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Abstract: The identification of multi-source signals with time-frequency aliasing is a complex problem
in wideband signal reception. The traditional method of first separation and identification especially
fails due to the significant separation error under underdetermined conditions when the degree of
time-frequency aliasing is high. The single-mode recognition method does not need to be separated
first. However, the single-mode features contain less signal information, making it challenging to
identify time-frequency aliasing signals accurately. To solve the above problems, this article proposes
a time-frequency aliasing signal recognition method based on multi-mode fusion (TRMM). This
method uses the U-Net network to extract pixel-by-pixel features of the time-frequency and wave-
frequency images and then performs weighted fusion. The multimodal feature scores are used as the
classification basis to realize the recognition of the time-frequency aliasing signals. When the SNR is
0 dB, the recognition rate of the four-signal aliasing model can reach more than 97.3%.

Keywords: multimodal feature fusion; deep learning; signal recognition; time-frequency diagram;
wave-frequency diagram

1. Introduction
1.1. Development Status

With the development of communication technology, the “time and frequency” do-
main overlap and signal reception, especially wideband signal reception, bring excellent
interference. In the complex electromagnetic environment, wide-open receivers often
encounter co-channel multi-source signals, that is, in the receiving bandwidth, the same
period, there is the existence of multiple communication or non-communication signals [1].
Single-signal identification techniques are more maturely developed, and the traditional
method of identifying multi-source aliased signals requires separation followed by identi-
fication. It takes a lot of steps and a long time, and the recognition effect is restricted by
the separation effect. Especially when the time-frequency aliasing degree of multi-source
signals is high, the traditional separation method has a large error under underdetermined
conditions, which leads to the failure of the traditional single-signal recognition method.
Therefore, exploring a more effective separation method for co-channel time-frequency
aliasing signal identification is urgent.

In 2006, Hinton et al., proposed a Deep Belief Network (DBN) and applied it to speech
recognition tasks and achieved good results [2]. In 2012, Krizhevsky et al., proposed the
concept of a convolutional neural network (CNN), and achieved breakthrough results
in image recognition tasks, which laid a foundation for subsequent signal recognition
research [3]. In 2016, O’Shea et al., took the lead in applying a CNN to the automatic
feature extraction and classification of complex time-domain radio signals [4]. The research
team designed a four-layer neural network architecture consisting of two convolutional
layers and two fully connected layers, and successfully recognized signals with three
analog modulation modes and eight digital modulation modes. Compared with the
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traditional feature extraction method based on an expert system, this method shows
significant performance advantages. The results not only show the high adaptability of
a CNN in processing time series data, but also confirm its efficiency and accuracy in
automatic feature extraction and classification tasks. With the successful application of a
CNN in the field of signal recognition, more and more algorithms have been proposed.
Ref. [5] compare the performance of Long Short-Term Memory (LSTM) and a CNN in
radio signal modulation recognition tasks in detail. The simulation results show that
the recognition rate of the neural network to the signal is not affected by the depth of
the network and the size of the filter, thus revealing the flexibility and robustness of the
network structure selection in the field of modulation recognition. Ref. [6] proposed a
classification algorithm based on a transformer and denoising autoencoder (DAE). The
algorithm combines the denoising autoencoder component in the DAE_LSTM model and
the Residual Stack design in the Res-Net architecture, and finally integrates the attention
mechanism of the transformer to enhance the feature extraction and sequence modeling
capabilities. The experimental results show that the proposed algorithm performs well on
the public dataset RadioML2018.01A. Ref. [7] proposed a multimodal attention mechanism
signal modulation recognition method based on Generative Adversarial Networks (GANs),
a CNN, and LSTM to solve the problem of the low recognition accuracy of spread spectrum
signals under low signal-to-noise (SNR) conditions. In this method, the GAN is used to
denoise the time-frequency image, and then the time-frequency image and I/Q data are
input into the recognition model based on a CNN and LSTM, and the attention mechanism
is added to the model to realize the high-precision recognition of ten kinds of signals such
as MASK and MFSK.

To sum up, time-frequency aliasing signal separation based on machine learning has
become a research hotspot [8], mainly divided into two identification methods based on
decision trees and neural networks. In the decision tree-based recognition method, Ref. [9]
extract eight kinds of features to identify twelve kinds of signals, and the feature selec-
tion is complicated. In the neural network-based recognition method, Ref. [10] extracts
instantaneous features and higher-order cumulative volume features and uses the BP net-
work for the intra-class recognition of phase-shift keying (PSK) and quadrature amplitude
modulation (QAM) signals, but the complexity of the algorithm is high. Ref. [11] dataset’s
SNR is fixed at 4 dB and 10 dB, and Ref. [12] does not investigate mixed signals composed
of source signals with different code rates; all of them have the problem of poor dataset
generalization ability. Refs. [13,14] use the Deep Convolutional Neural Network (DCNN)
network and Seg-Net network to extract time-frequency graph features to achieve signal
separation and identification, respectively, but the features are selected singly, and the
intra-class identification of modulated signals cannot be achieved.

Currently, machine learning-based signal recognition methods are ineffective for intra-
class signals in practical applications, mainly because intra-class signals are challenging to
recognize due to the same modulation of the broad classes and similar single-dimensional
features. To solve this problem, this article proposes a time-frequency aliasing signal
recognition method based on multi-mode fusion (TRMM); the method first performs
multidimensional feature extraction from two modes, a time-frequency diagram and wave-
frequency diagram, and then establishes a pixel-level weighted fusion decision-maker to
adjudicate each pixel; the method achieves inter-class recognition as well as satisfactory
intra-class recognition. At an SNR of 0 dB, the recognition rate of the four-signal aliasing
model can reach more than 97.3%.

1.2. Organization

This article is organized as follows: Section 2 introduces the model of the time-frequency
aliasing signals and the evaluation criteria of the recognition performance; Section 3 describes
in detail the preprocessing method of the time-frequency aliasing signals; Section 4 discusses
the neural network and fusion strategy; Section 5 gives the simulation results and performs
the performance analysis; and Section 6 concludes the article.
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2. Signal Model
2.1. Mixed Signal Model

The linear transient mixing model is shown in Figure 1:
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Where m is the number of receiving channels and n is the number of source signals.
Expression of the model as Equation:

x(t) =
n

∑
i=1

Aisi(t) + ν(t), (1)

where Ai is the amplitude of each original signal component si(t), and v(t) is the additive
Gaussian white noise.

