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Abstract: In diverse realms of research, such as holographic optical tweezer mechanical measure-
ments, colloidal particle motion state examinations, cell tracking, and drug delivery, the localization
and analysis of particle motion command paramount significance. Algorithms ranging from con-
ventional numerical methods to advanced deep-learning networks mark substantial strides in the
sphere of particle orientation analysis. However, the need for datasets has hindered the application
of deep learning in particle tracking. In this work, we elucidated an efficacious methodology pivoted
toward generating synthetic datasets conducive to this domain that resonates with robustness and
precision when applied to real-world data of tracking 3D particles. We developed a 3D real-time
particle positioning network based on the CenterNet network. After conducting experiments, our
network has achieved a horizontal positioning error of 0.0478 µm and a z-axis positioning error of
0.1990 µm. It shows the capability to handle real-time tracking of particles, diverse in dimensions,
near the focal plane with high precision. In addition, we have rendered all datasets cultivated during
this investigation accessible.

Keywords: particle tracking; wide-field microscopy; deep learning; image visualization

1. Introduction

Particle tracking serves as an effective approach to measuring and scrutinizing the
motion of tiny objects, ranging from single molecules to cells. It finds wide-ranging
applications in various fields, such as colloid physics, medical treatments, biological science,
pharmaceutical research, and cellular behavior studies. For instance, it can be applied to
particle tracking in holographic optical tweezers to derive the Mean Squared Displacement
(MSD) curve, calibrate the optical stiffness [1,2], or analyze the movements of self-propelled
particles [3]. In the field of biological sciences, particle localization is a technique used to
observe the invasion process of viruses into cells [4,5] and analyze the diffusion dynamics
of nanoparticles near cell membranes [6]. Meanwhile, it is also possible to count bacterial
colonies using particle localization [7]. When it comes to drug applications, the reliability
of carriers can be assessed by conducting a direct tracking of these carriers [8].

Traditional numerical calculation methods have demonstrated notable effectiveness in
the domain of particle tracking [9–12]. Research by Parthasarathy et al. [9] has revealed
that the imaging particle’s intensity is radially symmetric around its center. Based on
this principle, they designed a rapid and precise particle tracking algorithm capable of
sub-pixel positioning accuracy. Similarly, Kashkanova, A.D. et al. [10] introduced an
image transformation technique to accentuate features possessing a high degree of radial
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symmetry. However, traditional numerical calculations come with numerous drawbacks,
such as heavy computational demands, the inability to track multi-particles simultaneously,
and the requirement for pre-set parameters. To overcome these challenges, researchers
have begun to merge deep learning with particle localization, developing several high-
performing tracking algorithms. Using Mie scattering theory to fit holograms is a common
method for obtaining the three-dimensional information of particles. However, this method
involves high computation and can only calculate the information for one particle at a time.
More details can be found in Supplementary Materials.

Common object detection networks encompass R-CNN [13], Mask-RCNN [14],
YoLov1 ~YoLov7 [15,16], Fast re-OBJ [17], CenterNet [18], or Siamese network [19]. For
example, Suljagic, H. and Bayraktar, E. et al. [19] innovatively proposed a similarity-based
person re-id framework with higher accuracy, fewer ID switches, and false positive and
negative rates, called SAT. Altman, L.E. and Grier, D.G. et al. [20,21] devised a 3D particle
tracking network rooted in YoLo, capable of achieving high-precision particle localization.
Shao, S. et al. [22] designed a convolutional neural network following the U-net architecture
to facilitate particle localization. Additionally, Midtvedt, B. et al. [23] introduced a con-
volutional neural network called WAC-NET, which achieves high accuracy in calculating
particle size and refractive index values using two orders of magnitude less data than the
standard method.

