same number of streams, the linear net-
work topology solving result has the largest stream span, followed by the toroidal net-
work topology, and the mesh network has the smallest span. In terms of network solving
time, the linear network topology has the longest solving time, followed by the ring net-
work topology and the mesh network has the shortest time. This is mainly due to the fact
that the more complex the network, the more the traffic will be dispersed in the various
edge nodes of the network and the more links will be circulating in the network, so the

Figure 6. The occupancy effect of the ILP algorithm scheduling result on the link.

To evaluate this paper’s algorithm in detail, this paper generates 60 streams under
3 different network topologies and observes the process of the GE algorithm in solving the
stream span under different iteration steps as well as the time it takes. Figure 7 gives the
optimization effect of the flow span with iteration steps under different topologies and
Figure 8 provides the trend of solution time with iteration steps under different topologies.
From the figure, it can be seen that for the same number of streams, the linear network
topology solving result has the largest stream span, followed by the toroidal network

Sensors 2024, 24, 2554 16 of 21

topology, and the mesh network has the smallest span. In terms of network solving time,
the linear network topology has the longest solving time, followed by the ring network
topology and the mesh network has the shortest time. This is mainly due to the fact that the
more complex the network, the more the traffic will be dispersed in the various edge nodes
of the network and the more links will be circulating in the network, so the probability of
collision between the traffic is smaller, reducing the flow span and the difficulty of solving.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 21

probability of collision between the traffic is smaller, reducing the flow span and the dif-
ficulty of solving.

Figure 7. Schematic diagram of the variation of the flow span with the number of iteration steps for
different network topologies.

Figure 8. The trend of solution time with the number of iteration steps for different topologies.

6.3. Comparison with Other Algorithms
This section compares the GE algorithm with the ILP and the Tabu algorithm. We

first generate a network using NetworkX, then generate flows with different numbers of
flows (from 40 to 160) on the generated network, and record the values of the three algo-
rithms for solving the flow span under different network topologies, as well as the varia-
tion of the solving time with the number of flows. To prevent the solution time from being
too long, the time is limited to 0.5 h in this paper, and if the timeout is exceeded, it is
considered unsuccessful and is not labeled in the figure. In order to balance the solution
time of the GE algorithm and the solution results, the number of iterations is limited to 10
in this paper.

The results for the flow span and runtime are displayed in Figures 9–11 for linear,
ring, and mesh network topologies, respectively. In the linear topology, GE outperforms

Figure 7. Schematic diagram of the variation of the flow span with the number of iteration steps for
different network topologies.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 21

probability of collision between the traffic is smaller, reducing the flow span and the dif-
ficulty of solving.

Figure 7. Schematic diagram of the variation of the flow span with the number of iteration steps for
different network topologies.

Figure 8. The trend of solution time with the number of iteration steps for different topologies.

6.3. Comparison with Other Algorithms
This section compares the GE algorithm with the ILP and the Tabu algorithm. We

first generate a network using NetworkX, then generate flows with different numbers of
flows (from 40 to 160) on the generated network, and record the values of the three algo-
rithms for solving the flow span under different network topologies, as well as the varia-
tion of the solving time with the number of flows. To prevent the solution time from being
too long, the time is limited to 0.5 h in this paper, and if the timeout is exceeded, it is
considered unsuccessful and is not labeled in the figure. In order to balance the solution
time of the GE algorithm and the solution results, the number of iterations is limited to 10
in this paper.

The results for the flow span and runtime are displayed in Figures 9–11 for linear,
ring, and mesh network topologies, respectively. In the linear topology, GE outperforms

Figure 8. The trend of solution time with the number of iteration steps for different topologies.

Sensors 2024, 24, 2554 17 of 21

6.3. Comparison with Other Algorithms

This section compares the GE algorithm with the ILP and the Tabu algorithm. We first
generate a network using NetworkX, then generate flows with different numbers of flows
(from 40 to 160) on the generated network, and record the values of the three algorithms
for solving the flow span under different network topologies, as well as the variation of the
solving time with the number of flows. To prevent the solution time from being too long,
the time is limited to 0.5 h in this paper, and if the timeout is exceeded, it is considered
unsuccessful and is not labeled in the figure. In order to balance the solution time of the GE
algorithm and the solution results, the number of iterations is limited to 10 in this paper.