In the real communication environment, the signal received by the receiver contains
not only the modulation-type signal in the general communication business channel, but
also various radar signals. To be close to reality, si(t) in this article refers to nine main-
stream communication signals and two common radar signals, including amplitude modu-
lation (AM), binary amplitude-shift keying (2ASK), binary frequency-shift keying (2FSK),
quaternary frequency-shift keying (4FSK), binary phase-shift keying (BPSK), differential
quadrature reference phase-shift keying (DQPSK), 8 phase-shift keying (8PSK), 16-ary
quadrature amplitude modulation (16QAM), 32-ary quadrature amplitude modulation
(32QAM), linear frequency modulation (LFM), and even quadratic frequency modulation
(EQFM) [9]. As a single-signal set, the time-frequency aliasing signal is generated.

2.2. Frequency-Domain Analysis

The different frequency distributions of the components in the aliased signals lead to
different mixing degrees of the aliased signals. In this article, one signal Si is selected from
the above eleven signal models and mixed with several other signals within a time interval.

The time-domain aliasing degree Mt is defined as

Mt =
tmix

Si

texist
Si

(2)

where tmix
Si

denotes the time the signal Si is aliased with other signals, and texist
Si

denotes the
time the signal Si is present. In our experiment, the default time-domain aliasing degree
Mt = 100%.

The frequency domain aliasing degree M f is defined as

M f =
f mix

Si

f exist
Si

(3)
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wherein f mix
Si

denotes the bandwidth of the signal Si overlapped with other signals, and
texist
Si

denotes the bandwidth of the signal Si. In particular, Si denotes the signal with the
narrowest bandwidth in the frequency domain when the component in the aliased signal is
greater than two.

2.3. Evaluation Criteria

In this article, the single-signal recognition accuracy Pr is defined as

Pr =
Nr

Ns
× 100% (4)

where Nr denotes the number of signals accurately recognized by the algorithm and Ns
denotes the total number of test signals.

In this article, the aliasing signal recognition accuracy Pm is defined as

Pm = 1
I

I
∑

i=1

(
Ni

r
Nm

s
× 100%

)
, I =


2 Dual − signal
3 Three − signal
4 Four − signal

(5)

where Nm
s denotes the total number of aliased signals tested, and Ni

r denotes the total
number of class i component signals accurately identified by the algorithm.

In this article, the average recognition rate Pa is defined as

Pa =
1
J

J
∑

j=1

(
N j

r

N j
s
× 100%

)
, J =


11 sin gle signal
10 dual − signal
4 Three − signal
6 Four − signal

(6)

where N j
r denotes the number of class j signals or aliasing models accurately identified,

and N j
s denotes the total number of class j signals or aliasing models tested.

3. Multimodal Data Construction

In the field of time-frequency aliasing signal processing, a single-modal feature is
usually selected, ignoring the complementarity between different feature modes of the
signal [15]. By correlating the signal’s homologous and heterogeneous features, drawing on
the advantages of different modal features, the effective integration of modal information
can be accomplished, and the feature expression ability can be improved.

3.1. Time-Frequency Diagram

In practical applications, the communication signals received by the receiver are non-
smooth signals with the performance of overlapping in the time domain, aliasing in the
frequency domain, and poor sparsity, and the time-frequency domain analysis expresses the
non-smooth signals as a two-dimensional function of the frequency and time, which better
reveals the time-frequency dynamics of the signals and non-smooth characteristics. Therefore,
this article transforms the signal to the time-frequency (TF) domain for analysis. Time-
frequency analysis methods are divided into linear time-frequency analysis and quadratic
time-frequency analysis, and typical linear time-frequency analysis includes short-time Fourier
transform (STFT), wavelet transform (WT), etc. STFT, as a linear transformation, does not
generate cross-interference terms and has a strong processing capability and resistance to
frequency-domain diversity signals. It has a strong processing ability and anti-interference
ability. In this article, STFT is selected as a means of time-frequency analysis.
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The STFT transform equation of the signal S(t) is expressed as

STFTS(t, f ) =
∫ ∞

−∞
[S(u)g∗(u − t)]e−j2π f udu (7)

where * stands for the complex conjugate and g(t) is the window function.
The time-frequency diagram is a visual presentation of the magnitude values of the

STFT transform results, which more accurately reveals the signals’ transient characteristics
and frequency dynamics. The time-frequency diagrams of the 2ASK, 4FSK, 8PSK, and
LFM signals are given in Figure 2. The sampling rate is 512 MHz, and the symbol rate
is 10–200 kHz. Considering the bandwidth and the actual rendering effect, the number
of sampling points is set to 1535. The 2ASK signal uses “OOK” modulation, sending “0”
corresponds to no energy in the graph, and sending “1” corresponds to the energy in the
graph. The 4FSK signal has four frequency variations in the time-frequency domain. The
8PSK signal has no frequency change; the LFM signal has a linear slope.
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(d): EQFM).

3.2. Wave-Frequency Diagram

Signal waveform refers to the expression form of the signal in the time domain or space
domain, that is, the graph of the signal changing with the time or the shape of the spatial
distribution. It depicts how the amplitude, frequency, phase, and other characteristics of
the signal change with time.
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When the signal is processed by STFT, the resolution of the frequency domain is
improved, but the time resolution is reduced when the window function is longer. On the
contrary, when the window function is short, the temporal resolution increases, but the
frequency-domain resolution decreases. In practical applications, it is usually necessary to
make a compromise between the time and frequency resolution, and a part of the spectral
resolution or time resolution will be lost, resulting in information loss. Therefore, this article
introduces the concept of a wave-frequency diagram. The wave-frequency diagram is a
waveform diagram that moves the waveform information to the position corresponding
to the signal’s carrier frequency after the down-conversion of the signal and contains
the complete time-domain characteristics and carrier frequency information; within the
frequency range of 13–193 MHz, a bandpass filter is set every 1 MHz to filter the signal, and
the time-domain waveform of the filtered signal is placed on the corresponding vertical
axis to form the wave-frequency diagram. Figure 3 shows the flow of the wave-frequency
diagrams’ generation.
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The wave-frequency diagrams of the LFM and EQFM + BPSK + DQPSK + 8PSK signals
are given in Figure 4, and it can be seen that the wave-frequency diagrams of the LFM and
EQFM signals exhibit apparent time-domain features.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 24 
 

 

The wave-frequency diagrams of the LFM and EQFM + BPSK + DQPSK + 8PSK sig-

nals are given in Figure 4, and it can be seen that the wave-frequency diagrams of the LFM 

and EQFM signals exhibit apparent time-domain features. 

