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Abstract: Teaching gesture recognition is a technique used to recognize the hand movements of
teachers in classroom teaching scenarios. This technology is widely used in education, including for
classroom teaching evaluation, enhancing online teaching, and assisting special education. However,
current research on gesture recognition in teaching mainly focuses on detecting the static gestures of
individual students and analyzing their classroom behavior. To analyze the teacher’s gestures and
mitigate the difficulty of single-target dynamic gesture recognition in multi-person teaching scenarios,
this paper proposes skeleton-based teaching gesture recognition (ST-TGR), which learns through
spatio-temporal representation. This method mainly uses the human pose estimation technique
RTMPose to extract the coordinates of the keypoints of the teacher’s skeleton and then inputs
the recognized sequence of the teacher’s skeleton into the MoGRU action recognition network for
classifying gesture actions. The MoGRU action recognition module mainly learns the spatio-temporal
representation of target actions by stacking a multi-scale bidirectional gated recurrent unit (BiGRU)
and using improved attention mechanism modules. To validate the generalization of the action
recognition network model, we conducted comparative experiments on datasets including NTU
RGB+D 60, UT-Kinect Action3D, SBU Kinect Interaction, and Florence 3D. The results indicate that,
compared with most existing baseline models, the model proposed in this article exhibits better
performance in recognition accuracy and speed.

Keywords: classroom scenario; teaching gesture; pose estimation; action recognition

1. Introduction

Teaching gestures, as a non-verbal teaching behavior, play an important role in the
classroom [1], and gesture recognition technology can promote the application of teaching
gestures in education and teaching [2]. For example, teaching gesture recognition can
be used for classroom teaching evaluation, which can then assist teacher training. By
analyzing the teaching gestures of excellent teachers, feedback and suggestions can be
provided to other young teachers, helping them improve their teaching methods [3]. At
the same time, gesture recognition can help create a richer and more interactive learning
experience in online teaching environments [4]. For special education, such as students
with hearing impairments, gesture recognition can also be used to identify and learn sign
language [5,6]. Teaching gesture recognition brings many possibilities to education by
improving teaching quality and enhancing student learning experience.

In recent years, the gesture recognition task, a noteworthy and highly challenging research
topic in computer vision, has ignited the attention and discussion of many researchers [7]. How
to extend the current gesture recognition technology to classroom teaching has aroused in-depth
research in academia and industry. Specifically, gesture recognition leveraging computer vision
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can be categorized into two types: static gesture recognition and dynamic gesture recognition. The
subject of static gesture recognition is the gesture image at a certain moment, and its recognition
results are closely related to the appearance features of the hand in the image, such as contour,
position, and texture [8]. The subject of dynamic gesture recognition is a sequence of images over
a continuous period, and its recognition results are related to the appearance characteristics of
the hand in the image, as well as the time series characteristics that depict the hand’s motion
trajectory in the sequence [9]. In comparison with static gestures, dynamic gestures have richer
diversity, practicality, and expressiveness. For the research on gesture recognition for classroom
teachers, utilizing dynamic gesture recognition methods is also more effective.

Early traditional research on gesture recognition primarily focused on static gesture
actions collected at close range. This involved first extracting the hand area of the target
from the video frame image, then using manually extracted features and feature encoding
methods to obtain hand region information in images [10], and finally classifying ges-
ture actions through hand feature information [11]. The most common gesture detection
methods incorporate hand-based skin color, shape, pixel values, 3D models, and motion
features. However, these methods are susceptible to changes in lighting, skin color differ-
ences, background interference, natural changes, and self-occlusion of fingers, as shown in
Figure 1, resulting in unsatisfactory detection results and slow computation speeds, in-
troducing challenges to meeting real-time requirements in practical applications. With the
advancement of deep learning, hand pose detectors based on deep learning are gradually
gaining a mainstream position [12]. In comparison with manual feature extraction detec-
tion, this method exhibits better recognition efficiency and generalization ability. However,
the current application of gesture recognition research in classroom teaching primarily
focuses on the student level, inferring their classroom behavior by integrating their static
posture information and overlooking the potential impact of teaching gesture actions on
classroom teaching behavior [13].

Color inference Object occlusion

Figure 1. Difficulties in extracting human keypoints and the detection result of the pose estimation
model used in this paper.

The main contributions of this paper are as follows:

(i) To mitigate the difficulty of single-target dynamic gesture recognition in multi-person
scenarios, we propose a gesture recognition algorithm based on skeleton keypoints.
Our method mainly extracts the skeleton keypoint coordinates of the target through
human pose estimation technology and then inputs information sequences of different
scales into subsequent gesture recognition modules for gesture action classification.

(ii) A simple and efficient action recognition network module MoGRU is proposed in
this paper, which integrates multi-scale bidirectional GRU modules and improved
attention mechanism modules. It can achieve good action classification performance
on different benchmark action datasets when only using target skeletal information, es-
pecially when dealing with small sample datasets. In addition, this module has a good
balance between recognition speed and recognition accuracy, bringing possibilities for
practical applications.
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(iii) To promote the application of gesture recognition in teaching, this article constructs
a teaching gesture action dataset (TGAD) based on a real classroom teaching sce-
nario, which includes four types of teaching gesture actions from different perspec-
tives, totaling 400 samples. After model testing, our proposed method can achieve
93.5% recognition accuracy on this dataset.