Nearly every method encounters the challenge of non-existent datasets and the com-
plexity of optical systems. To address this issue, we chose wide-field illumination instead
of a well-coherent laser source and developed a simple and efficient method for generating
datasets. Acquiring holograms using wide-field illumination offers several advantages over
those obtained via single-wavelength irradiation. It is more straightforward to operate and
capable of distinguishing between particles located above and below the focus, which is
hard to realize using a single-wavelength laser source [24]. Meanwhile, a single-wavelength
laser source can generate strong interference, which is why many researchers use a system
based on a well-coherent laser source to do the tracking. Such a system can perform well
when the observing environment is ideal. However, such properties also magnify the
structural defects of devices. For example, if we want to track particles in microchannels
(channel sizes ranging from several micrometers to hundreds of micrometers) to analyze
the drug delivery process, Casimir force measurements, group behavior of multi-particles,
the tiny structure of microchannels, and the defects inside will affect the accuracy of parti-
cle tracking by adding unnecessary interference noise to the background generated by a
laser source, which is inevitable during the process and limits the tracking performance.
However, wide-field illumination will significantly reduce background noise, expanding
the application scenarios of our system.

Furthermore, datasets serve as integral components of network training. However,
most relevant works neither detail the processing of datasets nor disclose the datasets.
Hence, this paper presents a straightforward, efficient, and low-cost 3D multi-particle
tracking system. We used artificial datasets to train networks and then applied such
networks to real-world situations. We have provided a detailed description of the dataset
creation process, which effectively fills a gap in this field regarding dataset creation.

Furthermore, experimental findings have confirmed that networks trained on synthetic
datasets maintain their effectiveness when applied to real data. Obtaining a large-scale
dataset with accurate and detailed annotations takes time and effort, although our proposed
method is simple and provides an effective solution.

Drawing inspiration from the CenterNet network, we approached particle localization
as a unique application for keypoint detection and integrated the concept of a Feature
Pyramid Network (FPN) [25] to propose a novel 3D localization network. Research findings
demonstrate that this network has the capability to achieve real-time sub-micron-level
planar positioning accuracy and axial positioning accuracy on both artificial and real
datasets. Figure 1a depicts the workflow for analyzing particle holography using deep
learning. The results from the trained network involve heat maps, offset maps, and depth
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maps. Utilizing heat maps and offset maps makes it feasible to calculate the horizontal
position of particles in each image (Figure 1b).
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Figure 1. (a) Schematic representation of particle holograms analyzed using deep learning (Red
square: Big particle; Blue square: Small particle). (b) Illustrated description of calculating parti-
cles’ centers.

2. Methodology
2.1. Production of Datasets

To facilitate the training of this network, we necessitated the preparation of a substan-
tial quantity of data generated via the aforementioned optical tracking device. Manually
labeling a significant volume of images and individually locating each particle proved
challenging and time-consuming. The method we propose to make datasets solves this
problem well.

A critical element of this process was the calibrating of each particle. Low labeling
accuracy affects the predictive capabilities and the convergence of the network during
training. In this experiment, we employed a high-precision stage to calibrate the particles at
each location and capture the feature images. Given that the polystyrene beads with radii
1-µm and 2-µm were affixed to the cover glass, we could effectively discount movement
around the coordinates attributable to Brownian motion. We scanned the beads from 10 µm
below to above the focal plane along the z-axis, subdividing the distance into an average of
400 segments, each measuring 50 nm.

We then captured the feature images of 1-µm and 2-µm beads at each position
(Figure 2a). Following this procedure, we could calibrate 800 images of beads at differing
positions. As shown in Figure 2b, as each feature image contained only one object, there
were virtually no instances of inaccurate localization [9,10]. The images were randomly
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spliced into one image (Figure 2e) [26]. The difference between the synthesized and original
images is random, which does not mislead the network to make incorrect judgments during
the training process (Figure 2d). This approach enabled us to generate many bead images,
each with well-calibrated data in the x, y, and z positions. The images in Figure 2c show
some synthetic images.
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Figure 2. Schematic diagram of the process of creating artificial datasets. (a) Experimental images
with different depths. The red and blue boxes indicate the small and large beads, respectively.
(b) Feature images at different depths, with the red and blue boxes representing the small and large
beads. The focal plane is at 50 µm. (c) Multiple particles with different depths in a synthetic image.
(d) Comparison between artificial and original images, showing small differences characterized by
randomization. (e) Schematic overview of the image fusion process.