  
(a) (b) 

Figure 4. Wave-frequency diagrams of different signals ((a): LFM; (b): EQFM + BPSK + DQPSK + 

8PSK). 

3.3. Image Preprocessing 

The binarization preprocessing of the time-frequency and wave-frequency diagrams 

can strengthen the feature contrast in the image and remove the color interference and the 

influence of channel noise; at the same time, it can reduce the image dimension, reduce 

the amount of computation of the neural network in the forward propagation, accelerate 

the inference process, and improve the operation speed. The preprocessing process is 

shown in Figure 5. 

Input Zero-averaging
Color RGB channel 

processing

Binariz
ation

 

Figure 5. Flow chart of image preprocessing. 

Taking the time-frequency diagram as an example, the steps of the image prepro-

cessing are explained as follows: 

Input: The time-frequency diagram of the time-frequency aliased signal with noise is 

taken as the input, as shown in Figure 6. 

Zero-averaging: Each pixel value in the time-frequency diagram is subtracted from 

the average value of the row in which the pixel is located so that the pixel value varies 

between positive and negative, which helps to improve the learning efficiency, perfor-

mance, and generalization ability of the neural network, as well as to simplify the compu-

tation process and reduce potential numerical problems. 

Color RGB channel processing: As shown in Figure 6, in the actual channel environ-

ment, the signal is surrounded by noise, which results in some degree of distortion. By 

observing the pixel points of the signal and the noise, it can be seen that at the signal’s 

aliasing, the noise background is mainly composed of pixel points on the B channel, while 

the main pixel points of the signal are concentrated in the G channel. At this point, all 

pixel points within the R and B channels are discarded and sharpened to enhance the 

signal characteristics. 

Figure 4. Wave-frequency diagrams of different signals ((a): LFM; (b): EQFM + BPSK + DQPSK + 8PSK).

3.3. Image Preprocessing

The binarization preprocessing of the time-frequency and wave-frequency diagrams
can strengthen the feature contrast in the image and remove the color interference and the
influence of channel noise; at the same time, it can reduce the image dimension, reduce the
amount of computation of the neural network in the forward propagation, accelerate the
inference process, and improve the operation speed. The preprocessing process is shown in
Figure 5.
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Taking the time-frequency diagram as an example, the steps of the image preprocessing
are explained as follows:

Input: The time-frequency diagram of the time-frequency aliased signal with noise is
taken as the input, as shown in Figure 6.
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Zero-averaging: Each pixel value in the time-frequency diagram is subtracted from the
average value of the row in which the pixel is located so that the pixel value varies between
positive and negative, which helps to improve the learning efficiency, performance, and
generalization ability of the neural network, as well as to simplify the computation process
and reduce potential numerical problems.

Color RGB channel processing: As shown in Figure 6, in the actual channel environ-
ment, the signal is surrounded by noise, which results in some degree of distortion. By
observing the pixel points of the signal and the noise, it can be seen that at the signal’s
aliasing, the noise background is mainly composed of pixel points on the B channel, while
the main pixel points of the signal are concentrated in the G channel. At this point, all pixel
points within the R and B channels are discarded and sharpened to enhance the signal
characteristics.

The sharpening process can be expressed as

xs =


y1 x < x1

y2−y1
x2−x1

× (x − x1) x1 ≤ x ≤ x2

y2 x > x2

(8)

where [x1, x2] denotes the value range of the original pixel point, [y1, y2] denotes the value
range after expansion, x is the value of the original pixel point, and xs is the pixel value
after sharpening. When [x1, x2] = [0.3, 0.7], [y1, y2] = [0, 1], the pixel value change curve is
shown in Figure 7.
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Binary processing: After sharpening the image, binary processing is performed. After
sharpening the image, the difference in the original image pixel value becomes larger, the
signal color is more prominent, the binarization threshold is more reasonable, and the
binarization effect is better. The binarization threshold can be determined by the following
equation [16]:

σ2
B(k) = P1(k) · (m − m1(k))

2 + P2(k) · (m2(k)− m)2 (9)

where σ2
B(k) is the between-class variance at threshold k, P1(k) and P2(k) are the probabilities of

the foreground and background, respectively, m is the overall average gray value, and m1(k)
and m2(k) are the average gray value of the foreground and background, respectively.

The effect of the image preprocessing is shown in Figure 8. By preprocessing the
original time-frequency image, the noise interference is successfully eliminated from the
background while accurately retaining the key features of the signal, and the denoising
effect is good.
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4. Multimodal Deep Learning-Based Signal Recognition Methods

A single-modal feature (SMF) cannot effectively identify the modulation mode of
the signal within the class, so the proposed TRMM method extracts the time-frequency
domain features and wave-frequency domain features pixel by pixel. Then, it performs the
weighted fusion to realize the signal identification by using the multimodal feature scores
as the classification basis. The basic flow is shown in Figure 9:
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Figure 9. Basic flowchart of TRMM method processing.

The signals within the class use the same modulation method as the broad class;
only the number of modulation progressions is different, and the time-frequency do-
main characteristics are difficult to distinguish. The time-frequency diagram of the MPSK
(M = 2, 4, 8) signals is given in Figure 10, and it can be seen that these three signals have
similar characteristics in the time-frequency domain, which makes it difficult to distinguish
between them.
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Figure 10. Time-frequency diagram of MPSK signal ((a): BPSK; (b): QDPSK; (c): 8PSK).