The remaining part of this article is structured as follows: Section 2 reviews the relevant
literature. Section 3 introduces the teaching gesture action recognition algorithm based on
the skeletal keypoints proposed in this paper. Section 4 displays the experimental process
and analysis results of the algorithm. Section 5 summarizes this article.

2. Related Work

In this section, we reviewed the relevant work on methods involved in gesture recog-
nition based on skeletal keypoints. The main content encompasses three parts: skeleton-
based action recognition, 2D multi-person pose estimation, and the incorporation of the
attention mechanism.

2.1. Skeleton-Based Action Recognition

The main task of action recognition is to recognize human behavior and behaviors
in videos. Action recognition methods based on deep learning can be divided into two
categories: skeleton-based and video-based, depending on whether human keypoints are
initially detected. This section will focus on current action recognition algorithms that are
related to the skeleton-based category. At present, deep learning-based methods can be
roughly divided into three subcategories according to the different network structures of
the model: recurrent neural networks (RNNs), convolutional neural networks (CNNs), and
graph convolutional networks (GCNs).

RNNs have temporal memory capabilities, making them particularly effective in pro-
cessing temporal data with long-term dependencies. To address the difficulty of classifying
fine-grained behaviors using a single network model, Li et al. [14] proposed an adaptive
RNN tree model. Gao et al. [15] proposed a variable speed IndRNN model, which adap-
tively adjusts the learning rate to make the network more robust to different sampling
rates and execution speeds of different sequences. Ryumin et al. [16] proposed using
spatio-temporal feature fusion combined with bidirectional LSTM modules to construct
end-to-end network models. However, RNN-based models often overly emphasize the
temporal information of actions, and the modeling effect on spatial information is not ideal.

Compared with RNNs, CNNs have strong information extraction capabilities and can
efficiently perform spatial modeling to learn semantic information. Tu et al. [17] proposed
a dual-stream 3D CNN that uses convolutional kernels of different scales to capture large-
scale temporal information and transform bone data into multi-temporal sequences. A
fusion CNN model was proposed by Li et al. [18], which encodes the spatio-temporal
information of bone data into skeleton trajectory shape images (STSIs) and skeleton pose
images (SPIs) through grayscale values. Although this type of method utilizes CNN
modules with strong spatial modeling capabilities, its “local connectivity” property ignores
the expression of semantics between distant joint points, and the generation of encoding
graphs is complex, which is not ideal for optimization and improvement.

The human skeleton is a naturally occurring topological structure. Unlike RNNs
and CNNs, GCNs are more suitable for processing non-Euclidean data [19]. The main
contribution of the spatio-temporal GCN (ST-GCN) network proposed by Yan et al. [20] is
the use of multi-layer graph convolution to extract spatio-temporal features of bones and
construct spatio-temporal maps. It represents the physical structure of the human body
through joints and spatial edges, adds time edges to replace the original complex optical
flow, and simplifies weight assignments based on partitioning strategies. A channel-wise
topology refinement GCN was proposed by Chen et al. [21] to dynamically learn topology
and aggregate joint features in different channels. Chi et al. [22] used the self-attention based
graph convolution module to infer the contextual intrinsic topology of bone information in
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spatial modeling. A novel graph convolutional network module and separable temporal
convolutional network (TCN) for extracting sign language information were proposed by
Jiang et al. [23] for multi-modal gesture recognition. Although the GCN model is more
suitable for handling human topological structures and has shown better performance
than CNN and RNN in bone-based action recognition in recent years, its graph structure
adaptation ability is not strong because stacking too many layers in the network can lead
to a decrease in its computational performance.

2.2. 2D Multi-Person Pose Estimation

Pose estimation involves estimating the position of keypoints in the human body, such
as the head, hands, and body [24]. It is the foundation of many high-level semantic tasks,
such as action recognition and abnormal behavior detection [25]. Based on the application
scenarios proposed in this article, this section will concentrate on discussing the research
overview of the existing literature on 2D multi-person pose estimation problems. First, 2D
multi-person pose estimation methods based on deep learning can be generally divided
into two categories.

One is the “top-down” method, which typically uses a human object detector to obtain
a set of bounding boxes from the input image and then directly uses existing single-person
pose estimators to predict the person’s pose [26]. Given that the posture predicted by this
method heavily relies on the accuracy of object detection, most current research primarily
focuses on optimizing existing human object detectors, such as faster R-CNN, feature pyramid
network, and other network structures. Fang et al. [27] used a spatial transformer network,
non-maximum suppression, and an hourglass module to improve pose estimation accuracy.
Xiao et al. [28] incorporated several deconvolution layers into the last convolutional layer of
ResNet to generate more accurate heatmaps based on deep and low-resolution features. High-
Resolution Network (HRNet), which was proposed by Wang et al. [29], is used to exchange
high- and low-resolution representation information, thereby maintaining high-resolution
representation information during processing. However, the processing speed of this model
algorithm is limited by the amount of detection personnel required for the image.

