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Abstract: Detecting gear rim fatigue cracks using vibration signal analysis is often a challenging task,
which typically requires a series of signal processing steps to detect and enhance fault features. This
task becomes even harder in helicopter planetary gearboxes due to the complex interactions between
different gear sets and the presence of vibration from sources other than the planetary gear set. In
this paper, we propose an effectual processing algorithm to isolate and enhance rim crack features
and to trend crack growth in planet gears. The algorithm is based on using cepstrum editing (or
liftering) of the hunting-tooth synchronous averaged signals (angular domain) to extract harmonics
and sidebands of the planet gears and low-pass filtering and minimum entropy deconvolution (MED)
to enhance extracted fault features. The algorithm has been successfully applied to a vibration dataset
collected from a planet gear rim crack propagation test undertaken in the Helicopter Transmission
Test Facility (HTTF) at DSTG Melbourne. In this test, a seeded notch generated by an electric
discharge machine (EDM) was used to initiate a fatigue crack that propagated through the gear rim
body over 94 load cycles. The proposed algorithm demonstrated a successful isolation of incipient
fault features and provided a reliable trending capability to monitor crack progression. Results of
a comparative analysis showed that the proposed algorithm outperformed the traditional signal
processing approach.

Keywords: planet gear; rim crack; cepstrum editing; liftering; minimum entropy deconvolution
(MED); signal synchronous average (SSA)

1. Introduction

Gears are critical transmission components that are utilized widely in industry due to
their reliability and high torque transmission capacity. However, gears are often subjected
to high torques and cyclic loads, which eventually lead to component failures due to
fatigue. Gearbox health monitoring is conducted using a variety of methods including wear
debris monitoring [1,2], thermography [3] and vibration analysis [4–6]. It is common to
combine more than one method, e.g., wear debris and vibration trending, to provide a better
indication of health through a hybrid model [7]. Planetary gearboxes, being compact and
able to handle high torques, have been used widely in transmission systems like helicopter
main gearboxes and wind turbines. For a planetary gearbox, accelerometers are typically
placed radially on the casing outside the ring gear to capture vibration data. Vibration
signals collected through these sensors contain a mixture of harmonics and sidebands in
their spectra due to the multiple sources of vibration from each gear mesh (planet-sun and
planet-ring), each with the same meshing frequency. This further becomes complicated by
varying transfer paths to the location of the fixed accelerometer and the potential differences
in phase between the individual gear meshes [8,9]. This complex interaction requires the
use of advanced signal processing/pre-processing tools, which attempt to isolate/separate
individual time-varying components [10,11]. The use of some pre-processing techniques
such as synchronous signal averaging (SSA) [12], discrete random separation (DRS) [13]
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and linear prediction filtering (LPF) [14], often do not result in clear fault diagnosis, even
when there are only small speed fluctuations and the system can be considered to be a
mathematically stationary process.

Challenging (to detect) failure modes in planet gears can happen due to fatigue crack
initiation and progression in either the tooth or the gear rim. Typically, fatigue cracks do not
generate much wear debris and, as such, vibration analysis is often relied upon to diagnose
the presence of the crack at an early stage and trend its progression. Rim fatigue cracking
in planet gears was identified as the main cause of the major crashes of an AS-332L2 in
2009 [15] and an EC 225 LP in 2016 [16], both from the Super Puma family of helicopters.
A tooth crack mostly happens at either the root or the tip of the gear tooth as a result of
bending fatigue or impact load. Rim cracking takes place at the rim or web of the gear as a
result of excessive stress concentration. A rim crack will cause a periodic reduction of mesh
stiffness of a gear pair, which shows as impulses/impacts in the vibration signal when the
crack passes through the load path. This results in an increase in sidebands around the
gear mesh frequency and its harmonics. These impulses/impacts will not be clear in the
raw vibration signal until a very late stage of crack development, but they can be detected
earlier in the residual signals (i.e., after removing strong regular gear mesh components).
Although extensive research efforts and work have been devoted to the early detection of
gear cracks [17–22], more work is still needed to address this critical area in planet gears
and provide reliable and efficient algorithms for early detection and monitoring.

In this paper, we propose a new diagnosis algorithm using a cepstrum-editing tech-
nique [23,24] applied to synchronously averaged signals over the (planet-ring) hunting-
tooth period (angular domain) to extract periodic features relating to crack symptoms and
then, using minimum entropy deconvolution (MED) [25] to further enhance the extracted
features from the cepstrum-edited signals. This paper is organized as follows: Section 2
(Material and Methods) presents a summary of the experimental test rig (full-scale Heli-
copter Transmission Test Facility), crack initiation and data collection, traditional diagnostic
approach for gear crack detection and a discussion of the proposed new signal processing
algorithm. Section 3 (Results) discusses the obtained results, illustrating the advantages
of the proposed technique in the early detection of cracks and the trending and clustering
improvements it provides compared to the traditional approach. Section 4 (Discussion)
sheds more light on the observations seen in the results obtained using the proposed new
algorithm. In particular, this section presents a squared envelope analysis and illustrates
the periodicity observed in the cepstrum domain analysis. Finally, Section 5 (Conclusions)
provides a summary of the paper and the results.

2. Materials and Methods
2.1. Experimental Setup and Data Collection Scheme

The Defence Science and Technology Group (DSTG) completed an accelerated planet
rim fatigue crack propagation test under controlled conditions in 2020–2022 using their He-
licopter Transmission Test Facility (HTTF) with a Bell-206B-1 (OH-58) helicopter main trans-
mission gearbox (4-planet version) (Bell Helicopters, Fort Worth, TX, USA) [26]. The seeded-
fault test produced a vibration dataset repository suitable for exploring fatigue cracking
in thin-rim helicopter planet gears. The data at one load setting (125% torque) were made
available to the public through a Data Challenge organized in the HUMS 2023 conference
(https://humsconference.com.au/index2.html, accessed on 1 February 2024). The dataset
can be publicly accessed using the following URL: https://www.dst.defence.gov.au/our-
technologies/helicopter-main-rotor-gearbox-planet-gear-fatigue-crack-propagation-test
(accessed on 1 February 2024). Sections 2.1.1–2.1.3 present relevant information of the
HTTF, the seeded crack initiation, progression and the dataset details, respectively.