The results for the flow span and runtime are displayed in Figures 9–11 for linear, ring,
and mesh network topologies, respectively. In the linear topology, GE outperforms the Tabu
algorithm by an average of 182 µs in terms of the flow span that has been solved, whereas
the ILP algorithm is stable at around 40,000 µs in terms of the flow span that has been
solved since it does not use the flow span as an optimization objective. When the number of
flows is small, the ILP has the shortest solution time, and the GE algorithm is similar to the
Tabu algorithm. As the number of flows increases, the solution time of the GE algorithm
grows smoothly, while the Tabu algorithm and the ILP algorithm grow exponentially. The
solution timeout is exceeded after more than 80 and 100 flows, respectively, while the GE is
still able to solve the problem normally and in almost twice the number of flows compared
with the Tabu algorithm with a solution time of 1000 s. The ILP algorithm can be used in
the same way as the Tabu algorithm. In 1000 s, GE is able to solve almost twice the number
of flows solved by the Tabu algorithm. In the ring topology, GE outperforms the Tabu
algorithm by an average of 130 µs over the span of solved flows, and Tabu and ILP time out
after more than 80 and 100 flows, respectively. In the mesh topology, GE outperforms the
Tabu algorithm by 147 µs on average in terms of the span of flows that have been solved,
and Tabu and ILP solve for timeouts after more than 110 and 140 flows, respectively. In
other respects, the ring topology and the grid topology are essentially the same as the
linear topology.

Sensors 2024, 24, x FOR PEER REVIEW 17 of 21

the Tabu algorithm by an average of 182 µs in terms of the flow span that has been solved,
whereas the ILP algorithm is stable at around 40,000 µs in terms of the flow span that has
been solved since it does not use the flow span as an optimization objective. When the
number of flows is small, the ILP has the shortest solution time, and the GE algorithm is
similar to the Tabu algorithm. As the number of flows increases, the solution time of the
GE algorithm grows smoothly, while the Tabu algorithm and the ILP algorithm grow ex-
ponentially. The solution timeout is exceeded after more than 80 and 100 flows, respec-
tively, while the GE is still able to solve the problem normally and in almost twice the
number of flows compared with the Tabu algorithm with a solution time of 1000 s. The
ILP algorithm can be used in the same way as the Tabu algorithm. In 1000 s, GE is able to
solve almost twice the number of flows solved by the Tabu algorithm. In the ring topology,
GE outperforms the Tabu algorithm by an average of 130 µs over the span of solved flows,
and Tabu and ILP time out after more than 80 and 100 flows, respectively. In the mesh
topology, GE outperforms the Tabu algorithm by 147 µs on average in terms of the span
of flows that have been solved, and Tabu and ILP solve for timeouts after more than 110
and 140 flows, respectively. In other respects, the ring topology and the grid topology are
essentially the same as the linear topology.

(a) (b)

Figure 9. Running results of three algorithms under the linear topology with different numbers of
streams. (a) max flow span optimization; (b) running time.

(a) (b)

Figure 10. Running results of three algorithms under the ring topology with different numbers of
streams. (a) max flow span optimization; (b) running time.

Figure 9. Running results of three algorithms under the linear topology with different numbers of
streams. (a) max flow span optimization; (b) running time.