Another method adopts a “bottom-up” strategy, which directly predicts all joints
of each individual and then assembles them into independent human skeletons. This
method mainly consists of two parts: the detection of human joints and candidate joint
grouping. Among them, Cao et al. [30] proposed using a convolutional pose machine
method to predict all human joints with partial affinity fields. The pose partition network
proposed by Nie et al. [31] can be used for joint detection and dense regression to achieve
the segmentation of joints. Kreiss et al. [32] constructed a PifPaf network that enhances
heatmap accuracy at high resolutions through a part intensity field (“Pif”) and connects
body joints using a part association field (“Paf”). This type of “bottom-up” method can
achieve a faster detection speed compared with most “top-down” methods, but the correct
combination of joint points in complex environments will be a challenging research task.

2.3. Attention Mechanism

Attention mechanism is a technique used to simulate human visual processing of complex
information, which can be applied to various deep learning models in different fields and
tasks [33]. With the recent widespread application of attention mechanisms in computer
vision, many researchers have attempted to integrate this mechanism into action recognition,
using different forms of attention mechanism modules, such as self-attention, multi-head
self-attention, and spatio-temporal self-attention, etc., which can bring different performances.

Rohit Girdhar et al. [34] proposed attention pooling to replace the commonly used mean
pooling or max pooling in the final pooling layer of CNN network structures and constrained
the attention through human pose keypoints to better converge to the corresponding action
category in the final network. The DSTANet network proposed by Lei et al. [35] allows
modeling of spatio-temporal dependencies between joints by constructing attention blocks,
without the need to know their positions or interconnections. Specifically, three techniques
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for constructing attention blocks have been proposed in this paper to meet the specific re-
quirements of bone data: spatio-temporal attention decoupling, decoupled position encoding,
and spatial global regularization. Wang et al. [36] proposed a plug-and-play hybrid attention
mechanism called the ACTION module for temporal action recognition (such as gestures).
This module mainly includes spatio-temporal attention, channel attention, and motion atten-
tion, resulting in better action recognition results. Although using attention mechanisms with
different characteristics can improve the performance of deep learning models, how to select
and improve an effective attention module has become a difficult point in current research.

3. Methods
3.1. Overview of ST-TGR Model

To optimize and mitigate the difficulty of dynamic gesture recognition for teachers in
real teaching scenarios, this article proposes a teaching gesture action recognition algorithm
based on skeleton keypoints. This algorithm mainly consists of two network modules. The
first module uses a high-performance human pose estimation detector RTMPose [37] based
on the MMPose algorithm library to recognize teacher skeletal keypoints in classroom
teaching videos. The second module uses a preset sliding window to feed keypoint
sequences of skeletons of different scales to the subsequently constructed action recognition
network MoGRU for classification and localization. By combining these two modules,
teaching gesture action recognition can achieve fast and accurate results. The overall
architecture of the network model is shown in Figure 2.

RTMPose  Module
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Figure 2. Overall architecture of the ST-TGR network model. The RTMPose module is responsible for
extracting keypoint information of teachers’ skeletons from video frame images, while the MoGRU
module performs gesture classification on the extracted skeleton sequence.

3.2. Skeleton Keypoint Extraction

Although many studies have achieved good results in 2D multi-person pose estimation,
in practical application scenarios, challenges remain such as complex model computation
and large parameter quantities, leading to high calculation delays. To enhance the perfor-
mance of multi-person pose estimation in real teaching scenarios, this paper adopts the
high-performance human pose estimation detection technology RTMPose based on the
MMPose algorithm library, which is a model that can achieve accurate real-time detection
in practical application scenarios.

In terms of recognition accuracy, RTMPose follows the “top-down” pattern, which
uses ready-made detectors to obtain bounding boxes and then estimates each person’s pose
separately. This method has a more accurate recognition effect compared with “bottom-up”
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algorithms. When facing complex classroom teaching environments with multiple people,
inevitable occlusion issues arise between teachers, students, and the environment. Using a
precise and effective posture detector can bring better performance for subsequent action
recognition. Further, RTMPose adopts a SimCC-based algorithm for keypoint prediction,
which considers keypoint localization as a classification task. Compared with heatmap-
based algorithms, SimCC-based algorithms maintain competitive accuracy while reducing
computational workload. In Section 5 of this article, we also validated this viewpoint
through comparative experiments.

In terms of recognition speed, RTMPose adopts CSPNeXt, which was originally de-
signed to cope with object detection tasks, as the backbone structure. Although this
backbone structure is not the optimal choice for intensive prediction tasks such as pose esti-
mation and semantic segmentation, CSPNeXt can achieve a better balance between speed
and accuracy, and it is also easy to deploy in subsequent models. To improve the inference
speed of the network module, RTMPose uses the skip frame detection strategy proposed
in Blazepose [38] to accelerate inference speed, as shown in Figure 3, and improves pose
processing through non-maximum suppression and smoothing filtering, thereby achieving
better robustness.