The signals are highly feature-dense in the time domain and contain rich raw informa-
tion but are challenging to distinguish with the naked eye; the neural network can self-feed,
learn, and extract critical features in the time domain, capturing the nonlinear relationships
and enabling pixel-level classification. An example of a wave-frequency diagram of an
MPSK (M = 2, 4, 8) signal is given in Figure 11.
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4.1. Pixel-Weighted Averaging

In general, the training process of semantic segmentation networks requires that the
distribution of pixels in each category in the sample set achieves an elemental equilibrium.
However, due to the inherent limitation of the time-frequency characteristic pattern of
the signal, the pixels of different categories cannot be uniformly distributed throughout
the time-frequency domain, resulting in many pixels being discriminated as background
labels. If adopted directly during training, this unbalanced label distribution will cause
the network to bias the signal categories that account for more pixels during the learning
process. In order to compensate for this imbalance and optimize the learning process, this
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article employs the Inverse Probability Weighting (IPT) method [17] to assign appropriate
weights to each signal category.

ProSi =
NSi

NSi
SUM

(10)

where ProSi denotes the probability of the signal class, NSi denotes the number of signal
pixels of class Si in the training set, NSi

SUM denotes the total number of pixels containing the
labeled images of class Si, i denotes the signal class, and in this article, i = 1, 2, · · · , 12. The
pixel weighting is then denoted as

ωSi =
mid

[
Pro∪Si

]
ProSi

(11)

where mid[•] denotes taking the median of the array, and ∪• denotes forming an array
from the numbers.

When dealing with the class imbalance problem, by calculating and applying the
weights of each class, the samples of different classes can be given different degrees of
importance in the model training phase, as shown in Figure 12. Specifically, when the class
weights are obtained, these weights are introduced into the training process of the network
as parameters, which can effectively reduce the learning bias and performance degradation
caused by class imbalance [18].
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4.2. Feature Extraction Based on U-Net Networks

The U-Net network is a symmetric U-shape structure, a pixel-level semantic seg-
mentation model. The central feature extraction part uses convolution and pooling for
dimensionality reduction to increase the image channels and obtain low-dimensional fea-
ture information; the enhanced feature extraction part uses multi-scale feature fusion and
other methods to repair feature details, restore image dimensions, and include feature
information. The network structure is shown in Figure 13 [19].

The figure shows that the U-Net network is divided into five layers. The blue arrows
indicate 3 × 3 convolution for feature extraction, and a Bn layer is added between ReLU
and convolution without changing the width and height of the feature layer. It allows the
characteristic pattern to be spliced directly without center cropping. Red arrows indicate
2 × 2 max pooling, which downscales and compresses the characteristic pattern by 2 × 2
filters. Gray arrows indicate feature fusion, i.e., the features extracted after convolution
and pooling in each layer are linked to the corresponding upsampling layer, which ensures
that the network obtains global and local information at different layers and improves the
accuracy of image segmentation. The green arrow indicates upsampling, where the image
is deconvolved to recover the dimensionality, giving the image a higher resolution and
recovering some of the image features.
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The U-Net network enables pixel-level classification, and the network outputs the
category of each pixel point. As shown in Figure 13, the encoded matrix is upsampled
on the right side, the size of the matrix becomes more extensive, and it is superimposed
with the matrix of the same size on the left side in the channel direction (grey arrows).
After several superimpositions, the matrices are mapped to probability values to classify at
the pixel level. As the network layers deepen, the resulting characteristic patterns have a
larger field of view, allowing a more precise determination of the signal class to which the
pixel point belongs. Therefore, the U-Net network is chosen to extract the features of the
signal on a pixel-by-pixel basis, which allows the extraction of high-precision features of
the signal.

4.2.1. Trunk Feature Extraction

The backbone feature extraction structure consists of convolutional and maximum
pooling layers. In the convolutional layer, the input data will be nonlinearly transformed
and linearly transformed by the activation function (ReLU) and the weight matrix and then
stacked with the maximum pooling layer for feature extraction to obtain the initial effective
feature layer. The expression of the ReLU function is, and its image is shown in Figure 14.
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Maximum pooling has a pooling kernel size of 2, as shown in Figure 15:
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When the time-frequency image is input into the U-Net network for trunk feature
extraction, the image needs to be processed with pixel-weighted averaging, and the steps
are as follows:

1. The total number of time-frequency image pixels for one round of training of the
statistical network is m.

2. Calculate the number of effective pixels for each category of signals as mi
s = ωSi × ms

according to the corresponding pixel-weighting weights.
3. Each category signal multiplies the category score of the corresponding mi

s effective
pixels by the loss function and puts them into the next round of training.

In forward propagation, the neural network calculates the loss function by comparing
the predicted result and the actual label. The loss function measures the error between
the expected and actual results, providing a basis for subsequent weight adjustment. The
expression of the loss function is

Loss =
1
N ∑

i
Li = − 1

N

N

∑
i

M

∑
c=1

yic ln(pic) (12)

where N is the number of samples; M is the number of categories; yic is a sign function that
takes one if the proper category of sample i is c and 0 otherwise; and pic is the predicted
probability that the observed sample i belongs to category c.

4.2.2. Enhanced Feature Extraction

The enhancement feature extraction structure, also known as the expansion path,
is designed to map the high-level features generated by the backbone feature extraction
structure back to the original image size and consists of an upsampling operation and a
convolutional layer. Each step of the enhanced feature extraction structure is mirrored
with the corresponding step of the backbone feature extraction structure to form a jump
connection, which connects the shallow features in the backbone feature extraction structure
directly to the corresponding level of the enhanced feature extraction structure, and at the
same time compensates for the loss of positional information that the pooling layer may
cause. This connection mechanism allows the network to utilize local features and global
context information, resulting in accurate predictions without sacrificing spatial resolution.

4.2.3. Extraction Method

After the time-frequency diagram and wave-frequency diagram images are prepro-
cessed, the target features in the image are more prominent, which is convenient for contour
extraction and shape analysis. The time-frequency diagram is sent to the U-Net network
for pixel-by-pixel category judgment, obtaining the category judgment for each pixel and
obtaining the confidence level of the category; for the overlapping signals, the overlapping
area is marked as “overlapping category” for subsequent processing. The wave-frequency
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diagram is fed into the U-Net network for segmentation
(
768/20480, 64

)
, the category

judgment is made region by region, the categories of all the pixels in the segmented region
are counted, and the category to which the most pixels belong is taken as the category
of the segmented region of the wave-frequency diagram. The discriminative score of the
category is obtained.