Sensors 2024, 24, 2554 18 of 21

Sensors 2024, 24, x FOR PEER REVIEW 17 of 21

the Tabu algorithm by an average of 182 µs in terms of the flow span that has been solved,
whereas the ILP algorithm is stable at around 40,000 µs in terms of the flow span that has
been solved since it does not use the flow span as an optimization objective. When the
number of flows is small, the ILP has the shortest solution time, and the GE algorithm is
similar to the Tabu algorithm. As the number of flows increases, the solution time of the
GE algorithm grows smoothly, while the Tabu algorithm and the ILP algorithm grow ex-
ponentially. The solution timeout is exceeded after more than 80 and 100 flows, respec-
tively, while the GE is still able to solve the problem normally and in almost twice the
number of flows compared with the Tabu algorithm with a solution time of 1000 s. The
ILP algorithm can be used in the same way as the Tabu algorithm. In 1000 s, GE is able to
solve almost twice the number of flows solved by the Tabu algorithm. In the ring topology,
GE outperforms the Tabu algorithm by an average of 130 µs over the span of solved flows,
and Tabu and ILP time out after more than 80 and 100 flows, respectively. In the mesh
topology, GE outperforms the Tabu algorithm by 147 µs on average in terms of the span
of flows that have been solved, and Tabu and ILP solve for timeouts after more than 110
and 140 flows, respectively. In other respects, the ring topology and the grid topology are
essentially the same as the linear topology.

(a) (b)

Figure 9. Running results of three algorithms under the linear topology with different numbers of
streams. (a) max flow span optimization; (b) running time.

(a) (b)

Figure 10. Running results of three algorithms under the ring topology with different numbers of
streams. (a) max flow span optimization; (b) running time.
Figure 10. Running results of three algorithms under the ring topology with different numbers of
streams. (a) max flow span optimization; (b) running time.

Sensors 2024, 24, x FOR PEER REVIEW 18 of 21

(a) (b)

Figure 11. Running results of three algorithms under the grid topology with different numbers of
streams. (a) max flow span optimization; (b) running time.

Combining the performance of these three algorithms under different topologies,
compared with the Tabu algorithm, the GE algorithm implemented in this paper has a
smoother variation of the solution time with the number of streams in each network, a
shorter solution time, which yields the best solution results, and a higher efficiency in
searching for the optimal solution, which is more adapted to the optimal solution of this
problem. This is because the Tabu algorithm utilizes the method of searching the neigh-
borhood, which is less efficient for this problem, and it is difficult to search for a better
solution, while the EDA takes the probability-based search method, which has a higher
search efficiency. Compared with the traditional ILP algorithm, the GE algorithm obtains
a better solution in all the cases listed, and its solution time is closer to the ILP algorithm
when the number of streams is small and significantly smaller than the ILP algorithm
when the number of streams is large. This is due to the fact that the search space of ILP
increases dramatically with the number of streams. Therefore, the GE algorithm is more
practical than the other two algorithms.

7. Conclusions
In this paper, we have proposed a model as well as an algorithm for the problem of

combining WiFi and the TSN. We first analyze the problems faced by the combination of
WiFi and time-sensitive networks and then establish a no-wait scheduling model for time-
sensitive streams based on the TAS mechanism of TSNs to address the characteristics of
WiFi and time-sensitive networks, which can isolate the time-sensitive streams into a
queue channel by uniformly calculating the sending time of the streams to avoid the prob-
lem of queue resource constraints when transforming WiFi and time-sensitive networks.
This model can effectively avoid the problem of queue resource constraints when WiFi is
converted to time-sensitive networks. On the basis of this model, this paper draws on the
method of optimizing completion time in the job scheduling problem to design a distri-
bution estimation algorithm based on the greedy strategy to optimize the network flow
span so that the network can avoid dispersed, traffic scheduling, resulting in too many
traffic protection bands wasting the bandwidth of the BE traffic. After experimental test-
ing, compared with the ILP algorithm and the Tabu algorithm, the algorithm in this paper
shows a higher solving efficiency and is more practical in solving the problem.

As of now, WiFi access to time-sensitive networks has not resulted in a complete so-
lution. This paper discusses a scheme for WiFi access to time-sensitive networks in indus-
trial internet scenarios, which has some practical value. The shortcoming of this paper is
that it does not consider the link uncertainty of WiFi transmission and the handling of

Figure 11. Running results of three algorithms under the grid topology with different numbers of
streams. (a) max flow span optimization; (b) running time.