2.2. Structure of the Network

Deep learning plays a crucial role in the field of object detection. Not only have
researchers proposed numerous excellent network architectures, but they have also intro-
duced innovative algorithms such as Single Shot MultiBox Detector (SSD) [27] and Feature
Pyramid Network (FPN). In Figure 3a, the flowchart of our network is presented. As our
network is built upon the concept of the CenterNet network, for convenience, we refer
to our network as CenterXFNet. Our network consists of three primary components: the
Backbone; Neck; and Head modules.

For the Backbone network, we have selected Resnet50, a widely used and well-
established choice among backbone networks. The Neck module primarily serves the
purpose of information fusion. While a conventional CenterNet network performs only
three standard upsampling operations during the Neck phase, our images have distinct
characteristics with softly blurred edges in the particle pattern and a subtle difference
between the images at varying depths. Softly blurred edges can make localization more
difficult. Minor differences between images of different depths can cause the network’s
depth prediction difficulties. These characteristics necessitate a better approach to blend-
ing our features. Our proposed Neck module draws concepts from the principles of
FPN, as illustrated in Figure 3a. The Neck module mainly comprises several ELAN and
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SPP + CSP modules [16], as shown in Figure 3b,c. Tables 1 and 2 show the relevant parame-
ter settings in the Neck module. This methodology significantly enhances the informational
density of the subsequent features. Moreover, this module can also be integrated into other
network architectures, potentially improving their performance in object detection and
localization tasks.
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Figure 3. Schematic overview of the Estimator network. (a) Schematic diagram of network flow. A
hologram is scaled to a standard size of 1024 pixels×1024 pixels before being fed into the network.
(b,c) The schema of ELAN and SPP + CSP; 1 × 1 and 3 × 3 means the size of the convolution kernel;
c1 and c2 mean channel amount of feature maps.

Table 1. Detailed parameters of SPP + CSP module (CenterXFNet-Resnet50).

IDX C1 C2 In_Size Out_Size In_Channel Out_Channel

SPP + CSP 1 2048 256 (32,32) (32,32) 2048 256
SPP + CSP 2 1024 256 (64,64) (64,64) 1024 256
SPP + CSP 3 512 128 (128,128) (128,128) 512 128

Table 2. Detailed parameters of ELAN module (CenterXFNet-Resnet50).

IDX C1 C2 In_Size Out_Size In_Channel Out_Channel

ELAN 1 256 512 (64,64) (64,64) 256 256
ELAN 2 128 256 (128,128) (128,128) 128 128
ELAN 3 64 128 (256,256) (256,256) 64 64

3. Experimental Methods
3.1. Sample Preparation

We chose 1-µm and 2-µm polystyrene beads to prepare the standard calibration
solution. We centrifuged (1200 rpm) the beads and transferred them into a sodium chloride
solution (1 M). We proceeded by depositing 120 µL of this solution into the spacer, which
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was then placed in an oven (70 ◦C) overnight. This process was designed to ensure the
beads would adhere to the surface of the cover glass. Following this, we thoroughly and
gently cleaned the cover glass to eliminate any beads that had not bonded. Finally, we
filled the spacer with deionized water and carefully sealed it.

