
Citation: Yang, F.; Li, X.; Liu, Q.; Li,

X.; Li, Z. Learning-Based Hierarchical

Decision-Making Framework for

Automatic Driving in Incompletely

Connected Traffic Scenarios. Sensors

2024, 24, 2592. https://doi.org/

10.3390/s24082592

Academic Editor: Hui Kong

Received: 26 March 2024

Revised: 12 April 2024

Accepted: 16 April 2024

Published: 18 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Learning-Based Hierarchical Decision-Making Framework for
Automatic Driving in Incompletely Connected Traffic Scenarios
Fan Yang , Xueyuan Li *, Qi Liu, Xiangyu Li and Zirui Li

School of Mechanical Engineering, Beijing Institute of Technology, Zhongguancun South Street,
Beijing 100081, China; 3120225230@bit.edu.cn (F.Y.); 3120195257@bit.edu.cn (Q.L.); 3220220300@bit.edu.cn (X.L.);
z.li@bit.edu.cn (Z.L.)
* Correspondence: lixueyuan@bit.edu.cn

Abstract: The decision-making algorithm serves as a fundamental component for advancing the level
of autonomous driving. The end-to-end decision-making algorithm has a strong ability to process
the original data, but it has grave uncertainty. However, other learning-based decision-making
algorithms rely heavily on ideal state information and are entirely unsuitable for autonomous driving
tasks in real-world scenarios with incomplete global information. Addressing this research gap,
this paper proposes a stable hierarchical decision-making framework with images as the input. The
first step of the framework is a model-based data encoder that converts the input image data into
a fixed universal data format. Next is a state machine based on a time series Graph Convolutional
Network (GCN), which is used to classify the current driving state. Finally, according to the state’s
classification, the corresponding rule-based algorithm is selected for action generation. Through
verification, the algorithm demonstrates the ability to perform autonomous driving tasks in different
traffic scenarios without relying on global network information. Comparative experiments further
confirm the effectiveness of the hierarchical framework, model-based image data encoder, and time
series GCN.

Keywords: graph convolutional network; decision-making algorithm; deep learning; urban
autonomous driving

1. Introduction

The gradual popularization of private cars in cities has provided great convenience
for citizens to travel, but at the same time, it has also brought severe traffic congestion
problems [1]. Normalized traffic congestion results in an exponential increase in travel
time, contributing to driver fatigue and a higher risk of traffic accidents in complex traffic
environments. Autonomous vehicles, equipped to handle driving tasks autonomously, offer
a solution to alleviate human driving stress and enhance safety and accuracy, particularly
in monotonous traffic scenarios. The decision-making layer unit is the pivotal component
of the autonomous driving algorithm, equivalent to human decision-making.

Ongoing research explores various decision-making algorithms, focusing on learning-
based and rule-based approaches. While rule-based algorithms [2–4] exhibit better stability,
they reveal limitations when dealing with rich perceptual information. Decision-making
algorithms based on reinforcement learning are extensively explored in autonomous driv-
ing scenarios, featuring various methods such as the DQN [5,6], DDPG [7], and AC [8].
However, due to inherent algorithmic characteristics, traditional reinforcement learning-
based algorithms pose significant uncertainties in autonomous driving tasks. Consequently,
some studies focus on enhancing the safety and robustness of these algorithms. Maldonado
et al., analyze the impact of negative feedback on risk evaluation and decision processes
in diverse driving contexts [9]. Peng et al., emphasize enhancing traffic safety with an
automatic lane-change mechanism for self-driving articulated trucks [10]. They propose a

Sensors 2024, 24, 2592. https://doi.org/10.3390/s24082592 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24082592
https://doi.org/10.3390/s24082592
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5119-0519
https://doi.org/10.3390/s24082592
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24082592?type=check_update&version=1


Sensors 2024, 24, 2592 2 of 17

novel safety lane-change path-planning and tracking-control method. Wang et al., propose
a prediction method based on a fuzzy inference system (FIS) and a long short-term memory
(LSTM) neural network [11]. Some studies address the issue of uncertainty by training
directional models. Zhang et al., introduce a knowledge model with a problem-description
layer and a problem-solving knowledge layer [12]. There are also studies based on intelli-
gent connected vehicles for vehicle decision control [13]. While various decision-making
algorithms show promising results, many are tailored to specific simplified traffic scenarios,
predominantly highways [14].

The algorithm excels in simple scenarios but struggles with generalization to diverse
test scenes. Its application is often confined to specific scenarios, like straight roads or
single intersections, and learning-based effectiveness diminishes in complex situations. Fur-
thermore, the algorithms rely heavily on ideal perceptual information and are tailored for
V2X-enabled intelligent transportation systems. In real-world scenarios, the impracticality
of seamless interconnectivity challenges algorithm performance. Hence, improving adapt-
ability to incomplete global information is a crucial area of focus in autonomous driving
research, which can be manifested in the algorithm’s ability to process raw sensor data.

End-to-end driving is a promising paradigm as it circumvents the drawbacks asso-
ciated with modular systems [15]. End-to-end learning-based algorithms can theoreti-
cally cope with the type of information provided by existing mature perception systems
(e.g., cameras [16], lidar [17,18], etc.). Shao et al., present ReasonNet, a novel end-to-end
driving framework that extensively exploits both temporal and global information of the
driving scene [19]. Hu et al., introduce a dynamic graph learning method, TAM-GCN, for
the overtaking strategy, which outperforms existing methods in accuracy and safety [20].
Yang et al. further enhance decision-making in autonomous driving with the SGRL al-
gorithm, which incorporates interactive information between agents and demonstrates
superior convergence and efficiency [21]. These studies collectively highlight the potential
of end-to-end learning-based algorithms in autonomous driving.