Combining the performance of these three algorithms under different topologies,
compared with the Tabu algorithm, the GE algorithm implemented in this paper has a
smoother variation of the solution time with the number of streams in each network,
a shorter solution time, which yields the best solution results, and a higher efficiency
in searching for the optimal solution, which is more adapted to the optimal solution of
this problem. This is because the Tabu algorithm utilizes the method of searching the
neighborhood, which is less efficient for this problem, and it is difficult to search for a better
solution, while the EDA takes the probability-based search method, which has a higher
search efficiency. Compared with the traditional ILP algorithm, the GE algorithm obtains
a better solution in all the cases listed, and its solution time is closer to the ILP algorithm
when the number of streams is small and significantly smaller than the ILP algorithm when
the number of streams is large. This is due to the fact that the search space of ILP increases
dramatically with the number of streams. Therefore, the GE algorithm is more practical
than the other two algorithms.

7. Conclusions

In this paper, we have proposed a model as well as an algorithm for the problem of
combining WiFi and the TSN. We first analyze the problems faced by the combination of

Sensors 2024, 24, 2554 19 of 21

WiFi and time-sensitive networks and then establish a no-wait scheduling model for time-
sensitive streams based on the TAS mechanism of TSNs to address the characteristics of
WiFi and time-sensitive networks, which can isolate the time-sensitive streams into a queue
channel by uniformly calculating the sending time of the streams to avoid the problem
of queue resource constraints when transforming WiFi and time-sensitive networks. This
model can effectively avoid the problem of queue resource constraints when WiFi is
converted to time-sensitive networks. On the basis of this model, this paper draws on
the method of optimizing completion time in the job scheduling problem to design a
distribution estimation algorithm based on the greedy strategy to optimize the network
flow span so that the network can avoid dispersed, traffic scheduling, resulting in too many
traffic protection bands wasting the bandwidth of the BE traffic. After experimental testing,
compared with the ILP algorithm and the Tabu algorithm, the algorithm in this paper
shows a higher solving efficiency and is more practical in solving the problem.

As of now, WiFi access to time-sensitive networks has not resulted in a complete
solution. This paper discusses a scheme for WiFi access to time-sensitive networks in
industrial internet scenarios, which has some practical value. The shortcoming of this
paper is that it does not consider the link uncertainty of WiFi transmission and the handling
of bursty flows in WiFi nodes. In future work, we will model the bursty flows and
retransmission to find new solution schemes.

Author Contributions: Conceptualization, Z.L.; methodology, Z.L.; software, Z.L.; validation, J.Y.,
C.G. and J.X.; formal analysis, Z.L.; investigation, J.Y. and T.T.; resources, J.Y.; data curation, Z.L.
and C.L.; writing—original draft preparation, Z.L.; writing—review and editing, C.G., J.Y. and J.X.;
visualization, Z.L.; supervision, J.Y.; project administration, J.Y. All authors have read and agreed to
the published version of the manuscript.

Funding: Supported by the National Key Research and Development Program of China (2021YFB2501104).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are publicly available due to privacy.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ashjaei, M.; Lo Bello, L.; Daneshtalab, M.; Patti, G.; Saponara, S.; Mubeen, S. Time-Sensitive Networking in automotive embedded

systems: State of the art and research opportunities. J. Syst. Archit. 2021, 117, 102137. [CrossRef]
2. Steiner, W.; Bauer, G.; Hall, B.; Paulitsch, M. Time-triggered ethernet. In Time-Triggered Communication; CRC Press: Boca Raton, FL,

USA, 2018; pp. 209–248.
3. Feld, J. PROFINET—Scalable Factory Communication for All Applications. In Proceedings of the IEEE International Workshop on

Factory Communication Systems, Vienna, Austria, 22–24 September 2004; Proceedings. IEEE: Piscataway, NJ, USA, 2004; pp. 33–38.
4. Prytz, G. A Performance Analysis of EtherCAT and PROFINET IRT. In Proceedings of the 2008 IEEE International Conference on

Emerging Technologies and Factory Automation, Hamburg, Germany, 15–18 September 2008; IEEE: Piscataway, NJ, USA, 2008;
pp. 408–415.

5. IEEE Std 802.1AS-2020 (Revision of IEEE Std 802.1AS-2011); IEEE Standard for Local and Metropolitan Area Networks—Timing
and Synchronization for Time-Sensitive Applications. IEEE: Piscataway, NJ, USA, 2020; pp. 1–421.