3.2. Tracking System Setup

We chose wide-field illumination (Figure 4) to generate the dataset. A nano piezo
z-stage (MCL) used in conjunction with the x − y stage (Nikon) calibrates the spatial
coordinates. Given the precise accuracy requirement along the z-axis, each step measures
50 nm along this axis and 1 µm in the x− y plane. Movement is regulated by a PC-controlled
stage, and a camera (Basler acA5472-17µmMED) captures several images at each position
for calibration. Then, the video is processed by a PC to track multi-particle 3D positions in
real time. The tracking software used in the experiments is self-developed.
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4. Training and Evaluation

We created a dataset comprising 12,000 images to train the network, utilizing our
innovative data production method. This training dataset consisted of 8400 images, while
the evaluation dataset contained 3600 images. This dataset included two distinct types of
particles with radii measuring 1 µm and 2 µm, positioned along the z-axis within a range of
+10 µm to −10 µm from the focal plane. The image size varied between 950 and 1050 pixels,
with each pixel approximately corresponding to a scale of 23.3 nm.

We utilized two types of test datasets: artificial; and real datasets. The artificial dataset
comprised 3352 targets generated using the same method as the training dataset. On the
other hand, the real dataset consisted of 2976 objects captured by the microscope during
the experiment. For further training details, please refer to the Supplementary Materials.

5. Results
5.1. Data Tracking Analysis

We evaluated the performance of our network using both artificial and real test
datasets, and the corresponding results are presented in Figure 5. All three networks can
achieve sub-micron-level positioning accuracy, whether on artificial or natural datasets.
Specifically, the CenterNet network outperforms the CenterXFNet network on the artificial
dataset, with the best horizontal and vertical positioning accuracies recorded at 0.0512 µm
and 0.1740 µm, respectively. Meanwhile, the CenterXFNet-ResNet50 network exhibits
significantly superior positioning capability on the real dataset compared to the other
two networks, with the best horizontal and vertical positioning accuracies measured at
0.0478 µm and 0.1990 µm, respectively (Figure 5a). There are substantial disparities between
natural and artificial data, which accounts for the differing positioning performance of the
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networks across the two datasets. The exceptional performance of the CenterXFNet on the
real dataset suggests that, in contrast with the traditional CenterNet network, our proposed
network has assimilated more genuinely advantageous features for particle positioning
during the training process rather than merely focusing on the ineffectual features present
in the artificial dataset.
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distributions in (b) real and (c) synthetic test datasets, respectively.

Figure 5a illustrates particle size’s significant impact on positioning accuracy, particu-
larly in the vertical direction. The network exhibits higher prediction accuracy for larger
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particles than small particles. This result is logical, as achieving precise positioning for
small objects is a significant challenge in object detection.

Figure 5b,c shows the distribution of three-dimensional horizontal and vertical errors
in the natural and synthetic test datasets. Additionally, it is worth emphasizing that
their depth does not significantly affect the accuracy of predicting particles. In most
research papers, obtaining depth information for particles above or below the focal plane
is challenging, as the particle patterns observed in other experiments show no significant
differences. However, the wide-field illumination technique we employed enables us to
observe the differences between these particle patterns easily.

Figure 6a displays the performance of CenterXFNet-Resnet50. This network demon-
strates outstanding positioning capability in both artificial and natural images. The particle
tracking video can be found in the referenced document (Video S1) for a more comprehen-
sive understanding.
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Figure 6. (a) The location result of CenterXFNet-ResNet50. Smaller images are synthetic images, and
bigger images are experimental images. (b) Comparative results of CenterXFNet and Mask-RCNN.
Localization results on real and synthetic datasets based on (c) Mask-RCNN-ResNet50 (200 epochs)
and (d) CenterXFNet-ResNet50 (200 epochs), respectively. (Red circle: Small particle; Blue circle:
Big particle).