4.2.4. Split Output

The U-net network is often used for image segmentation tasks. Unlike traditional
convolutional neural networks for classification tasks, its output is not a class label for
the entire image, but a classification for each pixel in the image, and the class of each
pixel is represented by a different color. In this chapter, the signal and background in
Section 2.1 are divided into twelve categories, and each pixel is segmented by the U-Net
network and its category is identified, and its category label and the confidence of this
category are output. The twelve categories are represented by different colors, as shown in
Figure 16. This representation method makes the final segmentation result intuitive and
easy to understand. The distribution and boundaries of different categories of regions can
be clearly seen.
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4.3. Inductor Setup

The inference process is when a neural network with parameters already determined
in training performs operations to predict or infer new input data. Unlike the forward
propagation used in the training process, the inference process does not need to compute a
loss function and perform a back-propagation algorithm. The weights and bias values in
the inference process are fixed and are not updated again [11].

The modal fusion weights of the wave-frequency and time-frequency diagrams can be
expressed as

Pi =
⇀
wwi × Pwi +

⇀
wsi × Psi (13)

where Pi is the probability that the signal is judged as category i,
⇀
wwi,

⇀
wsi are the weights of

the wave-frequency and time-frequency diagrams of the signal i, Pwi, Psi is the probability
that the signal is judged as category i by the time-frequency and wave-frequency diagrams
alone. The time-frequency diagram is discriminated pixel by pixel in the network, and each
pixel receives a category score Psi, and a weighted score is output as

⇀
wsi ⊙ Psi. Assuming

that pixel A corresponds to the moment t and frequency f in the time-frequency diagram,
the waveform region in the wave-frequency diagram of this pixel (non-background pixel)
corresponding to the frequency f is J. After segmentation of the wave-frequency diagram,
the category judgment is carried out in the network. The category score of region J is
obtained as Pwi, and the weighted score of region J is output as

⇀
wwi ⊙ Pwi. The final score

obtained from the weighted score of pixel A and the weighted score of its corresponding
region J in the wave-frequency diagram is the discrimination score Pi of pixel A.
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After the U-Net network adjudicates the time-frequency and wave-frequency dia-
grams separately, the respective adjudication results may need to be revised due to the
limitation of unimodal features. In order to improve the final recognition rate, it is necessary
to weigh the fusion of the time-frequency and wave-frequency diagrams and set different
weights to make the fused judgment results reach the optimum. 2FSK and 4FSK show
two and four states in the time-frequency domain, respectively, which have more significant
differentiation ability than the wave-frequency modes and need to be given higher weights
in the time-frequency domain; DQPSK has the same number of states in the time-frequency
domain compared to 4FSK, and its wave-frequency modes have more significant differenti-
ation ability compared to the wave-frequency modes. Compared with 4FSK, DQPSK has
the same number of states in the time-frequency domain, and its wave-frequency domain
modes have more significant differentiation ability and need to be given higher weighting
in the wave-frequency domain; 16QAM compared with 32QAM, the number of states are
fewer in the time-frequency domain, have more significant differentiation ability, and need
to be given higher weighting in the time-frequency domain, then the 32QAM in the wave-
frequency domain needs to give a higher weighting; LFM and EQFM in the time-frequency
domain have a significant differentiation ability, need to be given in the time-frequency
domain capability, and need to be given a higher weighting in the time-frequency domain.
Under the condition of randomly setting the SNR (0–20 dB), 100 single signals of each
of the 11 types are generated, and the recognition test is carried out only through the
time-frequency diagram modes or only through the wave-frequency diagram modes, and
the recognition rate of each single signal is shown in Table 1. Combining the recognition
rate statistics of each modality and the above analysis, the following weights are given
(Table 2):

Table 1. Unimodal recognition rate statistics.

Type of Signal Recognition Accuracy of
Time-Frequency Diagrams

Recognition Accuracy of
Wave-Frequency Diagrams

AM 1 1
2ASK 1 1
2FSK 0.71 0.56
4FSK 0.94 0.77
BPSK 1 1

DQPSK 0.16 0.77
8PSK 0.87 1

16QAM 0.82 0.44
32QAM 0.45 0.97

LFM 1 0.85
EQFM 1 0.86

Table 2. Weights for signal fusion weighting.

Type of Signal Weights for Weighting
Time-frequency Diagrams

Weights for Weighting
Wave-Frequency Diagrams

AM 0.5 0.5
2ASK 0.5 0.5
2FSK 0.7 0.3
4FSK 0.9 0.1
BPSK 0.5 0.5

DQPSK 0.1 0.9
8PSK 0.45 0.55

16QAM 0.9 0.1
32QAM 0.05 0.95

LFM 0.9 0.1
EQFM 0.9 0.1
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4.4. Threshold Filtering

After the time-frequency and wave-frequency diagrams of the aliased signals are
fed into the trained neural network, the output result is an image of the same size as the
input image, which also contains the information on the classification labels. Usually,
semantic segmentation is completed at this stage, while in the modulation recognition of
the aliased signal, individual pixel labeling errors may lead to modulation recognition
errors. Therefore, to further improve the final signal recognition rate, this article proposes
introducing a threshold filter after the output of the U-network [12]. The neural network
obtains the discriminative score of the pixel category of an aliased signal when obtaining
the category label of the pixel. At this point, a high threshold is set to filter the pixel
categories, retaining the signal categories with high scores and removing those with low
scores. Even if there are some pixels with inaccurate category labels, the modulation type of
each component of the aliased signal can be accurately identified by applying the network’s
subsequent threshold filter.