The end-to-end algorithm, which takes the image class as the input and directly
outputs the vehicle’s actual action, is significantly impacted by the unpredictable nature
of the model’s output. This susceptibility is a common characteristic of intricate end-
to-end network structures. The fundamental challenge stems from the intricate nature
of this network, seamlessly merging diverse stages of the initial process into a unified,
inscrutable entity. This amalgamation transforms the model into a black box, eluding
a comprehensive analysis, which introduces uncertainties about the model’s real-world
performance, creating potential risks such as fatal logical errors and serious traffic accidents.
As a result, the algorithm is presently confined to theoretical research, bound by its inherent
mystery and the associated risks that arise when applied in real-world scenarios. The
advent of convolutional neural networks (CNNs) [22] has made it feasible to directly
process large-scale data such as images, point clouds, and more. With the development of
dedicated image-processing networks (VGG16 [23], ResNet50 [24], and EfficientNetB7 [25]),
the current target detection algorithm has been able to achieve high accuracy. Al batat et al.,
successfully developed an end-to-end Automated License Plate Recognition (ALPR) system
utilizing YOLO for vehicle and license plate detection, achieving remarkable accuracy [26].

The modern autonomous driving system is characterized as modular tasks in sequen-
tial order, i.e., perception, prediction, and planning. In order to perform a wide diversity
of tasks and achieve advanced-level intelligence, contemporary approaches either deploy
standalone models for individual tasks or design a multi-task paradigm with separate
heads [27]. Planning is a crucial aspect among them. Huang et al., introduced a predictive
behavior-planning framework that learns to predict and evaluate from human driving
data [28]. In [29], the mixture-of-experts approach is utilized to learn from human driv-
ing trajectory data to construct a multimodal motion planner. Inspired by these works
and the hierarchical classification method for decision-making [30], this paper proposes
a hierarchical decision-making framework. The hierarchical framework ensures superior



Sensors 2024, 24, 2592 3 of 17

control and stability compared to existing end-to-end algorithms. The key contributions
and innovations include the following:

• This algorithm framework integrates the pre-trained target-detection model into the
perceptual information preprocessing stage—the data encoder, transforming intri-
cate image data into a state matrix conducive to decision-making networks. Adding
orientation coordinates to the state matrix during construction enhances the algo-
rithm’s adaptability to perceptual information, improving its ability to comprehend
scene details.

• A state machine based on a time series GCN is introduced to align temporal concepts
with the real-time dynamics of driving scenarios. The GCN outperforms the traditional
CNN in capturing temporal relationships, a key enhancement that significantly boosts
the algorithm’s scene-understanding capabilities.

• In contrast to the traditional end-to-end model, this algorithm adopts a hierarchical
framework, rendering the entire process of perception data preprocessing, driving
state classification, and action generation observable and controllable. This frame-
work ensures enhanced stability and interpretability, unlike the opaque nature of the
traditional end-to-end black-box model.

• Compared to traditional end-to-end decision algorithms, this hierarchical approach
exhibits superior generalization capabilities across various application scenarios, meet-
ing the demands of autonomous driving tasks for predetermined trajectories on
standardized roads.

The paper unfolds as follows: Section 2 provides a detailed introduction to the pro-
posed hierarchical decision-making framework. Section 3 introduces the implementation of
the experiment. Section 4 summarizes and compares the algorithm’s experimental results
and evaluation indexes in the autonomous driving task. Finally, Section 5 derives the
conclusion and proposes future improvement directions.

2. Methods

The hierarchical framework presented in this paper is structured into four layers,
functioning sequentially in the information flow essential for vehicle autonomous driving.
The depiction of this hierarchical framework is presented in Figure 1.

Figure 1. Hierarchical algorithm framework diagram. (The feature matrix comprises the feature
vectors of the unified format obtained by the model preprocessing and coding of the image. The
Class Matrix represents the representation matrix of the neural network classification results—the
state machine. State info represents several driving states the vehicle needs to divide according to the
predetermined route in the urban scene, corresponding to different control parameters of the next
layer. Driving action is the scale-calibrated information such as steering wheel angle, throttle, and
brake, which can be directly executed by the vehicle generated by the PID controller based on the
predetermined driving route).

2.1. Input Layer—Image Preprocessing and Encoder

In the context of human drivers, the eyes serve as the primary source of environmental
information. Hence, it is commonplace to equip autonomous vehicles with cameras.
Images offer a distinct advantage regarding the abundance and richness of information,



Sensors 2024, 24, 2592 4 of 17

providing a comprehensive view of the driving environment. To ensure an ample supply
of information, the algorithm captures camera data from four directions around the vehicle.
This framework breaks the algorithm’s dependency on global network information by
using an array of images as the input for determining the vehicle’s driving state.

2.1.1. Model-Based Image Preprocessing

Traditional algorithms employing image information as the input often utilize convo-
lutional neural networks (CNNs) as the processors. While these algorithms have demon-
strated success in image recognition, their direct application in autonomous driving is
primarily in the end-to-end form, posing challenges related to convergence and high
training costs.

Some existing image-recognition algorithms can extract all target types and their
occupied pixel panes in the image, corresponding to the visual information preprocessing
in autonomous driving. YOLO [31] is a mature multi-target-recognition algorithm that
offers several pre-trained models. The latest version of YOLO v9 [32] is currently the new
SOTA for target detection. Utilizing this model for image preprocessing allows for the
direct extraction of pertinent targets in the image and their position information in the field
of view.

2.1.2. Encoder and State Matrix Construction

The image data processed by YOLO are transformed into a series of state information
distinct from the original pixel points. This information encompasses the identified target
type, the pixel position of the target in the image, and the confidence information associated
with the identification. Additionally, based on the input image number, it becomes possible
to differentiate the camera information corresponding to each target. This information, in
turn, signifies the directional position of the target relative to the vehicle. To facilitate the
subsequent network’s input process, it is imperative to establish standardized coding rules
for generating a state matrix.

The specification of the state matrix hinges on the effective number of targets identi-
fied in the images captured from all directions. In the Carla simulation platform, 100 au-
tonomous NPC vehicles and 50 NPC pedestrians are introduced into the town map, which
has a side length of 500 m, thus simulating high-density traffic scenes. By tallying the
number of targets identified by the four cameras during the agent vehicle’s drive over a
simulation time of 5 h, a total of 18,000 frames of data are obtained. The average number of
targets in the image is calculated to be 10.107. Consequently, the specification of the state
matrix can be configured as depicted in Figure 2.