2.1.1. Helicopter Transmission Test Facility (HTTF)

The HTTF at DSTG Melbourne utilizes a retired Bell 206B-1 Kiowa (OH-58) helicopter
main rotor gearbox, which has either 3-planet or 4-planet configurations. The 3-planet
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configuration has 3 equally spaced planets with all the meshes in phase. As such, the orders
that are not integer multiples of 3 are suppressed. In the 4-planet version, two pairs of
planet gears are placed diametrically opposite from each other, but there is a non-uniform
angular distribution around the sun gear (i.e., approximately 88.6◦, 91.4◦, 88.6◦, 91.4◦).
Opposite planets mesh 180◦ out of phase, leading to zero-sum odd orders for opposite
pairs and in-phase even orders. A schematic presentation (3-planet) showing the main
components of the gearbox as well as the number of teeth on each gear is presented in
Figure 1. This gearbox has two speed reduction stages: a spiral pinion/bevel gear stage
with a reduction ratio of 3.73:1 (71/19) and a planetary stage with a reduction ratio of 4.67:1
(99/27 + 1) giving a total reduction ratio of 17.44:1. In the HTTF, the gearbox runs with a
nominal input speed of 6000 RPM, giving an output speed of approximately 344 RPM. Key
frequencies of interest (both in Hz and planet orders) are provided in Table 1.

Sensors 2024, 24, x FOR PEER REVIEW  3  of  29 
 

 

2.1.1. Helicopter Transmission Test Facility (HTTF) 

The HTTF at DSTG Melbourne utilizes a retired Bell 206B-1 Kiowa (OH-58) helicopter 

main  rotor gearbox, which has either 3-planet or 4-planet configurations. The 3-planet 

configuration has 3 equally spaced planets with all the meshes in phase. As such, the or-

ders that are not integer multiples of 3 are suppressed. In the 4-planet version, two pairs 

of planet gears are placed diametrically opposite from each other, but there is a non-uni-

form  angular  distribution  around  the  sun  gear  (i.e.,  approximately  88.6°,  91.4°,  88.6°, 

91.4°). Opposite planets mesh 180° out of phase, leading to zero-sum odd orders for op-

posite pairs and in-phase even orders. A schematic presentation (3-planet) showing the 

main components of the gearbox as well as the number of teeth on each gear is presented 

in Figure 1. This gearbox has two speed reduction stages: a spiral pinion/bevel gear stage 

with a reduction ratio of 3.73:1 (71/19) and a planetary stage with a reduction ratio of 4.67:1 

(99/27 + 1) giving a total reduction ratio of 17.44:1. In the HTTF, the gearbox runs with a 

nominal  input speed of 6000 RPM, giving an output speed of approximately 344 RPM. 

Key frequencies of interest (both in Hz and planet orders) are provided in Table 1. 

(a)  (b) 

Figure 1. (a) Bell 206 3-planet schematic presentation [27] (b) key information and frequencies. 

The HTTF is fitted with four single-axis accelerometers as shown in Figure 2. One of 

the sensors is placed at the input pinion flange (Input Pinion sensor), while the other three 

are placed on the upper housing flange around the ring gear as follows: Ring Front at the 

front of the gearbox; Ring Left at the left side of the gearbox; and Ring Rear at the rear of 

the gearbox. Note that the locations are approximate and relative to viewing forward of 

the helicopter. A once-per-rev  inductive tachometer on the  input shaft was used  in the 

synchronous averaging process. 

Figure 1. (a) Bell 206 3-planet schematic presentation [27] (b) key information and frequencies.

Table 1. Key frequencies of interest (in Hz and planet orders).

Frequency of Interest Frequency
(Hz)

Frequency
(×Planet Orders)

Stage 1

Input Shaft 100 6.17

Pinion/bevel gear mesh 1900 117.14

Bevel gear shaft (sun gear) 26.76 1.65

Stage 2

Planet gear (relative to carrier) 16.22 1

Sun gear (relative to carrier) 21.03 35/27 or 1.296

Carrier (output shaft) 5.73 35/99 or 0.3535

Planetary gear mesh frequency (GMF) 567.71 35 (or 99× carrier)

Planet pass frequency
(Number of planets times

the carrier frequency)

3-planet 17.20
4-planet 22.94

3-planet 1.06
4-planet 1.41

The HTTF is fitted with four single-axis accelerometers as shown in Figure 2. One
of the sensors is placed at the input pinion flange (Input Pinion sensor), while the other
three are placed on the upper housing flange around the ring gear as follows: Ring Front at
the front of the gearbox; Ring Left at the left side of the gearbox; and Ring Rear at the rear
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of the gearbox. Note that the locations are approximate and relative to viewing forward
of the helicopter. A once-per-rev inductive tachometer on the input shaft was used in the
synchronous averaging process.
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Figure 2. Physical locations of HTTF accelerometers.

2.1.2. Crack Initiation and Progression

The notched planet gear and a bottom view of the 4-planet carrier assembly are shown
in Figures 3a and Figure 3b, respectively. Two electric-discharge-machined (EDM) notches
can be seen in Figure 3a. The first notch (smaller notch of 1.4 mm) was introduced in June
2020. The gearbox was then run in approximately 30-min load cycles (the actual duration
was slightly longer due to time required to transition from one setting to the next) as
depicted in Table 2. After completing 146 load cycles over 16 separate days of rig operation
between June and December 2020, the test failed to initiate a crack. As such, a second notch
(larger notch of 5.4 mm) was introduced in the planet gear rim on the opposite side in
October 2021, and testing continued for another 12 days of operation up to January 2022.
This second notch successfully initiated a crack that propagated from one side of the gear
to the other between the two gear teeth over 94 load cycles (i.e., load cycles 147 to 241),
noting that the test was interrupted by COVID-19 lockdowns.
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Table 2. One load cycle (approximate durations).

Loading
(%)

Load Input Torque
(Nm)

Input Speed
(RPM)

Duration *
(Min)

50 152 6000 2

75 227 6000 2

100 303 6000 2

125 379 6000 24
* The first 9 cycles for the first notch had the actually durations of [3, 3, 3, 21] min at each load.
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2.1.3. Available Dataset Description

Only data from the final 58 load cycles (cycle 36 to cycle 94) after the second notch was
inserted) of the test, up to the point where the crack propagated all the way through the gear
rim, were made available in the HUMS 2023 Data Challenge. A total of 526 data records at
the 125% torque load condition were collected across these load cycles from the four-sensor
locations (Input Pinion, Ring Front, Ring Left and Ring Rear). The data were pre-processed
using hunting-tooth synchronous signal averaging (H-SSA) with 405,405 re-sampled points
per channel as follows:

• The H-SSA data length of 405,405 was designed such that the data length was an
integer multiple number of revolutions for both the planet carrier and planet gear;
hence, the carrier SSA (C-SSA) or planet SSA (P-SSA) can be derived from the H-SSA.

• The H-SSA was calculated from raw vibration signals over 12 planet-ring hunting-
tooth periods, and each hunting-tooth period corresponded to 99 revolutions of planet
gears (99 × 4095) or 35 revolutions of the planet carrier (35 × 11,583).