Frame 1 Detection

ROI 1

ROI 2

ROI m

Pose

ROI 1

ROI 2

ROI n

Output 1

Frame 2

ROI 1

ROI 2

ROI x

Pose

ROI 1

ROI 2

ROI y

Output 2

Post-Processing

Post-Processing

Share

Figure 3. Inference pipeline of pose estimation. To accelerate the inference speed of the model, frame
skipping detection was adopted in RTMPose.

In the training process of the model, to further utilize global and local spatial information,
drawing inspiration from Tokenpose [39], we used a self-attention module to refine the
keypoint representation, and we adopted a transformer variant, namely, the gated attention
unit (GAU). Compared with regular transformers, the GAU has a faster speed, lower memory
cost, and better performance. The GAU improves the feed-forward network in the transformer
layer using Gated Linear Units and elegantly integrates attention mechanisms. Equation (1) is
shown as follows, where ⊙ is element-wise multiplication, and ϕ is the activation function.

U = ϕu(XWu),

V = ϕv(XWv),

O = (U ⊙ AV)Wo.

(1)

The calculation of the attention (A) module is shown in Equation (2), where S is 128
and Q and K are the results of linear variation.

A =
1
n

Relu2

(
Q(X)K(Z)⊤√

s

)
, Z = ϕz(XWz). (2)

When calculating the training loss, the SimCC-based approach is adopted to treat
coordinate classification as an ordered regression task, and the soft label encoding proposed
in SORD is followed. Meanwhile, in the Softmax operation, temperature is added to the
model output and soft labels to further adjust the normalized distribution shape, as shown
in Equation (3). Among them, ϕ(rt ,ri)

is the selected metric loss function, which punishes
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the ri∈Y distance between the true metric value of rt and the rank. At the same time, a
non-normalized Gaussian distribution is used as the inter-class distance measure, and the
calculation method is shown in Equation (4):

yi =
e−ϕ(rt ,ri)/τ

∑L
l=1 e−ϕ(rt ,rl)/τ

, (3)

ϕ(rt, ri) = e
−(rt−ri)

2

2σ2 . (4)

Finally, using the RTMPose algorithm, we convert the original input video file into
a skeleton sequence corresponding to the frame. The dimension of the output vector is
the matrix x ∈ RL×K, where L is the length of the sequence in time steps and K is the
product of the number of joint points and the dimension. For example, considering 2D
single-person pose estimation based on the COCO dataset [40], where each image contains
17 pieces of joint information of a target object, and each piece of joint information has x and
y coordinates, the value of K is 2 × 17 = 34. In order to cover different application scenarios,
the algorithm library provides a series of model configuration files with different parameter
sizes. After a series of control experiments, this article selected the RTMPose-m model as
the preliminary teacher skeletal keypoint detector and deployed the TensorRT inference
framework in subsequent practical applications to accelerate the inference process.

3.3. Classification of Gesture Actions

Given the strong dependence of gesture recognition tasks on temporal and spatial
information, previous algorithm models that only used RNN or CNN did not achieve
optimal recognition results. Therefore, to fully consider how to better integrate these two
types of information, this article proposes a new MoGRU action recognition network model
which includes three layers of bidirectional GRU modules, multi-layer CNN modules,
and an improved multi-head self-attention module. Experimental verification shows that
this model has an excellent ability to extract spatio-temporal feature information and can
effectively process the sequence information of keypoints in teacher bones.

In terms of the temporal information dimension, considering that the algorithm
model constructed based on recurrent neural networks can exhibit higher sensitivity to
the temporal information of sequences, this paper selects a bidirectional gated recurrent
unit (BiGRU), shown in Figure 4, as the main structure of the model after comparing the
computational complexity and recognition accuracy of various recurrent neural network
modules. Compared with traditional recurrent neural networks, a GRU can better capture
long-range dependencies of long sequences and effectively alleviate the problem of gradient
vanishing. Compared with LSTM, a GRU has fewer parameters, simpler calculations, and
a faster training speed. Specifically, a GRU has only two gate structures (different from
LSTM’s input gate, forget gate, and output gate), one reset gate r and one update gate z.
The reset gate determines whether to ignore past state information, while the update gate
determines the proportion allocated between the previous state information and the new
information at the current time. The calculation Equation (5) for its model is as follows:

rt = σ(Wrxt + Urht−1 + br),

zt = σ(Wzxt + Uzht−1 + bz),

h̃t = tanh(Wxt + U(rt ⊙ ht−1) + b),

ht = (1 − zt)⊙ ht−1 + zt h̃t.

(5)

Here, t represents the current time step, x represents the input, and h represents the
hidden state. Among them, the hidden state vector dimensions of the three-layer GRU used
in this article are 256, 512, and 128, respectively. Through the conversion of multi-layer GRU
modules, we can transform the frame-related keypoints information formed by the original
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prediction into a feature vector c ∈ RL×128 containing temporal information of teacher
gesture actions. At the same time, by adopting a bidirectional connection strategy, the input
skeleton sequence information can be better utilized, thereby increasing the accuracy of the
model for gesture classification. The dimension of the feature vector output by this process
is c′ ∈ RL×256.

h0 Z

h0Z

X1 X2 X3 X4

GRU GRUGRU GRU GRU

GRU GRU GRUGRU

Figure 4. Structure of BiGRU. It consists of two independent GRU layers, one processing the sequence
in the forward direction and the other processing the sequence in the reverse direction.