Figure 2. State matrix coding rule diagram. (Considering that the influence of the environment in
front of the vehicle on driving behavior is much stronger than that in the rear, the five target quotas in
the rear are allocated to the front. Each line in the dataset represents a discerned target, encapsulating



Sensors 2024, 24, 2592 5 of 17

vital information across seven dimensions. These dimensions encompass the object’s categorical
assignment within the range of 0 to 79, the precise corner coordinates outlining the bounding box,
the confidence level associated with the identification, and the directional code signifying the object’s
position in relation to the vehicle, denoted by values ranging from 0 to 3).

2.2. Hidden Layer—Network Structure

The feature matrix obtained by preprocessing has been significantly simplified regard-
ing the dimensions and specifications for the original image data. However, it still contains
much information and is unsuitable for direct driving state determination. Recognizing
the outstanding capabilities of neural networks in handling large-scale information, this
algorithm leverages them to analyze the state matrix. Since vehicle driving is continuous,
historical information becomes crucial in current decision-making. Hence, the algorithm
innovatively introduces a GCN based on time series information. The overall structure of
the neural network hidden layer is depicted in Figure 3.

Figure 3. Neural network hidden layer diagram.

2.2.1. Time Series GCN

Time series data inherently contain temporal dependencies, meaning that the value of
a variable at one-time point is often dependent on its previous values, which is necessary
for the driving state determination. GCNs can effectively capture these dependencies by
incorporating information from neighboring time points in the graph structure, allowing
them to model temporal relationships more effectively than traditional neural networks.

GCNs can directly operate on graphs and utilize their structural information. This
concept is transplanted from the image field to the graph field. However, images typically
exhibit a fixed structure, whereas the structure of a graph is more flexible and intricate.
The fundamental idea behind GCNs is to consider all neighboring nodes and the feature
information embedded in each node. This approach enables convolutional calculations on
the topology graph. If the information is treated as a node at each moment, the time series
information essentially forms a distinct topology, as illustrated in Figure 4.

In the GCN section, each time series’s state matrix is treated as an individual node, and
the temporal relationships can be likened to the configuration of an adjacency matrix. (In
the model proposed in this paper, the adjacency matrix is a 10-dimensional square matrix
with a diagonal and sub-diagonal of 1, as shown in Figure 4. This implies that the current
time and the initial nine timestamps carry equal significance, with interactions occurring
solely between adjacent timestamps). Through graph convolution, the state matrix, when
coupled with timing information, can be effectively processed. This approach proves more
focused than a regular fully connected neural network when analyzing the sequential
relationships among states. A 10-16-10 graph convolutional structure was chosen for the
graph neural network segment.



Sensors 2024, 24, 2592 6 of 17

Figure 4. Time series graph convolution equivalent diagram. (As part of the initial data processing,
YOLO is employed to extract fundamental information from image data, forming the basic nodes
of the topological graph. The interconnected relationships within the topological graph are then
sequentially established through the timeline in this paper. Each timestamp’s image, along with
the extracted feature information, collectively shapes the nodes of the GCN. Simultaneously, the
timeline serves as the edges of the GCN, playing a crucial role in determining the content of the
adjacency matrix).

2.2.2. Fully Connected Neural Network

The feature matrix computed by the GCN requires a detection head for the final
classification output, which can be achieved using a fully connected neural network. There
is no rigid standard for the depth of the network and the number of nodes in each layer.
Consequently, the ultimate network structure must be determined through a series of
comparative experiments. Considering that the number of output features in the GCN
section is 10 × 40 × 8 = 3200, a control group can be established as outlined in Table 1
based on empirical considerations.

Table 1. Network structure control experiment settings

Group Number Fully Connected Layer Structure Setting

01 2048-512-128-32-8-4
02 2048-2048-512-128-32-8-4
03 4096-2048-512-128-32-8-4
04 4096-4096-2048-512-128-32-8-4
05 2048-1024-512-256-128-64-32-8-4
06 4096-2048-1024-512-256-128-64-32-8-4

The groups mentioned above undergo separate training, with the total length of the
training dataset amounting to 81,268. Following each iteration of traversing the dataset, the
model’s prediction accuracy is evaluated using the testing dataset comprising 19,068 instances.
The experimental results are illustrated in Figure 5. Notably, starting from Group 3, there is a
significant increase in the model’s prediction accuracy, albeit accompanied by a gradual rise in
the time required for a single training episode. Subsequent experiments (Groups 4 to 6) exhibit
spikes in the computing time due to the deepening of the networks, but the corresponding
improvements in accuracy are not as pronounced. Therefore, it is deemed more appropriate
to preliminarily determine the network structure parameters based on the configuration of
Group 3, which has been utilized in the proposed framework outlined in this paper.

2.3. Output Layer—Determination of State Machine

The vehicle typically follows a predetermined route by default throughout the driving
process to ensure it reaches its destination. However, in actual driving scenarios, occasional
disturbances arise due to interactions with the external environment. The classification of a
driving state machine can characterize these disturbances. Drawing inspiration from the
driving behavior of human drivers on urban roads, vehicle driving states can be classified as
follows. This classification also determines the dimension (four) of the model output layer:

1. Conventional driving state: The vehicle is driving on a conventional road section with-
out traffic signal restrictions and maintains a safe distance from surrounding vehicles.



Sensors 2024, 24, 2592 7 of 17

2. Car-following state: In a scene with a large traffic flow, the vehicle needs to follow the
front vehicle and keep a fixed safe distance.

3. Traffic intersection driving state: There are interactive behaviors generated by reverse
and vertical vehicles in the future driving area of the target vehicle, which includes
all intersection types such as crossroads, T-junctions, and roundabouts, with traffic
signal lights.

4. Emergency braking state: The vehicle performs emergency braking before the immi-
nent collision and the violation of traffic rules such as running a red light.