• The P-SSA can be produced by reshaping H-SSA into (4095 × 99) and finding the
average across the 99 columns. Similarly, C-SSA can be produced by reshaping H-SSA
into (11,538 × 35) and finding the average across the 35 columns.

2.2. Gear Crack Traditional Diagnosis Approach

Planet gear faults have been traditionally detected using a planet gear synchronous
signal averaging (P-SSA) technique [10]. The steps involved in this processing are explained
in the diagram of Figure 4. In the first step of this process, the H-SSA signal (signal
provided in the Data Challenge dataset) is normalized to a zero mean and unit standard
deviation. This has the effect of reducing the influence of any variation in torque, speed
and temperature on vibration amplitudes, as well as improving the sensitivity to changes
caused by the fault. The second step involves finding the planet synchronous signal average
(P-SSA), which is obtained by reshaping the normalized H-SSA signal (4095 × 99) and
finding the average (mean) across the 99 columns. In step 3, a residual signal is generated
by removing the gear mesh harmonics and two closest sidebands in the order domain and
low-pass filtering. This is performed as follows:

• Transferring P-SSA into the frequency domain (1-sided spectrum obtained by using
Hilbert transform).

• Setting all GMF harmonics and the two closest sidebands around each harmonic
to zero.

• Low-pass filtering the signal by zeroing all the spectral components above 3.5× GMF
and, then, inverse transforming back to the time (or angle) domain and taking the real
part of the signal. Note that the low-pass filtering represents a critical step, as rim
cracks (compared to tooth cracks) are more likely to generate changes in relatively
low frequency ranges. Low-pass filtering focuses attention on the lower-frequency-
range features in the signal. This decision is based on a consideration of the expected
changes in the dynamics of the gear system in the presence of a rim crack compared
to, for example, a tooth crack fault, where the reverse approach may have been
more appropriate.

To illustrate the effectiveness of the traditional approach in extracting fault features,
record #522 (late stage of crack growth) is examined below. Figure 5 shows the H-SSA
signal of the Ring Front sensor along with the power spectral density (first four gear mesh
harmonic orders that are integer multiples of 35). The signal is dominated by the gear
meshing vibration and shows no obvious signs of impulses (spikes). It has a low kurtosis
value of 3.26. Gear mesh harmonics can be seen clearly in the power spectrum surrounded
by sidebands. A zoomed-in plot showing sidebands around the 1st and 2nd gear mesh
harmonics is presented in Figure 6. It can be seen that the 1st gear mesh frequency (odd
harmonic) is suppressed and that sidebands are dominant. The sidebands are spaced at
2× carrier frequency, which is half the planet pass frequency (planet pass frequency = 4×
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carrier frequency). A detailed explanation of GMF suppression and sidebands presence
for this 4-planet gearbox was provided in [28] and compared to the 3-planet configuration.
The asymmetry of the modulation sidebands about the GMF in the 4-planet arrangement
was discussed based on McFadden and Smith’s model [2]. It was concluded that sideband
modulation at the 2× carrier rather than at the 4× carrier happens because the planet gears
in this configuration come in pairs spaced at 180◦ apart, and the angle between each of the
planets is not 90◦ (approximately 88.6◦ and 91.4◦ for each pair as presented in Section 2.1.1).
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Figure 5. Record #522 time and frequency signatures.

Residual signals of record #522 are plotted in Figure 7. As the rim crack in the planet
gear affects the meshing process with both the ring and the sun gears, two spikes (impulses)
are generated during every planet revolution that are approximately 180◦ apart. Rim crack
features (two spikes/impulses) can be seen in the signals from all four sensors, with higher
amplitudes and kurtosis values seen in the Ring Left and Ring Front sensors. The higher
spike in each sensor likely corresponds to the crack passing through the planet-ring mesh,
and the lower to the planet-sun mesh.
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Figure 7. Residual signals of record #522 (a) Input Pinion (b) Ring Front (c) Ring Left (d) Ring Rear.
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2.3. Proposed New Signal Processing Algorithm

The proposed new signal processing algorithm to extract and enhance rim crack
impulses is presented in Figure 8. The algorithm consists of four main steps, with the first
and third steps being common to those used in the traditional approach (normalization and
low-pass filtration). The second step works on the retrieval of planet-related harmonics and
sidebands using a cepstrum-editing technique [23,29–31] as explained in Section 2.3.1. This
step has two main purposes: the first is to retain synchronous information relevant only to
planet gears, and the second is to remove the effects of the transfer path (pre-whitening).
The fourth step (Section 2.3.2) employs the MED technique [25,32] to enhance the fault
features (impulses).
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2.3.1. Cepstrum Editing
Cepstrum Analysis

Cepstrum analysis is a powerful nonlinear signal processing technique that was
initially proposed to extract echo arrival times in composite signals. It was first introduced
by Bogert et al. [33] in 1963 as the “power spectrum of a log power spectrum”. The word
“cepstrum” was then devised by reversing the first syllable of “spectrum” to describe the
new domain. Cepstrum was later defined by Childers et al. [34] as “the inverse Fourier
transform (IFFT) of the log spectrum”. For a time domain signal x(t), the cepstrum Ceps(τ)
can be written mathematically:

Ceps(τ) = IFFT(logX( f )), (1)

where X( f ) is the Fourier transform (FFT) (complex) of the real time domain signal x(t),
defined as follows:

X( f ) = FFT(x(t)) = Xr( f ) + jXi( f ) = A( f )exp(j∅( f )), (2)

where Xr( f ) and Xi( f ) are the real and imaginary components, respectively. The amplitude
A( f ) and phase ∅( f ) are defined, respectively, as follows:

A( f ) = |X( f )| =
√

Xr( f )2 + Xi( f )2, and

∅( f ) = ∠X( f ) = tan−1 Xi( f )
Xr( f )

.

Note that the cepstrum (being the inverse transfer of a log spectrum) has the units of
time as its independent variable, similar to the time domain signal. Cepstra come with a
set of new terminology, with quefrency, rahmonic and liftering being the three key terms to
describe the cepstrum x-axis, cepstrum harmonics and cepstrum filtering, respectively.