In terms of the spatial information dimension, after obtaining the temporal feature
vectors c′ of skeletal keypoints, we utilized convolutional neural network modules of
different scales to extract spatial information between keypoints at the same frame time,
allowing the model to better understand the correlation between keypoints. To preserve
the dimension of the feature vectors during the convolution operation, we pad the feature
vectors to a certain extent and use 1 × 1 convolution kernels to achieve the fusion of
feature information. The calculation Equation (6) is as follows, where K is the size of the
convolution kernel, Ni is the size of the output vector feature, Cin is the channel dimension
of the input vector feature, and Coutj is the channel dimension of the output vector feature.

out(Ni, Coutj) = bias(Coutj) +
Cin−1

∑
k=0

weight(Coutj , k)× input(Ni, k) (6)

To further enhance the correlation between joint points in different frame time se-
quences, we employed an improved multi-head self-attention mechanism module after
the convolution module to enhance spatio-temporal information features. Specifically,
we add the vector features calculated by the convolution module to the multi-head self-
attention mechanism module, and generate the corresponding Query, Key, Value using
a linear change in the context vector dimension of 256. For each attention head in the
module, we calculate the attention weight to balance the degree of correlation in the input
information. Among them, the calculation method of the attention weight adopts the dot
product operation, and the calculated attention score is normalized through the softmax
function. The calculation Equation (7) for the attention mechanism module is as follows:

Similarity(Query, Keyi) = Query · Keyi,

ai = So f tmax(Simi) =
eSimi

ΣLχ
j=1eSimj

,

Attention(Query, Source) = ∑Lx
i=1 ai · Valuei.

(7)

Finally, we input the fused spatio-temporal information feature vectors into the fully
connected layer for softmax classification prediction. The cross-entropy loss function is
used to calculate loss during the training process. Equations (8) and (9) for this process
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are as follows, where a is the calculation result of softmax and y is the label of the training
sample. The encoding method of the label adopts the one-hot encoding format.

so f tmax(xi) =
exi

∑k exk
, (8)

L = Loss(a, y) = −∑
j

yj ln aj. (9)

4. Experimental Results and Analysis
4.1. Dataset

NTU RGB+D [41]: This dataset is a large-scale dataset for RGB-D human action
recognition. It contains 60 types of actions, with a total of 56,880 samples, of which 40 are
daily behavioral actions, 9 are health-related actions, and 11 are mutual actions between
two people. These actions were completed by 40 people aged from 10 to 35 years old. This
dataset was collected by Microsoft Kinect v2 sensors, and three cameras were used from
different angles. The vertical heights of the three cameras were the same, with horizontal
angles of −45°, 0°, and +45°, respectively. The collected data include depth information, 3D
skeleton information, RGB frames, and infrared sequences.

SBU Kinect Interaction [42]: This dataset is an action recognition dataset captured by
Kinect cameras and primarily describes the interaction behavior of two people. All the
videos were recorded in an identical laboratory environment. Seven participants engage in
pairwise interaction, and in most activities, one person makes an action, while the other
reacts. Each action category contains either one or two sequences. The entire dataset
comprises approximately 300 action interactions.

UT-Kinect Action3D [43]: This dataset collects data at a fixed frame rate of 15 fps using
a fixed Kinect and Kinect for Windows SDK Beta version depth camera, including RGB,
depth, and 3D skeleton data. UT-Kinect divides the sample into 10 daily life behaviors,
including walking, sitting, standing up, picking up, carrying, throwing, pushing, pulling,
waving, and clapping. These actions are performed by 10 different individuals, with each
person performing the same action twice, resulting in a total of 199 action sequences.

Florence 3D [44]: This dataset collects data through a fixed Kinect and collects nine
common indoor action categories, such as “watching”, “drinking water”, and “calling.” In
these actions, 10 people completed 9 actions, repeating each action 2 or 3 times, for a total
of 215 actions.

TGAD: At present, the publicly available dataset of gesture actions does not include
specific teaching gesture behaviors. Therefore, to assist in recognizing teaching gesture actions
in teaching scenarios, this paper constructs a dataset called TGAD which shown in Figure 5.
This dataset contains four types of teaching gesture actions (i.e., casual, indicative, descrip-
tive, and operational gestures), totaling 400 skeletal action sequences. These gesture move-
ments are derived from classroom teaching videos in primary and secondary schools from
various perspectives.