Figure 5. Schematic diagram of the experimental results of the comparison of the network structure.
(The data analysis reveals a notable enhancement in accuracy for Groups 3 to 6. Additionally, there is
a substantial reduction in training costs observed for Groups 4 to 6).

The classification of driving states utilized in our study has been carefully considered
to simultaneously meet the requirements of the comprehensive coverage of urban driving
tasks and distinct differentiation of the control parameters. Any driving task in urban
settings can be entirely composed of these four states.

2.4. Execution Layer—Rule-Based Vehicle Motion Control

Rule-based vehicle motion control essentially constitutes a path-tracking algorithm
that considers various driving states. The end-to-end learning-based autonomous driving
algorithm exhibits serious instability. For the subsequent verification experiment, this paper
opts for a rule-based algorithm to execute the vehicle’s specific driving actions (throttle,
steering, braking, etc.). Considering the characteristics of the rule-based algorithm, its
control logic must be designed distinctively for various driving states. By simplifying the
driving task into four predefined driving states for the output, the previous algorithm
facilitates this aspect significantly.

2.4.1. PID-Based IDM Control Algorithm

The principle of the PID-based IDM control algorithm mentioned above is illustrated
below. The PID control process is divided into two components: lateral control and
longitudinal control and generating the steering wheel angle and throttle/brake control
signals, respectively, as depicted in Figures 6 and 7.

During the experiment, adjusting the parameters of the PID controller is a primary task.
Adjusting the PID parameters is an empirical process typically involving experimentation
and observing the system’s response. After the first set of PID parameters is stabilized and
the agent is controlled to accelerate beyond 50 km/h, it became evident that the control
effectiveness was notably compromised. In the case of the speed exceeding 50 km/h, the
PID parameters are re-calibrated. The adjustment ensures stable operation in the speed
range of 50 to 100 km/h, and the upper limit setting refers to the maximum allowable
speed of the Beijing Expressway. Recognizing the direct correlation between vehicle control



Sensors 2024, 24, 2592 8 of 17

stability and speed, this paper designates the speed of 50 km/h as the critical point and
establishes two different sets of PID parameter configurations, as outlined in Table 2.

Figure 6. Longitudinal PID control algorithm.

Figure 7. Lateral PID control algorithm.

Table 2. PID parameter setting.

Speed ∆T Direction Kp Kd Ki

0–50 km/h 0.05 s
Lateral 0.58 0.02 0.5

Longitudinal 0.15 0.05 0.07

50–100 km/h 0.05 s
Lateral 0.75 0.02 0.4

Longitudinal 0.37 0.024 0.032

2.4.2. Conventional Driving State

• Target speed: 30 km/h.
• Throttle control: as shown in Algorithm 1.
• Steering control: as shown in Algorithm 2.

Algorithm 1. Acceleration Control of the Conventional Driving State

1.control = carla.VehicleControl().

2.Target_speed = get_target_speed()

3.Acceleration_value = Longitudinal_PID_controller(Target_speed)

4.if Acceleration_value ≥ 0 : control.throttle = Acceleration_value

control.brake= 0

5.else control.throttle = 0

control.brake= abs(Acceleration_value)



Sensors 2024, 24, 2592 9 of 17

Algorithm 2. Steering Control of the Conventional Driving State

1.control=carla.VehicleControl()

2.Way_point=get_way_point()

3.Steering_value=Lateral_PID_controller(Way_point)

4.control.steer=Steering_value

2.4.3. Car-Following State

• Target speed: as shown in Algorithm 3.
• Throttle control: The throttle and steering wheel angle calculation in this state is

completely consistent with that of the conventional driving state, except for the
target speed.

Algorithm 3. Target Speed of Car-Following State

1.Target_vehicle = get_target_vehicle()

2.∆v=abs(self.speed - get_speed(Target_vehicle))

3.Time_to_collision = distance(self.vehicle, Target_vehicle)/∆v

4.if 0 Time_to_collision safety_time:

Target_speed =min(get_speed(Target_vehicle)-5, min(self.max_speed, 25))

5.else if safety_time Time_to_collision 2*safety_time:

Target_speed = min(max(self.min_speed, get_speed(Target_vehicle)),

min(self.max_speed, 25))

6.else

Target_speed =min(self.max_speed, 25)

2.4.4. Traffic Intersection Driving State

When the vehicle is navigating a traffic intersection environment, there is a higher
likelihood of overlapping with the anticipated trajectories of multiple vehicles compared to
a conventional environment. Hence, it becomes necessary to reduce the speed. The control
algorithm in this mode mirrors the conventional driving state, with the only difference
being a reduction in the target speed by 5 km/h.

2.4.5. Emergency Braking State

• Target speed: 0 km/h.
• Throttle control: 0 (the throttle control is set to 0).
• Brake control: 1 (the brake control quantity is set to the maximum).

3. Experiment
3.1. Simulation Environment Set Up

The utilization of simulation scenarios serves two primary purposes: data collection
and model verification. The simulation scene is consistently set by selecting Carla’s built-in
Town series map, and NPC vehicles and pedestrians are generated randomly within this
environment. The agent vehicle is initially placed at a randomly chosen generation point,
and the control mode for the agent vehicle (whether it utilizes a built-in algorithm or a
trained model) can be selected based on the specific experiment requirements.

This standardized approach ensures consistency across experiments and allows for
efficient comparison of the results. The Carla Town series map provides a realistic and di-
verse environment for testing, while the random generation of NPCs introduces variability
to the scenarios. Researchers can then choose between the built-in algorithm or a trained
model to control the agent vehicle, tailoring the experiment to their specific needs. This
methodology provides a robust foundation for both data collection and model verification,
contributing to the reliability and repeatability of simulation-based experiments.



Sensors 2024, 24, 2592 10 of 17

3.2. Self-Built Dataset

The learning-based algorithm model demands an extensive dataset for training, neces-
sitating data collection through experiments. Carla, a well-established urban traffic scene
simulator, can generate highly realistic urban maps within its environment. Moreover, it
allows the definition of vehicle and pedestrian NPCs for interactive purposes. The ultimate
simulation environment is illustrated in Figure 8.