6. IEEE Std 802.1Qav-2009 (Amendment to IEEE Std 802.1Q-2005); IEEE Standard for Local and Metropolitan Area Networks—Virtual
Bridged Local Area Networks Amendment 12: Forwarding and Queuing Enhancements for Time-Sensitive Streams. IEEE:
Piscataway, NJ, USA, 2010; pp. C1–C72.

7. IEEE Std 802.1Qcr-2020 (Amendment to IEEE Std 802.1Q-2018 as Amended by IEEE Std 802.1Qcp-2018, IEEE Std 802.1Qcc-2018, IEEE
Std 802.1Qcy-2019, and IEEE Std 802.1Qcx-2020); IEEE Standard for Local and Metropolitan Area Networks–Bridges and Bridged
Networks-Amendment 34: Asynchronous Traffic Shaping. IEEE: Piscataway, NJ, USA, 2020; pp. 1–151. [CrossRef]

8. IEEE Std 802.1Qbv-2015 (Amendment to IEEE Std 802.1Q-2014 as Amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, and
IEEE Std 802.1Q-2014/Cor 1-2015); IEEE Standard for Local and metropolitan area networks—Bridges and Bridged Networks-
Amendment 25: Enhancements for Scheduled Traffic. IEEE: Piscataway, NJ, USA, 2016; pp. 1–57. [CrossRef]

9. IEEE Std 802.1Qbu-2016 (Amendment to IEEE Std 802.1Q-2014); IEEE Standard for Local and Metropolitan Area Networks—Bridges
and Bridged Networks—Amendment 26: Frame Preemption. IEEE: Piscataway, NJ, USA, 2016; pp. 1–52. [CrossRef]

https://doi.org/10.1016/j.sysarc.2021.102137
https://doi.org/10.1109/IEEESTD.2020.9253013
https://doi.org/10.1109/IEEESTD.2016.8613095
https://doi.org/10.1109/IEEESTD.2016.7553415

Sensors 2024, 24, 2554 20 of 21

10. IEEE Std 802.1Qci-2017 (Amendment to IEEE Std 802.1Q-2014 as Amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, IEEE
Std 802.1Q-2014/Cor 1-2015, IEEE Std 802.1Qbv-2015, IEEE Std 802.1Qbu-2016, and IEEE Std 802.1Qbz-2016); IEEE Standard for
Local and Metropolitan Area networks–Bridges and Bridged Networks–Amendment 28: Per-Stream Filtering and Policing. IEEE:
Piscataway, NJ, USA, 2017; pp. 1–65. [CrossRef]

11. IEEE Std 802.1CB-2017; IEEE Standard for Local and metropolitan area networks–Frame Replication and Elimination for Reliability.
IEEE: Piscataway, NJ, USA, 2017; pp. 1–102. [CrossRef]

12. IEEE Std 802.1Qcc-2018 (Amendment to IEEE Std 802.1Q-2018 as Amended by IEEE Std 802.1Qcp-2018); IEEE Standard for Local and
Metropolitan Area Networks–Bridges and Bridged Networks—Amendment 31: Stream Reservation Protocol (SRP) Enhancements
and Performance Improvements. IEEE: Piscataway, NJ, USA, 2018; pp. 1–208. [CrossRef]

13. Cavalcanti, D.; Cordeiro, C.; Smith, M.; Regev, A. WiFi TSN: Enabling Deterministic Wireless Connectivity over 802.11. IEEE
Commun. Stand. Mag. 2022, 6, 22–29. [CrossRef]

14. Hiertz, G.R.; Denteneer, D.; Stibor, L.; Zang, Y.; Costa, X.P.; Walke, B. The IEEE 802.11 universe. IEEE Commun. Mag. 2010, 48,
62–70. [CrossRef]

15. Stüber, T.; Osswald, L.; Lindner, S.; Menth, M. A survey of scheduling algorithms for the time-aware shaper in time-sensitive
networking (TSN). IEEE Access 2023, 11, 61192–61233. [CrossRef]

16. Craciunas, S.S.; Oliver, R.S.; Chmelík, M.; Steiner, W. Scheduling Real-Time Communication in IEEE 802.1Qbv Time Sensitive
Networks. In Proceedings of the 24th International Conference on Real-Time Networks and Systems, Brest, France, 19–21 October
2016; pp. 183–192.