We also compared the CenterXFNet network with the Mask-RCNN network. We
trained the CenterXFNet network and the Mask-RCNN network for 200 epochs separately.
Figure 6b shows the comparative results of the two networks on the artificial dataset. Mask-
RCNN demonstrates higher vertical prediction accuracy than the CenterXFNet network.
However, the horizontal positioning capability is the opposite (Figure 6b). However, Mask-
RCNN’s positioning ability on the real dataset is so poor that we cannot evaluate the
network’s positioning ability on the real dataset (Figure 6c,d). We believe that similar to
the traditional CenterNet, Mask-RCNN has been misled by irrelevant information in the
artificial dataset during the learning process and has failed to learn the correct features.
This further indicates that the CenterXFNet we proposed has superior feature learning
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capabilities. Additionally, the Mask-RCNN network makes it hard to meet real-time
detection requirements.

To verify the reliability and reproducibility of our network, we have conducted a series
of experiments (Tables 3 and 4). In the horizontal direction, the positioning performance of
the CenterXFNet network (without ELAN) shows better results (Table 3). However, the
CenterXFNet network demonstrates more accurate localization capabilities in the vertical
direction, especially for big particles (Table 4). The SPP + CSP and ELAN modules play
different roles in predicting the three-dimensional information of beads. The ELAN module
plays a very positive role in predicting the horizontal position of beads. However, the SPP
+ CSP and ELAN modules are essential for z-axis prediction. In our application, we value
inference ability more in the vertical direction, so we chose to combine two modules.

Table 3. Horizontal localization accuracy on different training parameters and network structures.

Input_Size Epoch SPP + CSP ELAN Error (Big)
(µm)

Error (Small)
(µm)

Error (Total)
(µm)

(1024,1024) 400 P P 0.0438 ± 0.43 × 10−3 0.0496 ± 0.18 × 10−3 0.0478 ± 0.79 × 10−3

(512,512) 400 P P 0.0468 ± 0.41 × 10−3 0.0531 ± 0.44 × 10−3 0.0510 ± 0.25 × 10−3

(1024,1024) 200 P P 0.0581 ± 0.36 × 10−3 0.0549 ± 0.33 × 10−3 0.0557 ± 0.20 × 10−3

(1024,1024) 400 O 1 P 0.0428 ± 0.36 × 10−3 0.0478 ± 0.39 × 10−3 0.0462 ± 0.31 × 10−3

(1024,1024) 400 P O 2 0.0432 ± 0.31 × 10−3 0.0464 ± 0.36 × 10−3 0.0454 ± 0.25 × 10−3

1 Replace SPP + CSP block with a Conv2d + BN + ReLu block. 2 Replace ELAN block with a Conv2d + BN + ReLu
block.

Table 4. Vertical localization accuracy on different training parameters and network structures.

Input_Size Epoch SPP + CSP ELAN Error (Big)
(µm)

Error (Small)
(µm)

Error (Total)
(µm)

(1024,1024) 400 P P 0.1293 ± 0.16 × 10−2 0.2322 ± 0.62 × 10−2 0.1988 ± 0.23 × 10−3

(512,512) 400 P P 0.2134 ± 0.32 × 10−2 0.4332 ± 0.14 × 10−1 0.3599 ± 0.10 × 10−1

(1024,1024) 200 P P 0.1756 ± 0.44 × 10−2 0.3247 ± 0.77 × 10−2 0.2880 ± 0.69 × 10−2

(1024,1024) 400 O P 0.1764 ± 0.29 × 10−2 0.2154 ± 0.50 × 10−2 0.2029 ± 0.42 × 10−2

(1024,1024) 400 P O 0.1543 ± 0.38 × 10−2 0.2411 ± 0.64 × 10−2 0.2135 ± 0.48 × 10−2

5.2. Real-Time Tracking

We implemented the trained network for real-time tracking and compared its perfor-
mance on both large and small particles (Figure 7). To test the tracking system’s perfor-
mance, the high-density particle mixture solution was allowed to settle within spacers for
an adequate amount of time, causing the particles to deposit near the bottom of the cover
glass and then stick to the cover glass surface. In this way, it can be considered that the
unique displacement of the stage is the same as that of the beads, excluding the influence of
the Brownian motion of the bead itself. We subsequently manipulated the electronic stage
to different heights at −5 µm, −1 µm, 0 µm, 1 µm, 5 µm, and 10 µm (relative to the focal
plane) and conducted real-time tracking to assess the system’s reliability by comparing the
tracking results along the z-axis and the movements of the stage.