Figure 8. Carla simulation scenario diagram.

The vehicle’s driving state information (label value) can be directly obtained in the
simulation environment. By allowing agent vehicles to circulate randomly on various
routes within the city, a substantial number of images, state matrices, and driving state
(label value) information can be collected to create a comprehensive dataset. The driving
states are directly derived from parameter queries within the Carla simulator, resulting in
four distinct categories. This serves as the basis for the aforementioned state classification.
To ensure comprehensive data coverage, during the data-collection process, factors such as
the time of day and lighting conditions in the simulation environment vary randomly, as
illustrated in Figure 8. The final dataset has a length of 396,058, and the composition of the
dataset is depicted in Figure 9.

Figure 9. Dataset directory structure diagram.



Sensors 2024, 24, 2592 11 of 17

3.3. GCN Model’s Training

The comparative experiment was devised to validate the effectiveness of the proposed
algorithm’s innovation in the model-training segment. The detailed design of the training
program is outlined in Table 3.

Table 3. Comparative experiment settings.

Training Group Image Processing Timing Series Processing

Comparison 1 VGG16 Flatten and FCN
Comparison 2 VGG16 LSTM
Comparison 3 VGG16 Timing-based GCN
Comparison 4 ResNet50 Flatten and FCN
Comparison 5 ResNet50 LSTM
Comparison 6 ResNet50 Timing-based GCN
Comparison 7 EfficientNetB7 Flatten and FCN
Comparison 8 EfficientNetB7 LSTM
Comparison 9 EfficientNetB7 Timing-based GCN

Comparison 10 YOLO Flatten and FCN
Comparison 11 YOLO LSTM

Proposed algorithm YOLO Timing-based GCN

The data-flattening process and fully connected network (FCN) processing are stan-
dard operations in deep learning and were consequently chosen as the baseline group. For
image preprocessing, VGG16 [23], ResNet50 [24], and EfficientNetB7 [25] were selected
as the control group, given the robust capabilities in image recognition. Regarding pro-
cessing timing information, LSTM [33] was chosen as the control group, recognized for its
proficiency in handling sequence information.

In the model-training section, the following pre-configuration measures were im-
plemented:

1. In the dataset loading process, considering a large amount of information in the image
data, the Dataloader in Pytorch is established by reading the file list.

2. To improve the training efficiency, ReduceLROnPlateau and Adaptive Gradient are
introduced into the model training.

3. Considering the imbalance of the proportion of different tags in the database, the data
are uniformly and randomly sampled according to the number of different tags in
the dataset-reading process. The final training set length is 81,268 , the test set length
19,068, and the total amount of data more than 100,000.

3.4. Co-Simulation Verification

In the co-simulation verification, the agent vehicle was configured to operate as
an autonomous vehicle within a realistic city scene. The information available in the
simulation environment was restricted to the vehicle’s location, speed, onboard sensor
(camera) data, and the predetermined driving route. These parameters align entirely
with the characteristics of the current real traffic scene. The overall process is illustrated
in Figure 10.

Two control groups were set up in this experiment:

1. Baseline group: The agent vehicle can obtain all global information from the simu-
lation environment, including the map location, vehicle location, vehicle speed, and
traffic status.

2. Hierarchical decision-making framework group: The agent vehicle can only obtain
its vehicle speed information and the image information of the top four cameras and
input the above information into the pre-trained optimal model to obtain the vehicle’s
state information to complete the control of the vehicle.



Sensors 2024, 24, 2592 12 of 17

Figure 10. Co-simulation verification process diagram (the detailed descriptions of the feature
matrix and the adjacency matrix can be found in Section 2, “Input Layer—Image Information and
Preprocessing”, in the preceding section. GCN: Graph Convolution Neural Network; FCN: Fully
Connected Neural Network; IDM: Intelligent Driver Model.)

The final indicators were evaluated as follows.

1. Average vehicle speed: The efficiency of the vehicle in completing the driving task has
always been an important indicator for evaluating the autonomous driving algorithm.

2. The number of collisions: The vehicle’s driving safety is the bottom line of the appli-
cation of the automatic driving control algorithm.

3. Destination arrival rate: The automatic driving of vehicles to reach the predetermined
target point is the completion of a task, and the completion of the task of the vehicle is
also a critical assessment index for the automatic driving of vehicles.

4. Emergency braking frequency: The effective emergency braking of the vehicle can
avoid the occurrence of traffic accidents, but frequent braking will lead to the decline
of member comfort and the improvement of vehicle energy consumption.

5. Control cycle: The shorter the control cycle, the higher the computational efficiency
of the representative algorithm, which can adapt to improving driving requirements
such as higher vehicle speed.

4. Result
4.1. GCN Model’s Training Result

The primary evaluation metrics for the model training process are the real-time pre-
diction accuracy and the loss value during training. The trends of these two indicators
are visualized in Figures 11 and 12. (Accuracy represents the recognition accuracy of the
model for the current driving state label. The loss represents the default loss calculation
in the deep learning process, which is used to characterize the convergence direction and
effect of model training. The episode is an inherent aspect of the model training process,
representing a cycle of training and testing. This paper symbolizes the entire journey from
generating the agent vehicle to completing a specific task—arriving at the destination).

The comprehensive comparison diagram in Figure 11a indicates that the two experi-
mental groups, YOLO-FCN and YOLO-GCN, exhibit notable advantages over the other
four groups. This paper conducts a detailed comparative analysis of the two groups in
Figure 11b. Examining the data trends, it is evident that both groups achieve a satisfactory
convergence effect. Regarding the convergence value, YOLO-GCN outperforms YOLO-
FCN, improving prediction accuracy by 2%. The outcomes of the comparative experiments



Sensors 2024, 24, 2592 13 of 17

affirm that the YOLO preprocessing and the proposed time series GCN effectively enhance
state prediction in this experimental scenario.