If the phase in Equation (1) is retained, the logarithmic spectrum will have log ampli-
tude as the real part and phase as the imaginary part. This so-called “complex cepstrum
Cepsc(τ)” is obtained as shown in Equation (3) as follows:

Cepsc(τ) = IFFT(log A( f ) + j∅( f )). (3)

The complex cepstrum has a real value (despite its name) since the log amplitude is
even, while the phase is odd. Its calculation requires the phase to be a continuous function
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of frequency, which is often possible for frequency response functions (transfer functions).
However, this is not possible for signals that consist of a mixture of deterministic discrete
frequency components. For these signals, the phase is discontinuous with frequency. If the
phase ∅( f ) is disregarded in Equation (3), the so-called “real cepstrum Cepsr(τ)” can be
obtained as follows:

Cepsr(τ) = IFFT(log A( f )). (4)

The real cepstrum has the advantage that it can be applied to both forcing and response
signals, as it does not require phase to be a continuous function of frequency. However,
neglecting the phase means that the cepstrum is only reversible to the spectrum domain,
not back to the time domain. It can also be used to smooth auto spectra, which will usually
reduce noise. One key property of the cepstrum domain is that the forcing function and
transfer function effects become additive in the cepstrum, thus enabling their separation.
For single input multiple output (SIMO) systems, any output signal r(t) is the convolu-
tion of the input signal x(t) (forcing function) with the impulse response function of the
transmission path g(t) (transfer function), as given in Equation (5). The convolution (∗) is
converted to a multiplication in the frequency domain (Equation (6)) and to an addition
process (Equation (7)) by the log function in the cepstrum operations as follows [35]:

r(t) = x(t) ∗ g(t) (5)

R( f ) = X( f )·G( f ) (6)

log(R( f )) = log(X( f )) + log(G( f )). (7)

More comprehensive information and advice on the use of the cepstrum can be found
in [36]. Cepstrum analysis has been widely used in a number of applications, e.g., radar
signal and marine exploration [34], biomedical signal processing [37], speech analysis [38]
and mechanics [35]. In speech analysis, the cepstrum is used to determine the voice
pitch (performed by measuring the harmonic spacing) and to separate the formants, i.e.,
the transfer function of the vocal tract, from voiced and unvoiced sources [38]. Cepstrum
analysis for gearbox health monitoring was initially proposed in [39] through the realization
that the cepstrum does not only detect families of harmonics, but also equally spaced
modulation sidebands. In this sense, the cepstrum serves as an effective tool to characterize
families of harmonics, sidebands and modulations in a clear and easy-to-interpret format,
as these families become concentrated in rahmonics. This makes the cepstrum an important
tool for gear health monitoring, as local faults in gears give an impulsive modulation of the
gear mesh signals (both amplitude and frequency modulation) that results in sidebands
spaced at the speed of the gear on which the local fault is located [35]. A number of
researchers have made use of the cepstrum to detect and isolate the source of a local gear
fault to a particular gear set, e.g., [40–42].

Figure 9 presents the cepstrum domain plot for the Ring Front sensor record #522.
This is illustrated using four subplots to highlight families of rahmonics across different
quefrency ranges. Interesting observations can be seen here that are not seen in both the
time and frequency domains of Figures 5 and 6, respectively. Figure 9a displays the low
quefrency region (0.001 to 0.5 planet rotations), where transfer path effects (transient low
quefrency part) can be seen clearly in addition to a gear mesh rahmonic at 0.0286 (i.e., 1/35).
Figure 9b shows the quefrency range from 0.5 to 45 planet rotations, where two families of
rahmonics are evident. The first rahmonic family relates to the planet carrier and occurs at
multiples of 2.82857 planet rotations (i.e., 99/35); the second family relates to the planet
rotation and occurs at integer multiples of the planet rotation. High amplitudes of the
rahmonic family related to the planet gear rotation are seen at exactly 17 and 34 planet
rotations, which are very close to adjacent rahmonic components of the planet carrier. This
is further shown in Figure 9c,d, which provide zoomed-in views around the 6th rahmonic
of the carrier and the 17th rahmonic of the planet, and the 12th rahmonic of the carrier and
the 34th rahmonic of the planet, respectively.
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Figure 9. Cepstrum content of Ring Front sensor at record #522.

Cepstrum-Editing Technique

Sawalhi and Randall [23] proposed a cepstrum-editing algorithm to remove selected
families of harmonics and sidebands by editing the amplitudes (setting families of rahmon-
ics to zero) in the real cepstrum, transforming back into the logarithmic domain, where
the initial phase was restored, and then transforming the signal back to the time domain.
A flowchart illustrating the cepstrum-editing process is presented in Figure 10. The process
has been successfully used to diagnose faults in bearings [31,43], and it has been recently
used as a gear diagnostic method denoted as the “angle cepstrum comb liftering (ACCL)
method” [24]. In [24], the authors used comb liftering in the cepstrum of the order tracked
acceleration signal to select all rahmonics of the gear mesh quefrency of a particular mesh-
ing gear pair. This was followed by the application of a notch filter to remove gear mesh
frequencies to enhance the detection of gear faults. This method was found to be effective
for local fault detection and trending, such as tooth root cracks and localized spalls.
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Proposed Cepstrum-Editing Scheme

For the planet rim crack propagation dataset, a proposed cepstrum-editing scheme
for fault detection in planet gears is presented in the schematic diagram of Figure 11. The
overall process uses the structure shown in Figure 10 along with insights from recent
cepstrum editing for gears presented in [24]. The method works by removing (or setting to
zero) all quefrency components except the DC (retained for scaling) and several integer
quefrency lines around each planet rahmonic. This is equivalent to the use of a comb filter
with a certain tine width (Tw) in the cepstrum domain. Through this cepstrum-editing
scheme, the effect of the transfer function (low quefrency part) is removed, and thus, the
spectrum becomes white. Gear mesh harmonics are also eliminated, and, as such, there is
no need to use a notch filter to remove these harmonics as was carried out in [24].

Sensors 2024, 24, x FOR PEER REVIEW  12  of  29 
 

 

 

Figure 10. The flowchart for the cepstrum-editing technique. 

Proposed Cepstrum-Editing Scheme 

For the planet rim crack propagation dataset, a proposed cepstrum-editing scheme 

for fault detection in planet gears is presented in the schematic diagram of Figure 11. The 

overall process uses  the  structure  shown  in Figure 10 along with  insights  from  recent 

cepstrum editing for gears presented in [24]. The method works by removing (or setting 

to zero) all quefrency components except the DC (retained for scaling) and several integer 

quefrency lines around each planet rahmonic. This is equivalent to the use of a comb filter 

with a certain  tine width  (Tw)  in  the cepstrum domain. Through  this cepstrum-editing 

scheme, the effect of the transfer function (low quefrency part) is removed, and thus, the 

spectrum becomes white. Gear mesh harmonics are also eliminated, and, as such, there is 

no need to use a notch filter to remove these harmonics as was carried out in [24]. 

 

Figure 11. The flowchart for the new cepstrum-editing scheme. Figure 11. The flowchart for the new cepstrum-editing scheme.