（a）Operational gestures （b）Casual gestures

（d）Indicative gestures（c）Descriptive gestures

Figure 5. Visualization of TGAD dataset samples. (a) Writing on the blackboard. (b) Without obvious
intention behavior. (c) Describing the teaching content. (d) Pointing to the teaching content.
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4.2. Evaluation Metrics

In action recognition, the accuracy (AC) of behavior recognition is commonly used as
the evaluation indicator for various methods, which is defined as Equation (10):

AC =
Ncorrect

Nsum
. (10)

Among them, Ncorrect represents the number of correctly classified samples; Nsum
represents the total number of samples. In the kinetics dataset, two evaluation methods
are used: top-1 (the probability that the category with the highest predicted score is the
same as the actual category) and top-5 (the probability that the top five predicted categories
contain the actual category). All other datasets were evaluated using top-1.

Cross-Subject: This refers to the C-Sub protocol, which is a standard for dividing
training and testing sets in the NTU RGB+D 60 and NTU RGB+D 120 datasets. In NTU
RGB+D 60, C-Sub selects 20 people with different character numbers as the training set,
and the remaining as the test set. In NTU RGB+D 120, C-Sub divided 106 participants
equally into a training group and a testing group.

Cross-View: This belongs to the classification standard for training and testing sets in
the NTU RGB+D 60 dataset, abbreviated as the C-View protocol. The C-View standard di-
vides the training and testing sets by camera. The samples collected by cameras 1 and 2 are
used as the test set, while the samples collected by camera 3 are used as the training set.

4.3. Implementation Details

We implemented MoGRU using the PyTorch framework. The data input uses a raw
sequence of human skeleton keypoint coordinates. The data in the dataset used in this
article will be preprocessed as N × K, where N represents the time frame of each action and
K represents the coordinate information of each joint point in 2D or 3D form. During the
processing of the training set, the input data of the network are normalized by z-scores. We
use an SGD solver and an initial learning rate of 0.001 to train our model. All experiments
have a mini-batch size of 64 and a training period of 50, except for experiments on NTU
RGB+D where the mini-batch size is 256 and the training period is 150. The training was
conducted on a machine equipped with two Nvidia GeForce RTX 2080 GPUs (Santa Clara,
CA, USA), an Intel Core i9-9900K CPU processor (Santa Clara, CA, USA) with 32 cores, and
63.9 GB of RAM. Unless otherwise specified, both GPUs are used to allocate mini-batch
training between two cards.

4.4. Results and Analysis

To better test the recognition performance of the MoGRU network on teaching gesture
actions, we randomly partitioned the TGAD dataset into five parts, selected four parts as
the training set of the model through fivefold cross-validation, and used the remaining
part as the validation set. The recognition accuracy of the model on the validation set
was assessed to evaluate its recognition ability. Figures 6 and 7 display the recognition
results of the MoGRU action recognition network with fivefold cross-validation for various
gesture actions. The confusion matrix presents the predicted and actual results of each
label recognition. Among them, the number of four gesture categories tested in each round
is 80, with the highest recognition accuracy being operational gestures and the lowest
being indicative gestures. The final teaching gesture recognition accuracy of the model is
calculated to be 93.5%. This result also proves that the MoGRU model proposed in this
paper has excellent performance in classifying teaching gesture actions. At the same time,
to verify the reliability of the TGAD dataset production and the powerful performance of
the MoGRU model for teaching gesture action recognition, we also attempted to compare
the recognition capabilities of some publicly available benchmark models on TGAD. The
ratio of the training and testing sets was 8:2, and the training period was 50 epochs. In the
training process, the learning rate used is 0.0001 and the data augmentation algorithm is
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used to avoid overfitting problems. Table 1 shows the recognition accuracy of the proposed
MoGRU model and benchmark model on TGAD.

Figure 6. Results on TGAD dataset. (left) The loss value of training iterations. (right) The recognition
accuracy of training and testing.

Figure 7. Fivefold cross-validation evaluation results on TGAD. The confusion matrix presents the
difference between predicted labels and actual labels.

Table 1. Results on TGAD dataset.

Method Accuracy

Deep LSTM [41] 85.4
TCN [45] 86.7

Lie Group [46] 88.3
SCK + DCK [47] 89.2
VA-LSTM [48] 90.5
DeepGRU [49] 91.2

MoGRU 93.5

4.5. Baseline

To demonstrate the superior performance of the MoGRU model, we compared it with
existing baseline models on publicly available benchmark action recognition datasets.

Multi-task DL [50]: This article uses a multi-task deep learning approach for action
recognition and 2D/3D human pose estimation.

Glimpse Clouds [51]: This method does not directly rely on learning the posture
information of the human body but predicts information related to action classification
through the visual attention mechanism module.

ST-GCN [20]: This article proposes a novel model called ST-GCN, which is used
to handle dynamic skeletal architectures and compensates for the shortcomings of most
previous methods by automatically learning spatial and temporal patterns.

CoAGCN [52]: This method constructs an efficient skeleton-based online action recog-
nition method by stepwise inputting continuous frame sequences into a graph convolu-
tional network.

3s-ActCLR [53]: This article proposes an action-dependent contrastive learning method
to achieve adaptive modeling of motion and static separately.
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Sem-GCN [54]: To address the problem of limited representation in skeleton feature
maps, this paper proposes a new semantic guided graph convolutional network.