Figure 11. Schematic diagram of model prediction accuracy change (a): Changes in model prediction
accuracy during the training process. (b): For the convenience of comparison, groups involving
YOLO are presented separately. The data clearly indicate that the YOLO model integrated with GCN
exhibits superior comprehensive performance among the evaluated models.

Figure 12. Schematic diagram of loss change in the training process (a): Changes in model loss during
the training process. (b): For the convenience of comparison, groups involving YOLO are presented
separately. The data clearly indicate that the YOLO model integrated with GCN exhibits superior
comprehensive performance among the evaluated models.

The comprehensive comparison diagram in Figure 12a substantiates that both YOLO-
GCN and YOLO-FCN exhibit significant improvements in the convergence of model
training. The primary reason lies in the effectiveness of YOLO preprocessing in reducing
the complexity and uncertainty of input information, thereby making model training more
focused and directional. The loss trends of YOLO-GCN and YOLO-FCN depicted in
Figure 12b are stable and convergent, confirming the normality and effectiveness of the
model training for both groups.

The results in Figures 11 and 12 mutually reinforce each other, demonstrating that
the enhanced model prediction accuracy brought about by the newly proposed YOLO
preprocessing and the concept of time series GCN stems from an improvement in the
practical convergence ability of the model training process.

4.2. Co-Simulation Verification Result

The Carla simulation environment offers ten optional maps (Town01 to Town10).
Four scenarios with traffic lights were chosen for the co-simulation verification, as illus-
trated in Figure 13.

In the four Carla simulation scenarios, 60 NPC vehicles and 40 NPC pedestrians were
randomly introduced. These NPCs can autonomously navigate using Carla’s built-in traffic
controller. In each experiment episode, the agent vehicle is randomly positioned at a starting
point, and a destination location is randomly selected for driving. The episode concludes



Sensors 2024, 24, 2592 14 of 17

in the event of a collision. For the two experimental control groups, 1000 episodes were
conducted on each map. The comparative results are presented in Table 4. The YOLO-GCN
algorithm model, exhibiting the best performance in the preceding section, was employed
in the hierarchical decision-making framework group—this paper.

Figure 13. Scenario maps for verification in Carla. (Town01: A simple town with a river and several
bridges. Town02: A simple town with a mix of residential and commercial buildings. Town03:
A larger city map with roundabouts and large intersections. Town04: A square grid town, with
intersections and a bridge. There are multiple lanes in each direction. It is useful for performing
lane changes).

Table 4. Experimental results of algorithm verification.

Map Evaluating Indicator Baseline Group This Paper Variance

Town 01

Average vehicle speed 29.982 km/h 30.559 km/h +1.92%
Collision rate 0.9% 1.2% +0.3%

Destination arrival rate 99.1% 98.8% −0.3%
Emergency braking frequency 1.2518% 1.9713% +0.7195%

Control cycle 15.515FPS 14.522FPS −0.993FPS

Town 02

Average vehicle speed 25.287 km/h 23.376 km/h −7.56%
Collision rate 1.1% 1.3% +0.2%

Destination arrival rate 98.9% 98.7% −0.2%
Emergency braking frequency 3.1342% 3.4576% +0.3234%

Control cycle 15.513FPS 13.497FPS −2.016FPS

Town 03

Average vehicle speed 28.765 km/h 28.998 km/h +0.81%
Collision rate 0.8% 1.3% +0.5%

Destination arrival rate 99.2% 98.7% −0.5%
Emergency braking frequency 2.1036% 1.9853% −0.1183%

Control cycle 15.476FPS 17.632FPS +2.156FPS

Town 04

Average vehicle speed 22.158 km/h 23.367 km/h +5.46%
Collision rate 0.9% 1.2% +0.3%

Destination arrival rate 99.1% 98.8% −0.3%
Emergency braking frequency 4.5269% 4.8732% +0.3463%

Control cycle 15.324FPS 17.983FPS +2.659FPS



Sensors 2024, 24, 2592 15 of 17

The distinct variations in the road traffic environment, lighting conditions, and inter-
active objects (such as pedestrians and cars) across the four map scenes provide a robust
foundation for evaluating the model’s generalization ability index. These diverse scenarios
are essential for thoroughly testing the model’s adaptability across different real-world set-
tings. The Baseline group utilizes the rule-based autonomous driving algorithm embedded
in the Carla environment, enabling direct access to all information within the environment.
Consequently, it stands as a fully idealized control group with distinct advantages. The
comparison between the model proposed in this paper and the Baseline group is a compre-
hensive validation, providing a thorough assessment of the proposed model’s effectiveness.
Within the Carla environment, the agent vehicles perform actions solely generated by the
algorithm, without any additional driving assistance. This set up mirrors the control meth-
ods of human drivers in the real world. The configurations for the validation experiments
were designed to faithfully replicate actual autonomous driving situations.

The results strongly indicate that the vehicle control performance obtained by the
model proposed in this paper, relying on visual data, is largely comparable to the idealized
Baseline group. This finding serves as substantial evidence to validate the effectiveness
and generalization capability of the proposed model. It can be concluded that the algo-
rithm framework proposed in this paper demonstrates similarity to the Baseline group
across all evaluation indicators, with a maximum difference of 7.56%. This substantiates
that the algorithm framework presented in this paper effectively ensures the successful
completion of the vehicle’s autonomous driving task in a traffic scenario with incomplete
global information. Additionally, the algorithm framework’s performance on relevant
indicators supports its seamless integration as the state prediction module for autonomous
vehicles. Moreover, the table indicates that the newly proposed hierarchical framework can
adeptly handle autonomous driving tasks in four distinct maps, showcasing the algorithm’s
excellent generalization ability.