5. Simulation Experiments
5.1. Dataset

In order to verify the robustness of the algorithm, the modulation parameters of the sig-
nals are set to be randomly generated within the expected range: the code rate is 10–200 kHz,
the SNR is 0–20 dB, the frequency is 13–193 MHz, and the bandwidth of the radar signal
sweep is 10 MHz. A total of 1000 each of 11 single-signal models in the training set are
generated; 300 each of 19 two-signal aliasing models and 5 three-signal aliasing models are
generated, and the degree of aliasing is randomly generated within the range of 25–100%.
The tests focused on generating 100 signals of each type in each parameter condition for
eleven single-signal, ten two-signal aliasing models, four three-signal aliasing models, and
6 four-signal aliasing models (Table 3), with an SNR ranging from 0 to 20 dB in 4 dB steps,
and aliasing degrees of 0.25, 0.5, 0.75, and 1. Four-signal aliasing models included the aliasing
of both inter- and intra-class signals. The time-frequency pixel size of all the signals was set to
768 × 768 uniformly, and the wave-frequency pixel size was set to 2048 × 64.

Table 3. Modeling of various types of mixed signals.

Category of Data Overlapping Patterns Collection of Signals

Training set

Single-signal AM, 2ASK, 2FSK, 4FSK, BPSK, DQPSK, 8PSK,
16QAM, 32QAM, LFM, EQFM

Dual-signal

LFM + AM, LFM + 2ASK, LFM + 2FSK, LFM +
4FSK, LFM + BPSK, LFM + DQPSK, LFM + 8PSK,

LFM + 16QAM, LFM + 32QAM, EQFM + AM,
EQFM + 2ASK, EQFM + 2FSK, EQFM + 4FSK,

EQFM + BPSK, EQFM + DQPSK, EQFM + 8PSK,
EQFM + 16QAM, EQFM + 32QAM

Three-signal
EQFM + 16QAM + 32QAM, EQFM + 16QAM +

DQPSK, LFM + 2FSK + 4FSK, LFM + BPSK + 8PSK,
LFM + AM + 2ASK

Test set

Single-signal AM, 2ASK, 2FSK, 4FSK, BPSK, DQPSK, 8PSK,
16QAM, 32QAM, LFM, EQFM

Dual-signal

LFM + AM, EQFM + 2ASK, LFM + 2FSK, EQFM +
4FSK, LFM + BPSK, EQFM + DQPSK, EQFM +

8PSK, LFM + 16QAM, EQFM + 32QAM,
EQFM + LFM

Three-signal EQFM + 16QAM + 32QAM, LFM + 2FSK + 4FSK,
LFM + BPSK + 8PSK, EQFM + BPSK + DQPSK

Four-signal

EQFM + 4FSK + 8PSK + 32QAM, LFM + AM +
4FSK + 16QAM, BPSK + 2ASK + 8PSK + LFM,

BPSK + DQPSK + 2FSK + EQFM, EQFM + 16QAM
+ 32QAM + 4FSK, 16QAM + 2ASK + AM + LFM
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Once the dataset is created, it is necessary to label the images. The time-frequency
map of each component signal is labeled pixel by pixel and mapped to the time-frequency
map of the mixed signal. The pixels with overlapping component signals are uniformly
marked as “mix” and output as aliasing pixel labels.

5.2. Status of Network Training

The initial learning rate of the network was set to 0.001, and 400 rounds of training were
performed by the computer. The left graph in Figure 17 shows the trend of the loss values
with the training rounds under the time-frequency plot dataset, and the exemplary chart
indicates the direction of transformation of the loss values with the training rounds under
the wave-frequency plot dataset. The time-frequency plot has a loss value of 0.0150 at the
beginning of round 0, and the loss value drops to 0.0072 at the end of the round. When Epoch
= 244, the loss value is 0.0008, stabilizes, and reaches its minimum. The loss value of the
wave-frequency plot is 0.6193 at the beginning of round 0, and at the end, the loss value drops
to 0.4135. When Epoch = 323, the loss value is 0.0573, levels off, and reaches its minimum.
Therefore, the time-frequency domain network parameters are selected as Epoch = 244, and
the wave-frequency diagram network parameters are chosen as Epoch = 323.
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5.3. Analysis of Results
5.3.1. Analysis of Single-Signal Recognition Results

For the purpose of contrasting the efficacy of single-modal recognition with that of
multimodal recognition, this study conducted experiments on single signals at an SNR of 0
dB, 4 dB, 8 dB, 12 dB, 16 dB, and 20 dB. A corpus of 100 distinct single signals was generated
for each SNR level to evaluate the time-frequency pattern recognition and the fusion mode
recognition, respectively. The findings of these evaluations are documented in Table 4. The
data elucidated in Table 4 reveal that, under the single-modal feature set, the DQPSK signal
exhibited the lowest recognition rate when the SNR was at 0 dB, standing at a mere 16%.
This reduced performance is attributed to the propensity for its time-frequency domain
characteristics to be conflated with those of the BPSK, 8PSK, and 16QAM signals; however,
the time-frequency attributes of the other signals were sufficiently distinct, allowing for
their accurate identification. It is evident from the results that the recognition accuracy
for single signals progressively enhances as the SNR escalates. Notably, upon reaching an
SNR of 12 dB, the recognition accuracy for the test set of the single signals devised in this
study attained a perfect score of 100%. In the multimodal feature space, the recognition
rate for the DQPSK signal at an SNR of 0 dB was recorded at 99%, which constitutes an 83%
improvement over the single-modal test outcomes. In an overall assessment, the average
recognition rate for single signals was measured at 81.36% within the single-modal feature
context, in contrast to the 99.81% achieved under the multimodal feature framework. The
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juxtaposition of these methodologies unequivocally demonstrates that the multimodal
fusion strategy significantly augments the capability to recognize individual signals.

Table 4. Variation in recognition rate with SNR for single signal in time-frequency plot mode and
multimodal mode.