Figure 7b–d shows the tracking results of three different networks. It is pretty evident
that the CenterXFNet-ResNet50 network is the best at what it achieves, and most of the
relative tracking data of bead movements fall within a range of less than 10% of the bead
size itself, spanning from −5 µm to 10 µm. We need to note that in the extensive particle
real-time tracking experiments, the particle prediction results fluctuated because of the
occurrence of particle collisions. In most cases, the networks with our proposed structure
added in the Neck phase showed better predictions than the original networks. Comparison
results can be found in Figures S3 and S4.
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Figure 7. (a) Hologram of a big particle (4-µm PS bead) and small particle (2-µm PS bead). The depth
positions of the particles are in order from left to right, from the above to the beneath of the focal plane.
Real-time tracking and the tracking data distribution along the z-axis for (b) CenterXFNet-ResNet50,
(c) CenterXFNet-ResNet101, and (d) CenterXFNet-DLA34, respectively. The left column shows the
tracking results for the big particle. The right column is the tracking result of the small particle.

6. Conclusions

In our network, we incorporate the concept of key point detection, achieving sub-
micron precision in both horizontal position and vertical depth positioning. This network
is designed as an end-to-end system with a simplified architecture, which facilitates de-
bugging and enhancement. We propose a method for dataset generation that is both rapid
and straightforward. Meanwhile, we propose using wide-field illumination instead of
single-wavelength illumination, which reduces costs and decreases noise, expanding the
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applicability of our method. Importantly, we demonstrate that networks trained on these
synthetically produced datasets are also effective when applied to real data and real-time
tracking, which can give guidance in colloid biophysics and drug delivery research in
medical treatment.

Utilizing the Mie scattering theorem to obtain three-dimensional position information
of particles presents several drawbacks, including significant computational complexity,
the inability to simultaneously track multiple particles, and the necessity for predefined
parameters [28]. In contrast, our proposed algorithm enables real-time multi-particle track-
ing without prior knowledge. The successful implementation of our algorithm implies the
necessity to reassess the application of the Mie scattering theorem. Furthermore, it inspires
us to explore the potential integration of deep learning with other fields. For instance,
applying the Rayleigh–Sommerfeld formula for light field reconstruction requires high
computational complexity and requires us to filter the optimal target points artificially [28].
This encourages us to investigate whether deep-learning methods can effectively address
these limitations and expand their application scope.

At present, our network is capable of detecting spherical particles. However, with
the appropriate training, the detector can accurately position particles of other shapes,
including rods, cones, or irregular shapes.

A large-scale dataset with accurate and detailed calibration information is indispens-
able to address the above-mentioned issue. However, obtaining such image data is very
troublesome and challenging. In the absence of a large-scale dataset, we should consider
employing unsupervised learning methods to broaden the applicability of the locator to
various scenarios. The emergence of large-scale networks such as CLIP [29] also opens the
possibility of utilizing one-shot learning methods and few-shot learning methods. Our
network’s simplicity allows for more optimization potential to achieve higher precision in
particle positioning. Moreover, further simplifying and deploying the network to an Edge
Computing Device could significantly enhance its efficiency.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/s24082583/s1, Note S1: Mie scattering theory; Note S2: Evaluation
Metrics; Table S1: Training parameter setting (CenterXFNet-ResNet50); Figure S1: Statistics of the
number of particles at different depths in the data set; Figure S2: Statistical graph of the number
of particles of different sizes in the dataset; Figure S3: Comparison results of DLA34; Figure S4:
Comparison results of ResNet101; Video S1: Multi-particle in Real Time.
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