5. Conclusions

This paper introduces a hierarchical framework for autonomous vehicle driving tasks
in non-networked scenarios, which can execute autonomous driving tasks in different
environments without relying on global network information. Given the safety constraints
of real vehicle experiments, validation experiments based on Carla, which can fully sim-
ulate real-world scenarios, represent the most convincing simulation approach currently
available. The comparative experiment section validated the effectiveness of each of these
innovations individually. The YOLO pre-training model achieved nearly a 90% recognition
accuracy for vehicle driving states under identical training conditions. This level of accu-
racy surpasses what can be achieved by the basic FCN and the well-established VGG16,
ResNet50, and EfficientNetB7. Incorporating the time series GCN network resulted in a
2% enhancement in recognition accuracy compared to the non-sequential FCN structure.
Additionally, it outperformed the LSTM algorithm significantly in terms of processing
timing information.

Indeed, with the current model achieving a prediction accuracy of around 90%, future
work could explore the application of additional image preprocessing models to further
enhance the prediction accuracy and overall performance of the autonomous driving
algorithm. Investing in a more robust training hardware platform and allocating ample
model training time can contribute to achieving superior training results. Additionally,
incorporating actual vehicle experiments could provide a more thorough validation of the
algorithm’s effectiveness in real-world scenarios. To directly validate the model algorithm,
actual vehicle experiments can be arranged for direct verification once the security of the
future algorithm is further improved.

Author Contributions: Conceptualization, F.Y.; Methodology, F.Y., X.L. (Xueyuan Li), Q.L. and Z.L.;
Software, Q.L.; Validation, F.Y.; Data curation, F.Y. and X.L. (Xiangyu Li); Writing—original draft, F.Y.;
Writing—review & editing, X.L. (Xueyuan Li); Visualization, F.Y.; Supervision, X.L. (Xueyuan Li). All
authors have read and agreed to the published version of the manuscript.



Sensors 2024, 24, 2592 16 of 17

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Parekh, D.; Poddar, N.; Rajpurkar, A.; Chahal, M.; Kumar, N.; Joshi, G.P.; Cho, W. A review on autonomous vehicles: Progress,

methods and challenges. Electronics 2022, 11, 2162. [CrossRef]
2. Xiao, W.; Mehdipour, N.; Collin, A.; Bin-Nun, A.Y.; Frazzoli, E.; Tebbens, R.D.; Belta, C. Rule-based optimal control for

autonomous driving. In Proceedings of the ACM/IEEE 12th International Conference on Cyber-Physical Systems, Nashville, TN,
USA, 19–21 May 2021; pp. 143–154.

3. Kim, J.; Moon, S.; Rohrbach, A.; Darrell, T.; Canny, J. Advisable learning for self-driving vehicles by internalizing observation-
to-action rules. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
14–19 June 2020; pp. 9661–9670.

4. Aksjonov, A.; Kyrki, V. Rule-based decision-making system for autonomous vehicles at intersections with mixed traffic
environment. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis,
IN, USA, 19–22 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 660–666.

5. Gao, Z.; Sun, T.; Xiao, H. Decision-making method for vehicle longitudinal automatic driving based on reinforcement Q-learning.
Int. J. Adv. Robot. Syst. 2019, 16, 1729881419853185. [CrossRef]

6. Cheng, X.; Jiang, R.; Chen, R. Simulation of decision-making method for vehicle longitudinal automatic driving based on deep Q
neural network. In Proceedings of the 2020 the 7th International Conference on Automation and Logistics (ICAL), Beijing, China,
22–24 July 2020; pp. 12–17.

7. Zhang, H.; Xu, J.; Qiu, J. An automatic driving control method based on deep deterministic policy gradient. Wirel. Commun. Mob.
Comput. 2022, 2022, 1–9. [CrossRef]

8. Zhang, H.; Lin, Y.; Han, S.; Lv, K. Lexicographic Actor-Critic Deep Reinforcement Learning for Urban Autonomous Driving.
IEEE Trans. Veh. Technol. 2023, 72, 4308–4319. [CrossRef]

9. Maldonado, A.; Torres, M.; Catena, A.; Cándido, A.; Megías-Robles, A. From riskier to safer driving decisions: The role of
feedback and the experiential automatic processing system. Transp. Res. Part Traffic Psychol. Behav. 2020, 73, 307–317. [CrossRef]

10. Peng, T.; Liu, X.; Fang, R.; Zhang, R.; Pang, Y.; Wang, T.; Tong, Y. Lane-change path planning and control method for self-driving
articulated trucks. J. Intell. Connect. Veh. 2020, 3, 49–66. [CrossRef]

11. Wang, W.; Qie, T.; Yang, C.; Liu, W.; Xiang, C.; Huang, K. An intelligent lane-changing behavior prediction and decision-making
strategy for an autonomous vehicle. IEEE Trans. Ind. Electron. 2021, 69, 2927–2937. [CrossRef]

12. Zhang, Z.; Jiang, Q.; Wang, R.; Song, L.; Zhang, Z.; Wei, Y.; Mei, T.; Yu, B. Research on management system of automatic driver
decision-making knowledge base for unmanned vehicle. Int. J. Pattern Recognit. Artif. Intell. 2019, 33, 1959013. [CrossRef]

13. Wang, Y.; Chen, H.; Yin, G.; Mo, Y.; de Boer, N.; Lv, C. Motion State Estimation of Preceding Vehicles With Packet Loss and
Unknown Model Parameters. IEEE/ASME Trans. Mechatron. 2024, 1–12. [CrossRef]

14. Liao, J.; Liu, T.; Tang, X.; Mu, X.; Huang, B.; Cao, D. Decision-making strategy on highway for autonomous vehicles using deep
reinforcement learning. IEEE Access 2020, 8, 177804–177814. [CrossRef]

15. Chib, P.S.; Singh, P. Recent advancements in end-to-end autonomous driving using deep learning: A survey. IEEE Trans. Intell.
Veh. 2023, 9, 103–118. [CrossRef]

16. Liu, Z.; Wang, K.; Yu, J.; He, J. End-to-End Control of Autonomous Vehicles Based on Deep Learning with Visual Attention. In
Proceedings of the 2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI), Hangzhou, China,
18–20 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 584–589.