SNR 0 dB 4 dB 8 dB 12 dB

Recognition Mode SMF TRMM SMF TRMM SMF TRMM SMF TRMM

BPSK 100% 100% 100% 100% 100% 100% 100% 100%
8PSK 87.4% 100% 92.6% 100% 99.3% 100% 100% 100%
2FSK 71.1% 99.3% 83.4% 100% 97.8% 100% 100% 100%
4FSK 94.9% 100% 100% 100% 100% 100% 100% 100%

16QAM 82.7% 100% 96.0% 100% 99.1% 100% 100% 100%
32QAM 45.7% 100% 88.7% 100% 97.4% 100% 100% 100%
2ASK 100% 100% 100% 100% 100% 100% 100% 100%
AM 100% 100% 100% 100% 100% 100% 100% 100%

DQPSK 16.1% 99.1% 78.9% 100% 93.7% 100% 100% 100%
EQFM 100% 100% 100% 100% 100% 100% 100% 100%
LFM 100% 100% 100% 100% 100% 100% 100% 100%

5.3.2. Analysis of Dual-Signal Aliasing Model Identification Results

In order to verify the recognition effect of the TRMM method in the dual-signal time-
frequency aliasing model, this article simulates ten dual-signal aliasing models (Table 3). Each
model generates 100 aliased signals with aliasing degrees of 25%, 50%, 75%, and 100% under
the SNR of 0 dB, 4 dB, 8 dB, 12 dB, 16 dB, and 20 dB and then conducts recognition accuracy
tests of the aliased signals under the fusion mode. The test results are shown in Figure 18.
Figure 18a shows the results of the recognition rate test under multimodal features with 100%
of the aliasing degree. The lowest % recognition rate of 98% is achieved with the EQFM +
DQPSK, EQFM + 4FSK, EQFM + 32QAM, and EQFM + 8PSK models at the SNR of 0 dB.
Figure 18b shows the results of the recognition rate test under multimodal features at 75% of
aliasing, compared with the recognition results at 100% of aliasing; the recognition accuracy of
the EQFM + DQPSK model and LFM + 2FSK model is improved by 1% when the SNR is 0 dB,
and the recognition rate of the EQFM + 32QAM model is improved by 2%. Figure 18c,d show
the results of the recognition rate test under multimodal features when the mixing degree is
50% and 25%, and the recognition rate of the ten two-signal mixing models can reach 100%
when the SNR is higher than 0 dB under these two mixing degrees. An increase in the degree
of aliasing leads to a decrease in the recognition rate. However, the TRMM method can still
significantly improve the recognition accuracy of the two-signal aliasing models at a low SNR
and high degrees of aliasing.

5.3.3. Analysis of Three-Signal Aliasing Model Identification Results

In order to verify the recognition effect of the TRMM method in the three-signal
time-frequency aliasing model, this article simulates the three-signal aliasing model of four
kinds of signals (Table 3). Each model generates 100 aliasing signals with aliasing degrees
of 25%, 50%, 75%, and 100%, respectively, under an SNR of 0 dB, 4 dB, 8 dB, 12 dB, 16 dB,
and 20 dB to test the recognition accuracy of aliasing signals under the modal fusion mode.
The test results are shown in Table 5. The EQFM + 16QAM + 32QAM model has the lowest
% recognition rate of 98% when the SNR is 0 dB and the aliasing degree is 100%. With
the decrease in the aliasing degree and the increase in the SNR, the recognition rate of the
model increases. When the SNR is 0 dB, and the aliasing degree is 50%, the recognition
rate of the model can reach 100%. When the SNR is higher than 0 dB, the recognition
rate of the proposed model is 100% under different aliasing degrees. The LFM + 2FSK +
4FSK model has a high recognition rate, and the recognition rate can reach 100% under
different SNR and aliasing degrees. The recognition rate of the LFM + BPSK + 8PSK model
is 99% when the SNR is 0 dB, the aliasing degree is 100% and 75%, and the recognition rate



Sensors 2024, 24, 2558 18 of 23

increases to 100% when the SNR is 0 dB. The aliasing degree is 50% and 25%. When the
SNR is higher than 0 dB, the recognition rate of the proposed model is 100% under different
aliasing degrees. The recognition rate of the EQFM + BPSK + DQPSK model is 98% when
the SNR is 0 dB and the aliasing degree is 100%. When the SNR is 0 dB, and the aliasing
degree is 50%, the recognition rate is increased to 100%. When the SNR is higher than
0 dB, the recognition rate of the proposed model is 100% under different aliasing degrees.
The experimental results show that the lowest recognition rate of the three-signal aliasing
model can reach 98%, even when the SNR is 0 dB, and the aliasing degree is 100%.
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Figure 18. Trend of recognition accuracy of dual signals in multimodal mode with SNR at different
aliasing degrees ((a). trend of recognition accuracy versus SNR for dual signals in multimodal mode
with 25% overlap; (b). the trend of recognition accuracy versus SNR for dual signals in multimodal
mode with 50% overlap; (c). the trend of recognition accuracy versus SNR for dual signals in
multimodal mode with 75% overlap; (d). the trend of recognition accuracy versus SNR for dual
signals in multimodal mode with 100% overlap).

Table 5. Variation in recognition rate of the three-signal aliasing model under different aliasing
degrees with the SNR.

Mf 25% 50% 75% 100%
SNR 0 dB 4 dB 0 dB 4 dB 0 dB 4 dB 0 dB 4 dB

EQFM + 16QAM + 32QAM 100% 100% 100% 100% 99% 100% 98% 100%
LFM + 2FSK + 4FSK 100% 100% 100% 100% 100% 100% 100% 100%
LFM + BPSK + 8PSK 100% 100% 100% 100% 99% 100% 99% 100%

EQFM + BPSK + DQPSK 100% 100% 100% 100% 100% 100% 99% 100%
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5.3.4. Analysis of Four-Signal Aliasing Model Identification Results

In order to further verify the recognition effect of the TRMM method in the four-signal
aliasing model, this article simulates six four-signal aliasing models (Table 3). Each model
generates 100 aliased signals with aliasing degrees of 25%, 50%, 75%, and 100% under the
SNR of 0 dB, 4 dB, 8 dB, 12 dB, 16 dB, and 20 dB, respectively. In the recognition results of
the four-signal aliasing model, the TRMM effectively corrects the error of unimodal feature
recognition, as exemplified by the BPSK + DQPSK + 2FSK + EQFM model. The 8PSK +
32QAM + 4FSK + EQFM model have been shown in Figure 19. In the figure, the input
image picture is the time-frequency diagram of the aliased signal, the label mask picture
is the label, the stft seg picture is the recognition result of the time-frequency diagram
unimodal network, and the result seg picture is the recognition result of the fusion network.
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Figure 19. Examples of the recognition results of the TRMM method ((a): BPSK + DQPSK + 8PSK + 

EQFM; (b): 8PSK + 32QAM + 4FSK + EQFM). 