3s RA-GCN [55]: To avoid interference from incomplete joint information, this paper
proposes a multi-stream network model based on GCN structure, which enhances the
robustness of the model through branch information fusion.

PGCN-TCA [56]: A pseudo-GCN model with time and channel attention to observe
feature information between disconnected joint points.

Hands Attention [57]: This article proposes a dual-stream network model for integrat-
ing pose information and RGB information, which fully utilizes the behavioral features in
video data.

Lie Group [46]: Unlike previous methods of using joint positions or angles to represent
the human skeleton, this paper proposes a special spatial representation method that uses
3D geometric relationships.

ST LSTM + Trust Gates [58]: This article proposes a tree structure based on RNN
structure for learning representation, and adds a gating unit to LSTM to explore the spatio-
temporal characteristics in skeletal action sequences.

SCK + DCK [47]: By exploring the spatio-temporal characteristics of skeleton se-
quences and the vector representation of dynamic information, the accuracy of action
recognition is enhanced.

LSTM + FA + VF [59]: This article observes the intrinsic characteristics of action sequences
from multiple perspectives and then fuses information based on different LSTM structures.

Elastic Functional Coding [60]: This method proposes an elastic function encoding
method based on human behavior by studying from vector fields to latent variables, which
can be used for human action recognition.

Relative 3D geometry [61]: This article proposes a new skeleton representation method
R3DG, which explicitly reconstructs and expresses human joint parts in 3D.

VA-LSTM [48]: To mitigate the impact of action view changes, this article designs
a new view adaptation scheme that automatically determines the virtual observation
viewpoint during the action process through data-driven methods.

Temporal Subspace Clustering [62]: This article improves the previous problem of
pruning skeleton information sequences through unsupervised learning, mainly proposing
a space clustering method.

4.6. Comparison with Baseline Methods

To validate the robustness of the action recognition network MoGRU model, we also
trained and tested it on the following publicly available benchmark action recognition
datasets: NTU RGB+D 60, UT-Kinect Action3D, SBU Kinect Interaction, and Florence 3D.
We believe that these datasets cover a wide range of real-world interactions, with varying
numbers of participants, viewpoint changes, and input devices, and it is sufficient to verify
the robustness and strong generalization ability of the model proposed in this article

First, on the publicly available large action dataset NTU RGB+D, we divide the dataset
into two types based on different evaluation metrics C-Sub and C-View. We trained and
tested the MoGRU action recognition network separately under different data partitioning
standards. The training set accounts for 80% and the testing set accounts for 20%. Moreover,
according to the author’s note on the dataset, we did not use 302 missing or incomplete
skeleton data samples during training and testing. For each action data sample’s 3D
skeleton data information, we uniformly convert it into a 75-dimensional vector form in
the order of the action sequence (a total of 15 human keypoints). The results indicate that
although the MoGRU action recognition network model proposed in this article only uses
the raw skeleton information, it can still achieve similar testing results to other existing
action recognition models. Table 2 presents the recognition accuracy of the proposed model
under two standards.
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Table 2. Results of two evaluation metrics on NTU RGB+D 60 dataset.

Modality Method
Accuracy

C-Sub C-View

Image Multi-task DL [50] 84.6 -
Glimpse Clouds [51] 86.6 93.2

Pose + Image Hands Attention [57] 84.8 90.6
Multi-task DL [50] 85.5 -

Pose

VA-LSTM [48] 79.4 87.6
ST-GCN [20] 86.0 93.4

CoAGCN [52] 84.1 92.6
3s-ActCLR [53] 84.3 88.8

CoAGCN (2-stream) [52] 86.0 93.1
Sem-GCN [54] 86.2 94.2

CoS-TR [52] 86.3 92.4
CoST-GCN [52] 86.3 93.8
3s RA-GCN [55] 87.3 93.6
PGCN-TCA [56] 88.0 93.6

MoGRU 88.5 93.7

Second, to verify the excellent performance of the MoGRU action recognition network
in dealing with insufficient data, this paper trained and tested it on some small datasets such
as SBU Kinect Interaction, Florence 3D, and UT-Kinect Action3D. For these, the ratio of the
training and testing sets was 8:2. We also used dropout (0.5) and data augmentation to avoid
overfitting. In terms of data sample processing, we referred to vector conversion methods
similar to those mentioned above for the NTU RGB+D dataset. The experimental results
show that compared with traditional deep models that construct deep network structures
and train a large amount of data, the MoGRU action recognition network proposed in this
paper can achieve excellent performance on numerous small datasets with a simple and
efficient model structure. Tables 3–5 present the identification accuracy based on the A
evaluation metrics for each dataset.

Table 3. Results on SBU Kinect Interaction dataset.

Modality Method Accuracy

Image Hands Attention [57] 72.0

Pose + Image Hands Attention [57] 94.1

Pose

Hands Attention [57] 90.5
ST LSTM + Trust Gates [58] 93.3

GCA-LSTM [63] 94.1
LSTM + FA + VF [59] 95.0

VA-LSTM [48] 97.2

MoGRU 96.3

Table 4. Results on UT-Kinect Action3D dataset.