17. Falk, J.; Dürr, F.; Rothermel, K. Exploring practical limitations of joint routing and scheduling for TSN with ILP. In Proceedings
of the 2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA),
Hokkaido, Japan, 28–31 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 136–146.

18. Laursen, S.M.; Pop, P.; Steiner, W. Routing optimization of AVB streams in TSN networks. ACM Sigbed Rev. 2016, 13, 43–48.
[CrossRef]

19. Pahlevan, M.; Obermaisser, R. Genetic algorithm for scheduling time-triggered traffic in time-sensitive networks. In Proceedings
of the 2018 IEEE 23rd international conference on emerging technologies and factory automation (ETFA), Torino, Italy, 4–7
September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 337–344.

20. Zhang, Y.; Wu, J.; Liu, M.; Tan, A. TSN-based routing and scheduling scheme for Industrial Internet of Things in underground
mining. Eng. Appl. Artif. Intell. 2022, 115, 105314. [CrossRef]

21. Dürr, F.; Nayak, N.G. No-wait Packet Scheduling for IEEE Time-sensitive Networks (TSN). In Proceedings of the 24th International
Conference on Real-Time Networks and Systems, Brest, France, 19–21 October 2016; pp. 203–212.

22. Vlk, M.; Brejchová, K.; Hanzálek, Z.; Tang, S. Large-scale periodic scheduling in time-sensitive networks. Comput. Oper. Res. 2022,
137, 105512. [CrossRef]

23. Atallah, A.A.; Hamad, G.B.; Mohamed, O.A. Routing and Scheduling of Time-Triggered Traffic in Time-Sensitive Networks. IEEE
Trans. Ind. Inform. 2020, 16, 4525–4534. [CrossRef]

24. Adame, T.; Carrascosa, M.; Bellalta, B. Time-sensitive networking in IEEE 802.11 be: On the way to low-latency WiFi 7. arXiv 2019,
arXiv:1912.06086.

25. Bush, S.F.; Mantelet, G.; Thomsen, B.; Grossman, E. Industrial wireless time-sensitive networking: RFC on the path forward. In
Avnu Alliance White Paper; Avnu Alliance: Beaverton, OR, USA, 2018.

26. Seijo, O.; Fernández, Z.; Val, I.; López-Fernández, J.A. SHARP: Towards the integration of time-sensitive communications in
legacy LAN/WLAN. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates,
9–13 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–7.

27. Genc, E.; Del Carpio, L.F. Wi-Fi QoS enhancements for downlink operations in industrial automation using TSN. In Proceedings
of the 2019 15th IEEE International Workshop on Factory Communication Systems (WFCS), Sundsvall, Sweden, 27–29 May 2019;
IEEE: Piscataway, NJ, USA, 2019; pp. 1–6.

28. Akhmetov, D.; Das, D.; Cavalcanti, D.; Ramirez-Perez, J.; Cariou, L. Scheduled Time-Sensitive Transmission Opportunities
over Wi-Fi. In Proceedings of the GLOBECOM 2022–2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8
December 2022; pp. 1807–1812.

29. Haxhibeqiri, J.; Jiao, X.; Campos, P.A.; Moerman, I.; Hoebeke, J. To update or not: Dynamic traffic classification for high priority
traffic in wireless TSN. In Proceedings of the 2023 IEEE 19th International Conference on Factory Communication Systems
(WFCS), Pavia, Italy, 26–28 April 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–8.

30. Tindell, K.W.; Burns, A.; Wellings, A.J. Allocating hard real-time tasks: An NP-hard problem made easy. Real-Time Syst. 1992, 4, 145–165.
[CrossRef]

31. Steiner, W. An evaluation of SMT-based schedule synthesis for time-triggered multi-hop networks. In Proceedings of the 2010
31st IEEE Real-Time Systems Symposium, Austin, TX, USA, 10–13 April 2022; pp. 375–384.