Note that the effect of Tw in the cepstrum domain corresponds to multiplying the
cepstrum with a periodic rectangular function with equivalent width of Tw lines, spaced
by an amount corresponding to the number of lines (samples) per planet period [24]. In
the log spectrum domain, this corresponds to a convolution with a sinc(x) function with
the first zero crossing at Fs/Tw shaft orders, where Fs is the order sampling frequency
(samples/revolution) [24]. An appropriate tine width (Tw) can be judged with respect to
the equivalent frequency band of the discrete spectral components protruding from the
base noise level [24]. In order to select an appropriate Tw, a first approach was to define a
low-pass (LP) filter cut-off frequency. This was selected as 2.5× GMF (i.e., at 87.5× planet
shaft orders). This gives an initial guide for a possible choice of Tw by ensuring harmonics
do not decrease considerably at the low-pass cut-off frequency. To do so, the zero crossing
of the sinc(x) function was set arbitrarily at 2 times the required LP cut-off frequency, i.e.,
at 5× GMF. This corresponds approximately to 175 planet shaft orders, i.e., 35 × 5. At a
sampling frequency Fs of 4095 samples/revolution, this corresponds to using a tine width
(Tw) of 23 lines (4095/175), i.e., (Rp ± 11) where Rp is the central planet rahmonic. A second
approach was based on minimizing the squared error between two consecutive tine widths
Tw1 and Tw2 in similar terms with the MED filter length selection criterion reported in [44].
If di(Tw1) and di(Tw2) represent the column vectors of the low-pass cepstrum filtered outputs
at 2.5× GMF using Tw1 and Tw2, respectively, a squared error can be calculated using
the following:

E(Tw1) =
N

∑
i=1

{[
di(Tw1)−d

i(Tw2)

]T[
di(Tw1) −di(Tw2)

]}
. (8)

An appropriate tine width, Tw, would be one corresponding to [E(Tw)]min, as a
variation in output signal would be least when centred on the appropriate/optimum tine
width. The limits of the search were chosen between Tw = 9 (sinc(x) zero crossing of 13×



Sensors 2024, 24, 2593 12 of 26

GMF) and Tw = 33 (sinc(x) zero crossing of 3.5× GMF). The result of this search is plotted
in Figure 12, with a minimum squared error at Tw = 25, i.e., (Rp ± 12) and kurtosis values
of just over 22. Note that this optimum Tw of 25 is close to the first approach selection of
23, which was based on setting the zero crossing of the sinc(x) function at 2 times the LP
filter cut-off frequency. The power spectral density results of using a Tw of 25 are presented
in Figure 13 (scaled in dB). The effect of using a rectangle window of Tw = 25 can be seen
clearly in the spectrum of the filtered cepstrum in Figure 13b, where levels are noticed to
decrease considerably at approximately 165 planet orders (approximately 4.7× GMF), with
relatively constant amplitudes within the LP filter limits. This is further demonstrated in
Figure 14 by plotting sinc(x) function with a Tw = 25 (red) and overlaying it on the edited
cepstrum (blue) and its envelope (black).
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2.3.2. Blind Deconvolution (BD)

Blind deconvolution is one of the radical and commonly used sparse feature extrac-
tion/enhancement methods in fault diagnosis. Its fundamental working principle relies on
finding an inverse filter using a measured signal to extract/enhance fault-related features
(impulses) through maximizing an appropriate objective function. There are two main
methods to find the inverse filter, which are the objective function method (OFM) and the
Eigen vector algorithm (EVA). Chen et al. [45] provided a summary of these two methods
for rolling element bearing feature extraction and proposed the use of a squared envelope
spectrum as the objective function. EVA methods have been widely used recently as they
are non-iterative and do not require the objective function to be differentiable, as is the
case with OFM. The minimum entropy deconvolution (MED) technique [25] is one of the
earliest OFM-based methods which uses kurtosis (impulsiveness measure) as its objective
function. MED was used effectively to enhance the impulses arising from spalls and cracks
in gears [32] and in enhancing spall detection in rolling element bearings [46]. One of
the shortcomings of MED is that it tends to enhance single transients (random impulsive
noise) and, as such, may result in wrong conclusions. A second shortcoming of MED
is its reliance on kurtosis, which is a sensitive measure to random transients or outliers
in the signal. To overcome these shortcomings, a number of BD algorithms have been
proposed. These methods were either frequency-independent or frequency-dependent in
a quest to target/enhance only periodic impulses related to faults in rotating machinery.
Examples of frequency-independent approaches are the optimal MED [47], the maximum
Gini index deconvolution [48,49] and blind filtering based on Box-Cox sparse measures [50].
Some of the frequency-dependent algorithms are maximum correlated kurtosis decon-
volution (MCKD) [51], multipoint optimal minimum entropy deconvolution adjusted
(MOMEDA) [52], sparse maximum harmonics-to-noise-ratio deconvolution (SMHD) [53]
and maximum second-order cyclostationarity blind deconvolution (CYCBD) [54].

In this work, MED is selected as a means to enhance the impulsiveness of the output
of the cepstrum-edited low-pass signal. MED is a fast and robust algorithm when applied
to signals with no random transients/outliers. The use of the proposed cepstrum-editing
technique ensures that features related only to the planet rotation are extracted. This, along
with low-pass filtering, ensures that random impulses are eliminated. The use of kurtosis
as an indicator is also desirable as the aim is to enhance signal impulsiveness. There is still,
however, a possibility of having a one-off high impulse occurrence in the H-SSA signal
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related to planet rotation, from a shock or measurement-related error, which will result
in high kurtosis levels in some records. These odd records can be dealt with by using a
median smoothening filter during trending, as discussed later in Section 3.2.

Minimum Entropy Deconvolution (MED)

MED [25] is a system identification method used originally to extract reflectivity
information from seismic data to identify and locate layers of subterranean minerals. MED
has shown its effectiveness in de-convolving impulse excitations from a mixture of response
signals [55,56]. An illustration of the blind convolution concept is shown in Figure 15 [57].
In this illustration, it is assumed that an observed fault signal d(t) (in this case, the output
of cepstrum editing after being low-pass filtered) is a convolution of some transfer function
w(t) (e.g., transfer path effect) with the fault impulse series r(t) plus added superimposed
noise n(t). The goal of the blind deconvolution is to recover the fault impulse series r(t) by
removing/reducing the effect of the transfer function. In other words, the aim is to find an
inverse filter (g) which creates y(t), where y(t) = g ∗ d(t) such that y(t) is a representation of
r(t), which could be a shifted and scaled version of r(t). MED works by searching for an
optimum set of filter coefficients (de-convolving filter) to recover the output signal of an
inverse filter with the maximum value of kurtosis, where kurtosis is a fourth-order statistic
that measures the deviation from Gaussianity in the signal.
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Wiggins [25] proposed to solve the deconvolution by maximizing the kurtosis of the de-
convolution output y(t) defined for a digitized signal y with N samples using Equations (9)
and (10):

Kurtosis =
1
N ∑N

i=1(y(i)− y)4

σ4 (9)

Standard deviation (σ) =

√√√√ 1
N

N

∑
i=1

(y(i)− y)2 (10)

The solution can be achieved iteratively using the objective function method (OFM) [55].
OFM is an optimization process designed to maximise the kurtosis (or minimise the en-
tropy) of the MED output. This is achieved by changing the values of the coefficients in the
MED filter (g). The sequence of the process consists of the following:

• Assume initial values of the filter, g = f (1) = [g0, . . ., gL]T where L denotes the length of
the filter.