Method Accuracy

ST LSTM + Trust Gates [58] 97.0
Lie Group [46] 97.1

SCK + DCK [47] 98.2
GCA-LSTM [63] 98.5

Temporal Subspace Clustering [62] 99.5

MoGRU 99.7
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Table 5. Results on Florence 3D Action dataset.

Method Accuracy

Elastic Functional Coding [60] 89.6
Relative 3D geometry [61] 90.7

Lie Group [46] 90.9
SCK + DCK [47] 95.2

Temporal Subspace Clustering [62] 95.8

MoGRU 96.3

Compared with most existing baseline models, the MoGRU network model proposed
in this paper exhibits superior action recognition accuracy. At the same time, when compar-
ing the SOTA models in action recognition on some datasets, the model proposed in this
paper can also maintain similar recognition accuracy in a lightweight structure without any
preprocessing, such as using additional image information (RGB or depth) or other datasets
for pretraining. This also ensures real-time recognition of teaching gesture actions. Finally,
these test results further illustrate that the proposed model has strong generalization ability
and can complete recognition of actions beyond teaching gestures.

4.7. Ablation Experiments
4.7.1. Comparative Experiments of BiGRU

To demonstrate the advantages of the BiGRU compared with LSTM structures, we
conducted ablation experiments on the recognition rate and accuracy of the model. The
test dataset used is SBU Kinect Interaction, with a training cycle of 60 epochs and a batch
size of 64. Table 6 displays the specific results of the experiment. In terms of recognition
rate, the GRU network structure can demonstrate superior performance compared with the
LSTM network structure. In terms of recognition accuracy, the GRU structure can ensure
similar recognition effects compared with the LSTM network structure. Moreover, if a
bidirectional connection strategy is adopted, the recognition accuracy of the model can
be further improved. Therefore, in practical applications, to ensure sufficient recognition
accuracy and achieve a faster recognition speed, this model adopts a stacked three-layer
BiGRU network structure as the backbone of the model.

Table 6. Results of testing different recurrent structures on SBU Kinect Interaction dataset.

Unit Stacked Time (s) Accuracy

LSTM 3 213 94.2
LSTM 5 453 94.9
BiLSTM 3 549 95.6
BiLSTM 5 627 96.7
GRU 3 145 93.8
GRU 5 399 94.4
BiGRU 3 517 96.4
BiGRU 5 564 96.0

4.7.2. Comparative Experiments of Co-Attention

To investigate the impact of the improved attention mechanism module on the overall
performance of the model, we assessed the recognition accuracy using different attention
mechanism models on the UT-Kinect Action3D dataset. The training process adopts
a training cycle of 60 epochs and a batch size of 32. Table 7 demonstrates that using
the attention mechanism module can better capture sequence features, while using the
improved attention mechanism module yields superior recognition accuracy than using
the general self-attention mechanism module and multi-head attention mechanism module.
This verifies that the attention mechanism module proposed in this article can better
integrate the spatio-temporal features of action sequences.
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Table 7. Results of testing different attention mechanism modules on UT-Kinect Action3D dataset.

Module Accuracy

Fully Connected (Not Using Attn) 90.2
Self-Attention 96.6
Multi-Head Attention 97.5

Co-attention 99.7

4.7.3. Comparative Experiments of RTMPose

To illustrate the impact of human keypoint detection models on subsequent action
recognition and classification, this paper presents the detection performance of the RTM-
Pose model used in this paper and the existing baseline model (HRNet [29]) in the form
of images. The results indicate that in real classroom teaching scenarios, the problem of
self-occlusion by teachers and occlusion between objects or people is difficult to avoid.
Using a precise and efficient human pose detector is beneficial for alleviating this problem,
thereby bringing more accurate classification results for subsequent gesture recognition.
Figure 8 shows the specific results of the detection.

Figure 8. Displayed from left to right are the original image, HRNet detection image, RTMPose
heatmap detection image, and RTMPose detection image.

5. Conclusions

This paper introduces a teaching gesture recognition algorithm based on skeletal
keypoints to reduce the the difficulty of single-target dynamic gesture recognition in multi-
person teaching scenarios. This algorithm employs human pose estimation technology to
extract skeletal keypoint information of teachers in classroom videos and then segments the
extracted bone sequence into gesture actions through action recognition technology. The
experimental results demonstrated that this algorithm can accurately partition teaching
gesture actions in a short period. To validate the generalization of the action recognition
network, we also conducted tests and evaluations on different benchmark action datasets.
The results indicate that compared with most existing SOTA models, the action recognition
network constructed in this paper exhibits superior performance. We also conducted vari-
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ous ablation experiments on the model structure of the network to illustrate the feasibility
and effectiveness of the network module design.

In future work, we will persist in refining the categories of teaching gestures for
teachers and strive to be more diverse and comprehensive. In terms of model design, we
will also endeavor to integrate some network modules that are more sensitive to target
spatio-temporal information to enhance the model’s discriminative ability. In addition,
considering the integration of more data information (such as RGB information and depth
information) in action recognition processing, achieving multi-modal processing of data
will become an option.
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