32. Cavalcanti, D.V.G.; Fang, J.; Das, D.; Cariou, L.; Smith, M.; Seewald, M. Wi-Fi and TSN Enabling Deterministic Wireless for
Time-Sensitive Applications. Available online: https://mentor.ieee.org/802.11/dcn/22/11-22-0080-00-0000-wi-fi-and-tsn-
enabling-deterministic-wireless-for-time-sensitive-applications.pptx (accessed on 19 January 2022).

https://doi.org/10.1109/IEEESTD.2017.8064221
https://doi.org/10.1109/IEEESTD.2017.8091139
https://doi.org/10.1109/IEEESTD.2018.8514112
https://doi.org/10.1109/MCOMSTD.0002.2200039
https://doi.org/10.1109/MCOM.2010.5394032
https://doi.org/10.1109/ACCESS.2023.3286370
https://doi.org/10.1145/3015037.3015044
https://doi.org/10.1016/j.engappai.2022.105314
https://doi.org/10.1016/j.cor.2021.105512
https://doi.org/10.1109/TII.2019.2950887
https://doi.org/10.1007/BF00365407
https://mentor.ieee.org/802.11/dcn/22/11-22-0080-00-0000-wi-fi-and-tsn-enabling-deterministic-wireless-for-time-sensitive-applications.pptx
https://mentor.ieee.org/802.11/dcn/22/11-22-0080-00-0000-wi-fi-and-tsn-enabling-deterministic-wireless-for-time-sensitive-applications.pptx

Sensors 2024, 24, 2554 21 of 21

33. Cavalcanti, D.V.G.; Fang, J.; Das, D.; Cariou, L.; Smith, M.; Seewald, M. Wireless TSN in 802.11 and New Requirements for
802.11be and 802.1. Available online: https://mentor.ieee.org/802.11/dcn/21/11-21-0628-00-00be-wireless-tsn-in-802-11-and-
new-requirements-for-802-11be-and-802-1.pptx (accessed on 19 April 2021).

34. Wang, X.; Yao, H.; Mai, T.; Nie, T.; Zhu, L.; Liu, Y. Deep Reinforcement Learning aided No-wait Flow Scheduling in Time-Sensitive
Networks. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA,
10–13 April 2022; pp. 812–817.

35. Larrañaga, P.; Lozano, J.A. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation; Springer Science &
Business Media: Berlin/Heidelberg, Germany, 2001; Volume 2.

36. Wang, L.; Fang, C. A hybrid estimation of distribution algorithm for solving the resource-constrained project scheduling problem.
Expert Syst. Appl. 2012, 39, 2451–2460. [CrossRef]

37. Macchiaroli, R.; Mole, S.; Riemma, S. Modelling and optimization of industrial manufacturing processes subject to no-wait
constraints. Int. J. Prod. Res. 1999, 37, 2585–2607. [CrossRef]

38. Platt, E.L. Network Science with Python and NetworkX Quick Start Guide: Explore and Visualize Network Data Effectively; Packt
Publishing Ltd.: Birmingham, UK, 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://mentor.ieee.org/802.11/dcn/21/11-21-0628-00-00be-wireless-tsn-in-802-11-and-new-requirements-for-802-11be-and-802-1.pptx
https://mentor.ieee.org/802.11/dcn/21/11-21-0628-00-00be-wireless-tsn-in-802-11-and-new-requirements-for-802-11be-and-802-1.pptx
https://doi.org/10.1016/j.eswa.2011.08.095
https://doi.org/10.1080/002075499190671

	Introduction
	Related Work
	TSN Scheduling-Related Research
	Research Related to Wireless Time Sensitive Networks (WTSN)

	Problem Statement
	Description of the System Model
	Algorithm Design
	Evaluation of Experimental Results
	Description of Experimental Conditions
	Performance Evaluation of the Algorithm in This Paper
	Comparison with Other Algorithms

	Conclusions
	References