In Figure 19a, the time-frequency unimodal network identifies the DQPSK signal 

(represented by the color cyan) as an 8PSK signal (represented by the color grey). In Figure 
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the color red) as a BPSK signal (represented by the color pink). In the TRMM, after 

weighting the results of the identification of the time-frequency features according to the 

Figure 19. Examples of the recognition results of the TRMM method ((a): BPSK + DQPSK + 8PSK +
EQFM; (b): 8PSK + 32QAM + 4FSK + EQFM).

In Figure 19a, the time-frequency unimodal network identifies the DQPSK signal
(represented by the color cyan) as an 8PSK signal (represented by the color grey). In
Figure 19b, the time-frequency unimodal network identifies the 32QAM signal (represented
by the color red) as a BPSK signal (represented by the color pink). In the TRMM, after
weighting the results of the identification of the time-frequency features according to
the results of the identification of the wave-frequency features, the correct classification
was achieved.

The test results of the four-signal aliasing model in the test set under different degrees
of aliasing are statistically shown in Figure 20. It can be seen that the recognition rate of
the aliased signals decreases with the increase in the degree of aliasing. The Figure 20e
model has the lowest recognition rate at an SNR of 0 dB and a 100% aliasing degree, with a
recognition rate of 97.3%. When the SNR is greater than 4 dB, the recognition rate of all
four-signal aliasing models can reach 100%.
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Figure 20. Comparison of recognition rates of four-signal aliasing models ((a). 8PSK + 32QAM +
4FSK + EQFM model recognition rate variation graph; (b). 16QAM + 2ASK + AM + LFM model
recognition rate variation graph; (c). 16QAM + 4FSK + AM + LFM model recognition rate variation
graph; (d). 16QAM + 32QAM + 4FSK + EQFM model recognition rate variation graph; (e). BPSK+
DQPSK + 8PSK + LFM model recognition rate variation graph; (f). BPSK + 4FSK + 2FSK + EQFM
model recognition rate variation graph).

5.3.5. Comparison of Recognition Performance of Different Algorithms

In order to further verify the performance of the TRMM method in dual-signal model
recognition, Table 6 compares the recognition performance of the dual-signal aliasing
model at an SNR of 0 dB. Table 6 shows that the recognition rates of Refs. [13,20] show a
decreasing trend with a significant increase in the degree of blending. When M f > 50%,
the recognition rate decreases sharply. This is because the signal’s length constrains the
loop accumulation estimation in [20], and Ref. [13] trains the DCNN network with one
modal feature of a single signal. The results are directly output by the network without any
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optimization. The DCNN network is suitable for processing data with a spatial structure,
while U-Net is a network architecture designed for image segmentation tasks. In the
processing of feature maps, U-Net is obviously more suitable. The recognition rate of the
TRMM method is less affected by the degree of aliasing, and the average recognition rate
still reaches 99% when M f = 100% and the SNR is 0dB.

Table 6. The average recognition rate of different algorithms for dual-signal aliasing model under
different aliasing degrees.

Algorithm Name Mf=25% Mf=50% Mf=75% Mf=100%

Ref. [20] 98.56% 93.41% 28.28% 14.55%
Ref. [13] 96.17% 71.17% 57.33% 47.17%
TRMM 100% 100% 99.7% 99.1%

In order to further validate the performance of the TRMM method in the intra-class
recognition of the three-signal mashup model, a comparison of the recognition performance
of the three-signal mashup model at an SNR of 0 dB is given in Table 7. Ref. [21] maps the
features to a high-dimensional space. It seeks the optimal classification hyperplane using a
support vector machine to achieve signal recognition, but it usually applies to small sample
datasets. Table 7 shows that the TRMM method still maintains a high recognition rate in
intra-class signal recognition for the three-signal aliasing model.

Table 7. Average recognition rates of different algorithms for the three-signal overlapping model
with different degrees of overlapping.

Algorithm Name Mf=25% Mf=50% Mf=75% Mf=100%

Ref. [21] 95.48% 93.375% 92.35% 92.17%
TRMM 100% 100% 99% 99.5%

Table 8 compares the intra-class signal recognition performance of the four-signal
aliasing models at an SNR of 0 dB. Ref. [14] uses the Seg-Net network to extract the
time-frequency map features. Although Seg-Net is also a network architecture for image
segmentation tasks, its encoder–decoder structure does not have skip connection layers
and cannot capture features at different scales. The algorithm proposed in this chapter not
only uses the U-Net network to capture and fuse multi-scale features, but also selects the
time-frequency map and wave-frequency map as the feature input, which enhances the
network’s understanding of signal features and further improves the segmentation accuracy.
Compared with other methods, the method in this article still has a high recognition rate
after adding the signal aliasing model.

Table 8. Average recognition rates of different algorithms for the four-signal aliasing model at
different aliasing degrees.

Algorithm Name Mf=25% Mf=50% Mf=75% Mf=100%

Ref. [13] 92%
Ref. [14] 98.97% 98.8% 98.13% 98.01%
TRMM 99.25% 98.88% 98.55% 98.08%

6. Conclusions

Addressing the issue of the weak representation capabilities of unimodal features in
time-frequency graphs, which hinders the full exploitation of homogeneous or heterogeneous
data features and leads to a low recognition rate of intra-class signals, this article proposes the
TRMM method. The TRMM method introduces wave-frequency graphs into signal features
and utilizes multimodal feature fusion to identify potential correlations among multimodal
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features, maintain correlation constraints, significantly enhance the learning capability and
generalization ability of the network, and effectively distinguish eleven types of single signals
and twenty types of mixed signals. In summary, the main contributions of the TRMM
method lie in its innovative multimodal feature fusion technology and the introduction of
wave-frequency graph features, which significantly improve the recognition accuracy of the
time-frequency mixed signals. The simulation results show that the proposed method has a
better classification ability than other unimodal networks; at an SNR of 0 dB and a mixing
degree of 100%, the average recognition accuracy of the time-frequency mixed signals can
reach at least 98%. However, further research is needed to improve the recognition rate for
signals with different powers and time-frequency mixed signals.
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