• Calculate vector f (1): New filter coefficient defined as the correlation between y3(t)
and the data d(t). f (1) is found by solving the system Rg = f, where R is an N × N
autocorrelation matrix defined with the N as the first delay of the autocorrelation
function of the data d(t).

• Calculate the error (err) using Equations (11) and (12)

err =
(

f (1) − µ f (2)
)

/µ f (1) (11)

µ =

(
E( f (1))

2
E( f (2))

2
) 1/2

(12)
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The optimization process finishes when the values of the coefficients converge within
the specified tolerance (err < 0.001). If err > 0.001, then filter coefficient f (2) becomes f (1),
and the process is repeated. A condition is also set to abort the iteration if the value of err is
found to be diverging.

The choice of the filter length is arbitrary. However, the longer the filter is, the slower
the calculations become with no clear benefits on signal clarity and fault detection. MED
de-convolved output is highly dependent on the choice of L, which mainly is a function of
the transfer function effect and on the position of the spikes as well. Excessively long filter
lengths may oversimplify the output, while filter lengths that are too short may not resolve
the output spikes. A simple criterion that was reported to give good results is the so-called
‘simplified MED operator length criterion’ [44]. This criterion is based on minimizing the
squared error between two filter lengths L and L + 1. If yi(L) and yi(L + 1) are the column
vectors of the MED outputs for two filter lengths L and L + 1, a squared error E(L) can be
defined as follows:

E(L) =
N

∑
i=1

{[
yi(L)−y

i(L+1)

]T[
yi(L) −yi(L+1)

]}
(13)

A possible good length L would be one that corresponds to the minimum value of
E(L), where changes in the de-convolved output for perturbations in the filter length will
be least when centred around the correct filter length [44]. A demonstration of the use of
this criterion is presented in Figure 16 for filter lengths of 10 to 1500. It can be seen from
Figure 16b that a number of filter lengths (local minima) give good results with the lowest
one at 26. The optimum filter length within the search boundaries was found to be 945,
which is approximately one-quarter of the planet rotation or 8 tooth mesh periods.

Sensors 2024, 24, x FOR PEER REVIEW 17 of 29 
 

 

𝜇 = (𝐸(𝑓(1))2𝐸(𝑓(2))2) 1/2 (12) 

The optimization process finishes when the values of the coefficients converge within 

the specified tolerance (err < 0.001). If err > 0.001, then filter coefficient 𝑓(2) becomes 𝑓(1), 

and the process is repeated. A condition is also set to abort the iteration if the value of err 

is found to be diverging. 

The choice of the filter length is arbitrary. However, the longer the filter is, the slower 

the calculations become with no clear benefits on signal clarity and fault detection. MED 

de-convolved output is highly dependent on the choice of L, which mainly is a function 

of the transfer function effect and on the position of the spikes as well. Excessively long 

filter lengths may oversimplify the output, while filter lengths that are too short may not 

resolve the output spikes. A simple criterion that was reported to give good results is the 

so-called ‘simplified MED operator length criterion’ [44]. This criterion is based on mini-

mizing the squared error between two filter lengths L and L + 1. If yi(L) and yi(L + 1) are 

the column vectors of the MED outputs for two filter lengths L and L + 1, a squared error 

E(L) can be defined as follows: 

𝐸(𝐿) = ∑ {[𝑦𝑖(𝐿) −𝑦𝑖(𝐿+1)]
𝑇

[𝑦𝑖(𝐿)−𝑦𝑖(𝐿+1)]}

𝑁

𝑖=1

 (13) 

A possible good length L would be one that corresponds to the minimum value of 

E(L), where changes in the de-convolved output for perturbations in the filter length will 

be least when centred around the correct filter length [44]. A demonstration of the use of 

this criterion is presented in Figure 16 for filter lengths of 10 to 1500. It can be seen from 

Figure 16b that a number of filter lengths (local minima) give good results with the lowest 

one at 26. The optimum filter length within the search boundaries was found to be 945, 

which is approximately one-quarter of the planet rotation or 8 tooth mesh periods. 

 

Figure 16. (a) MED filter length selection using minimum error (b) kurtosis of the output signal 

(cepstrum LP enhanced with MED). 

Figure 16. (a) MED filter length selection using minimum error (b) kurtosis of the output signal
(cepstrum LP enhanced with MED).
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3. Results
3.1. Cepstrum Editing and MED Filtration of a Typical Result (Record #522)

Figure 17 provides a typical result of crack feature extraction and enhancement using
the new cepstrum-editing method with and without MED filtering. The result presented
is taken from record #522 for the Ring Front sensor and presents 35 planet gear rotations
(out of the 99 rotations), i.e., just above 12 carrier rotations. The raw signal Figure 17a has a
low kurtosis value of 3.26 and is dominated by gear mesh frequencies. Cepstrum editing
increased the kurtosis levels to 6.08, as shown in Figure 17b. The cepstrum-edited signal
with low-pass filter at 2.5× GMF is plotted in Figure 17c. Impulses (planet-ring mesh) can
now be seen clearly at every revolution of the planet gear, with smaller ones (planet-sun
mesh) seen in between. Figure 17d shows the outcome of enhancing the cepstrum-edited
low-pass filtered signal using MED, where kurtosis levels increased notably from 22.28 to
36.11 indicating a clearer impulse enhancement and reduced noise level. The use of MED
provides a much clearer picture of impacts at every rotation of the planet gear, as can be
seen from Figure 17d where high amplitudes are seen at planet rotations 3, 6, 9, 10, 13, 14,
16 and 17. The highest impacts are observed to repeat every 17-planet rotation, as was seen
earlier from the cepstrum analysis provided in Figure 9. Note that 17 revolutions of the
planet is very close to 6 (i.e., 17 × 35/99 = 6.01) revolutions of the carrier—approximately
1% off being an integer number—so the relative position of the planet and the carrier
would almost be the same every 17 planet rotations and thus be reinforced in the averaging
process. Results obtained from other sensors are plotted in Figure 18. This shows a clear
detection of impulses with higher kurtosis values compared to the synchronous averaged
signal results presented in Figure 7.