17. Wang, M.; Dong, H.; Zhang, W.; Shu, W.; Li, H. An End-to-end Auto-driving Method Based on 3D Lidar. J. Phys. Conf. Ser. 2019,
1288, 012061. [CrossRef]

18. Yi, X.; Ghazzai, H.; Massoud, Y. End-to-End Neural Network for Autonomous Steering using LiDAR Point Cloud Data. In
Proceedings of the 2022 IEEE 65th International Midwest Symposium on Circuits and Systems (MWSCAS), Fukuoka, Japan,
7–10 August 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–4.

19. Shao, H.; Wang, L.; Chen, R.; Waslander, S.L.; Li, H.; Liu, Y. Reasonnet: End-to-end driving with temporal and global reasoning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June
2023; pp. 13723–13733.

20. Hu, X.; Liu, Y.; Tang, B.; Yan, J.; Chen, L. Learning Dynamic Graph for Overtaking Strategy in Autonomous Driving. IEEE Trans.
Intell. Transp. Syst. 2023, 24, 11921–11933. [CrossRef]

21. Yang, F.; Li, X.; Liu, Q.; Li, Z.; Gao, X. Generalized Single-Vehicle-Based Graph Reinforcement Learning for Decision-Making in
Autonomous Driving. Sensors 2022, 22, 4935. [CrossRef] [PubMed]

http://doi.org/10.3390/electronics11142162
http://dx.doi.org/10.1177/1729881419853185
http://dx.doi.org/10.1155/2022/7739440
http://dx.doi.org/10.1109/TVT.2022.3226579
http://dx.doi.org/10.1016/j.trf.2020.06.020
http://dx.doi.org/10.1108/JICV-10-2019-0013
http://dx.doi.org/10.1109/TIE.2021.3066943
http://dx.doi.org/10.1142/S0218001419590134
http://dx.doi.org/10.1109/TMECH.2023.3345956.
http://dx.doi.org/10.1109/ACCESS.2020.3022755
http://dx.doi.org/10.1109/TIV.2023.3318070
http://dx.doi.org/10.1088/1742-6596/1288/1/012061
http://dx.doi.org/10.1109/TITS.2023.3287223
http://dx.doi.org/10.3390/s22134935
http://www.ncbi.nlm.nih.gov/pubmed/35808428


Sensors 2024, 24, 2592 17 of 17

22. Cai, R.; Li, J.; Li, G.; Tang, D.; Tan, Y. A Review of the Application of CNN-Based Computer Vision in Civil Infrastructure
Maintenance. In Proceedings of the 25th International Symposium on Advancement of Construction Management and Real Estate;
Springer: Berlin/Heidelberg, Germany, 2021; pp. 643–659.

23. Dutta, A.; Gupta, A.; Zissermann, A. VGG Image Annotator (VIA). 2016. Available online: https://www.robots.ox.ac.uk/~vgg/
software/via/ (accessed on 25 March 2024).

24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

25. Tan, M.; Le, Q.V. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

26. Al-batat, R.; Angelopoulou, A.; Premkumar, S.; Hemanth, J.; Kapetanios, E. An End-to-End Automated License Plate Recognition
System Using YOLO Based Vehicle and License Plate Detection with Vehicle Classification. Sensors 2022, 22, 9477. [CrossRef]
[PubMed]

27. Hu, Y.; Yang, J.; Chen, L.; Li, K.; Sima, C.; Zhu, X.; Chai, S.; Du, S.; Lin, T.; Wang, W.; et al. Planning-Oriented Autonomous
Driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC,
Canada, 18–22 June 2023; pp. 17853–17862.

28. Huang, Z.; Liu, H.; Wu, J.; Lv, C. Conditional Predictive Behavior Planning With Inverse Reinforcement Learning for Human-Like
Autonomous Driving. IEEE Trans. Intell. Transp. Syst. 2023, 24, 7244–7258. [CrossRef]

29. Wang, X.; Tang, K.; Dai, X.; Xu, J.; Xi, J.; Ai, R.; Wang, Y.; Gu, W.; Sun, C. Safety-Balanced Driving-Style Aware Trajectory Planning
in Intersection Scenarios With Uncertain Environment. IEEE Trans. Intell. Veh. 2023, 8, 2888–2898. [CrossRef]

30. Wang, Y.; Hu, Q.; Chen, H.; Qian, Y. Uncertainty instructed multi-granularity decision for large-scale hierarchical classification.
Inf. Sci. 2022, 586, 644–661. [CrossRef]

31. Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo algorithm developments. Procedia Comput. Sci. 2022, 199, 1066–1073.
[CrossRef]

32. Wang, C.Y.; Liao, H.Y.M. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. arXiv 2024,
arXiv:2402.13616.

33. Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451–2471.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.robots.ox.ac.uk/~vgg/software/via/
https://www.robots.ox.ac.uk/~vgg/software/via/
http://dx.doi.org/10.3390/s22239477
http://www.ncbi.nlm.nih.gov/pubmed/36502178
http://dx.doi.org/10.1109/TITS.2023.3254579
http://dx.doi.org/10.1109/TIV.2023.3239903
http://dx.doi.org/10.1016/j.ins.2021.12.009
http://dx.doi.org/10.1016/j.procs.2022.01.135
http://dx.doi.org/10.1162/089976600300015015
http://www.ncbi.nlm.nih.gov/pubmed/11032042

	Introduction 
	Methods 
	Input Layer—Image Preprocessing and Encoder
	Model-Based Image Preprocessing
	Encoder and State Matrix Construction

	Hidden Layer—Network Structure
	Time Series GCN
	Fully Connected Neural Network

	Output Layer—Determination of State Machine
	Execution Layer—Rule-Based Vehicle Motion Control
	PID-Based IDM Control Algorithm
	Conventional Driving State
	Car-Following State
	Traffic Intersection Driving State
	Emergency Braking State


	Experiment
	Simulation Environment Set Up
	Self-Built Dataset
	GCN Model’s Training
	Co-Simulation Verification

	Result
	GCN Model’s Training Result
	Co-Simulation Verification Result

	Conclusions
	References