Sensors 2024, 24, x FOR PEER REVIEW 18 of 29 
 

 

3. Results 

3.1. Cepstrum Editing and MED Filtration of a Typical Result (Record #522) 

Figure 17 provides a typical result of crack feature extraction and enhancement using 

the new cepstrum-editing method with and without MED filtering. The result presented 

is taken from record #522 for the Ring Front sensor and presents 35 planet gear rotations 

(out of the 99 rotations), i.e., just above 12 carrier rotations. The raw signal Figure 17a has 

a low kurtosis value of 3.26 and is dominated by gear mesh frequencies. Cepstrum editing 

increased the kurtosis levels to 6.08, as shown in Figure 17b. The cepstrum-edited signal 

with low-pass filter at 2.5× GMF is plotted in Figure 17c. Impulses (planet-ring mesh) can 

now be seen clearly at every revolution of the planet gear, with smaller ones (planet-sun 

mesh) seen in between. Figure 17d shows the outcome of enhancing the cepstrum-edited 

low-pass filtered signal using MED, where kurtosis levels increased notably from 22.28 to 

36.11 indicating a clearer impulse enhancement and reduced noise level. The use of MED 

provides a much clearer picture of impacts at every rotation of the planet gear, as can be 

seen from Figure 17d where high amplitudes are seen at planet rotations 3, 6, 9, 10, 13, 14, 

16 and 17. The highest impacts are observed to repeat every 17-planet rotation, as was 

seen earlier from the cepstrum analysis provided in Figure 9. Note that 17 revolutions of 

the planet is very close to 6 (i.e., 17 × 35/99 = 6.01) revolutions of the carrier—approxi-

mately 1% off being an integer number—so the relative position of the planet and the 

carrier would almost be the same every 17 planet rotations and thus be reinforced in the 

averaging process. Results obtained from other sensors are plotted in Figure 18. This 

shows a clear detection of impulses with higher kurtosis values compared to the synchro-

nous averaged signal results presented in Figure 7. 

 

Figure 17. A total of 35 planet rotations of Ring Front sensor signal of record #522 (a) raw signal (b) 

cepstrum filtered (c) cepstrum filtered after low-pass filtering (2.5X GMF) (d) signal c after MED 

filtration. 
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(b) cepstrum filtered (c) cepstrum filtered after low-pass filtering (2.5X GMF) (d) signal c after
MED filtration.
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3.2. Trending Results

Figure 19 provides a comparison of rim crack trending using kurtosis values of residual
signals obtained by the traditional approach, cepstrum editing with LP (no MED) and
cepstrum editing enhanced with LP and MED. The trends have been calculated using rolling
median averaging to suppress outliers, where 9 samples were used for the traditional
approach, 12 samples were used for cepstrum editing and 20 samples were used for
cepstrum editing with MED. The use of different numbers of samples for the rolling median
averaging in each method comes as a result of the increased effectiveness of recovering
more transient information in each successive processing step (as evidenced by the signals
progressively higher kurtosis values). Longer median filters are needed to suppress those
records that have the odd one-off transients. It can be seen from Figure 19 that cepstrum
editing provides an earlier detection (detection defined as two sensors with kurtosis levels
of 3.5 and above) at record #247 compared to record #260 using the traditional approach.
Cepstrum editing also provides a better trending capacity through an upward trending
starting at record #319 compared to late upward trending at record #450 in the traditional
approach. The enhancement of cepstrum editing using MED is further obvious through an
early detection at record #144 and an upward trending starting at record #263.

Residual signals of the earliest detection records are plotted in Figures 20–22 for the
traditional approach, cepstrum editing, and cepstrum editing with MED, respectively.
Note that Figures 21 and 22 are plots of the squared envelope residuals obtained from the
cepstrum processing that have been reshaped into a [99 × 1] array and plotted using a 2D
surface plot in order to better show the recurring amplitude pattern generated by the fault,
as discussed further in Section 4.
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Figure 20. Traditional approach earliest crack detection at record #260 (the red arrows indicates the
impacts likely induced by planet-sun gear mesh).

Trending using scaled kurtosis [58] (as seen in Figure 23) provides a further clear
picture about the improved results obtained using cepstrum editing and the even better
results when using MED. The scaled kurtosis is obtained by scaling the residual kurtosis
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by the ratio of the residual signal standard deviation, or root mean square (RMS), to the
residual signal RMS of the first (i.e., healthy) measurement. It was proposed to account for
the changes at the beginning of fault development and later stages, where early stages of
the fault have high spikiness while later progression stages see increased energy levels [58].
The scaled kurtosis trend of the cepstrum editing enhanced with MED in Figure 23c shows
clearly three stages of crack growth which can be denoted by the initial growth (from
record #1 to Record #350); the sustained growth (from record #351 to Record #450) and the
accelerated growth (from record #451 to Record #526).
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Figure 22. Squared envelope residuals obtained using cepstrum editing with MED at the earliest crack
detection at record #144 (the red arrows indicates the impacts likely induced by planet-ring gear mesh).
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(rolling median 9 samples), (b) Cepstrum editing with no MED (LP at 2.5 GMF: rolling median
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3.3. Clustering Results

A traditional machine learning clustering technique (Kmeans++ [59]) has been em-
ployed to identify the three different stages of the crack growth, i.e., the initial growth,
sustained growth and accelerated growth, through mapping the three most sensitive chan-
nels up to measurement number 500. The K-means clustering method is a widely used
technique that aims at minimizing the average squared distance between points in the same
cluster [39]. Kmeans++ is a means of improving the K-means technique through improving
the speed and accuracy by using a randomized seeding technique. K-means partition the
points in the (n × p) matrix into k clusters by minimizing the sum of squared distance
between each point and the closest centroid, where k is the number of centroids/clusters
and n × p is data points (trending parameters, where n is rows and p is variable).

To examine the clustering quality, the Silhouette plot is used. The Silhouette plot
provides a measure of how close each point in one cluster is to points in the neighbouring
cluster, and as such, offers a means to assess clustering parameters like the number of
clusters visually. The higher the average Silhouette score, the better clustering it achieves.
Silhouette coefficients have a range of [–1, 1], where 1 means a point is far away from
neighbouring cluster, 0 indicates a point is on or close to neighbouring cluster and a
negative value designates a point might have been assigned to wrong cluster. Figure 24
presents an assessment of K-means++ clustering using Silhouette coefficient values for the
traditional, cepstrum editing and the cepstrum editing enhanced with MED approaches.
Cepstrum editing enhanced with MED achieved the highest average Silhouette score
(best clustering) of 0.75 compared to 0.73 for cepstrum editing and 0.67 for the traditional
approach. A further clear improvement achieved can be seen in the separation of cluster 2
(sustained growth) from cluster 3 (accelerated growth), where only one record (#455) was
below 0 for the cepstrum editing with MED, indicating better separation compared to the
traditional approach. Figure 25 provides a 3D scatter presentation of the three clusters,
showing an improved clustering when using cepstrum editing, Figure 25b, compared to
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traditional, Figure 25a, and the further improvement obtained when enhancing cepstrum
editing with the use of MED, Figure 25c.
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4. Discussion

Cepstrum analysis provides informative insights into signals, not often seen in both
time and frequency domains. This is because it separates the forcing and transfer functions
and provides an easier interpretation to families of harmonics and sidebands. The example
presented in Figure 9 clearly supports the benefits of using cepstrum analysis routinely
in gearbox health monitoring programs. Figure 9 shows clear periodicity at the carrier
frequency and the planet rotation frequency and a very clear periodicity at every 17th
rotation of the planet gear, which are not seen in both the time and frequency domain nor
in the residual of the P-SSA signals when using the traditional analysis tool. Although
the traditional technique using P-SSA residuals gives a clear diagnosis of the fault and
provides a good trending capability, it falls short of the proposed cepstrum-editing method
enhanced with MED. The latter provides a very clear detection of the fault at a much earlier
stage, it has a better trending and clustering capacity and gives further insights into the
impact amplitudes at every rotation of the planet, as can be seen in Figure 17d.

In order to gain more insight into the impact amplitude variation seen in Figure 17d
and through cepstrum analysis, the squared envelope and its spectrum of the Ring Front
sensor (signal presented in Figure 17d) were produced and are plotted in Figure 26. The
squared envelope shows different amplitudes at each planet-ring mesh impact due to
the variation of the impact locations with respect to the fixed sensor location. The spec-
trum shows the harmonics of 1× planet gear rotation with high amplitudes at 2× due
to the presence of two impact events every planet rotation (planet-ring and plant-sun
meshes). Modulation sidebands are seen at 1× carrier frequency (i.e., 0.3535× planet) and
at 1.06061× carrier (i.e., 0.29293× planet) as well as at the difference frequency of 0.06061
(corresponds to 6 planet teeth difference).
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Modulations can be understood by realising that each planet gear completes one
rotation every 360 × 35/99 of the carrier rotation, i.e., every 127.2727◦ of carrier rotation or
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at 0.3535× carrier rotation. If a fixed sensor is placed at 0◦, the first planet-ring meshing
spike will take place after the planet gear moves 127.2727◦, while the third impact will be
after the carrier completes 1.06061 rotations. This will be a large impact compared to 1 and
2, as it will have a phase difference of 21.8◦.

Table 3 lists planet locations with respect to a ring sensor located at 0◦, where the am-
plitude seen in the squared envelope is in agreement with predicted locations. For example,
impact number 12 has a low amplitude, as it occurs almost 90◦ out of phase. Impacts at
every 17 rotations have the highest amplitudes, as the rim crack will approximately align
with the sensor location (minimum phase difference of 3.6 degrees corresponding to one
tooth difference). Note that impact strengths seen in the normalized squared envelope after
each planet rotation agrees well with the predictions provided in Table 3.

Table 3. Planet-ring impacts location (phase difference) with respect to a stationary sensor located at 0◦.

Planet-Ring
Impacts

Spatial Location of the Planet Gear with
Respect to the Fixed Sensor (0 to 360◦) Carrier Rotations

1 127.3 0.35354
2 254.5 0.70707
3 21.8 1.06061
4 149.1 1.41414
5 276.4 1.76768
6 43.6 2.12121
7 170.9 2.47475
8 298.2 2.82828
9 65.5 3.18182

10 192.7 3.53535
11 320.0 3.88889
12 87.3 4.24242
13 214.5 4.59596
14 341.8 4.94949
15 109.1 5.30303
16 236.4 5.65657
17 3.6 6.01010

5. Conclusions

This paper presented a signal processing algorithm to detect, enhance and trend rim
cracks in planet gears of helicopter main transmission gearboxes. The algorithm is based
on using a cepstrum-editing technique to extract harmonics and sidebands of the planet
gear from the hunting-tooth synchronous averaged signals and low-pass filtering and
minimum entropy deconvolution (MED) to enhance the fault features. The algorithm
has been successfully tested on a vibration dataset collected from a planet gear rim crack
propagation test undertaken in the Helicopter Transmission Test Facility (HTTF) at DSTG
Melbourne. The presented algorithm is fundamentally built on angular resampling, Fourier
transform and inverse Fourier transform (for cepstrum), autocorrelation (MED) and low-
pass filtering. Therefore, the algorithm does not require high intensity computations
and, as such, can be easily deployed in real-world applications. The integration of the
proposed algorithm into maintenance strategies for helicopter planetary gear systems
can be straightforward by combining the new condition indicators (CIs) generated by the
algorithm with other indicators in an existing HUMS/PHM system. The trending capability
of the proposed algorithm is specifically important to be integrated into maintenance
strategies for helicopter planetary gear systems. Furthermore, if there is a deep machine
learning component in the predictive maintenance framework, the new CIs can be used as
input for the neural network to make critical decisions on issuing warnings to operators in
conjunction with the trending capability of the proposed algorithm.

This paper discussed a number of parameter choices in relation to the algorithm, the
first being the tine width of the comb filter used in the cepstrum editing. The tine width
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can be deduced by setting the sinc(x) zero crossing to two times the low-pass filter length
or by minimizing the squared error between two consecutive tine widths and selecting
the minimum error. For a low-pass filter at 2.5× GMF, a tine width of 23 or 25 was found
appropriate. The second choice relates to the inverse filter length of MED. It has been
noted that this choice can be arbitrary, but a simple guide is to minimize the squared error
between different filter lengths and select the one with the minimum error. A filter length
of 945 was found suitable when searching between 10 and 1500 filter lengths. The use of
MED as an enhancement tool assumes no random outliers and that cepstrum editing did
a good job in eliminating these. In cases where some random outliers still appear at any
planet rotations, smoothening with median filtration during the trending process has been
used to remove this effect.

Although the traditional technique using P-SSA residuals gives a reasonable diagnosis
of the fault and provides a good trending capability, it falls short of the proposed cepstrum-
editing method enhanced with MED. The use of the cepstrum-editing technique provides a
much earlier detection capability compared to the traditional approach. When cepstrum
editing is enhanced with MED, the first crack detection is achieved at an even earlier stage,
indicating a superior capability of detecting incipient faults. This is also evident from the
achievement of better trending and clustering results. Cepstrum analysis provides further
informative insights into the signals, often not seen in the time and frequency domains.
This is because cepstrum analysis separates the forcing and transfer functions and provides
an easier interpretation to the families of harmonics and sidebands. The squared envelope
signal has shown different amplitudes at each planet-ring impact due to the variation of
the planet location with respect to the fixed sensor location.
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