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Abstract: Long-term coherent integration (CI) can effectively improve the radar detection capability
for high-speed targets. However, the range walk (RW) effect caused by high-speed motion signifi-
cantly degrades the detection performance. To improve detection performance, this study proposes
an improved algorithm based on the modified Radon inverse Fourier transform (denoted as IMRIFT).
The proposed algorithm uses parameter searching for velocity estimation, designs a compensation
function based on the relationship between velocity and distance walk and Doppler ambiguity terms,
and performs CI based on the compensated signal. IMRIFT can achieve RW correction, avoid the
blind-speed sidelobe (BSSL) effect caused by velocity mismatch, and improve detection performance,
while ensuring low computational complexity. In addition, considering the relationship between
energy concentration regions and bandwidth in the 2D frequency domain, a fast method based on
IMIRFT is proposed, which can balance computational cost and detection capacity. Finally, a series of
comparative experiments are conducted to demonstrate the effectiveness of the proposed algorithm
and the fast method.
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1. Introduction

In recent years, the widespread application of high-speed targets in national defense
and civilian fields has gained significant research interest in the radar field [1–4]. Consider-
ing the low radar cross-section (RCS) characteristics of these high-speed targets, increasing
the integration time is an effective way to improve the signal-to-noise ratio (SNR) of an
echo [5–10]. However, during the long-term coherent integration (CI) process, the range
walk (RW) effect induced by high-speed targets renders the traditional CI method ineffec-
tive, significantly deteriorating radar detection performance [11,12]. Therefore, effective
correction of the RW effect is necessary for improving radar detection performance.

To mitigate the RW effect induced by high-speed targets, many long-time coherent de-
tection algorithms have been proposed, such as the Radon Fourier transform (RFT) [13,14],
keystone transform (KT) [15,16], modified location rotation transform (MLRT) [17], scaled
inverse Fourier transform (SCIFT) [18], and modified Radon inverse Fourier transform
(MRIFT) [19]. Among these, the RFT algorithm achieves CI through a joint search in the
range–velocity space. However, the presence of blind-speed sidelobe (BSSL) effects of RFTs
lead to false alarms in detection. In addition, the KT algorithm is widely employed to
mitigate the RW effect by scaling the slow-time dimension. However, the KT algorithm
requires interpolation operations, which can cause significant computational burden and
degradation of detection performance. The MLRT algorithm estimates the target velocity
while correcting the RW effect by rotating the coordinates of the echo data. However, the
rotation operation still imposes a significant computational burden. The SCIFT algorithm
achieves CI by constructing autocorrelation functions, which greatly reduces the computa-
tional cost. However, the autocorrelation operation reduces the anti-noise ability and may
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cause the algorithm to fail under low-SNR conditions. MRIFT was proposed to improve
the detection performance while reducing the computational cost. The MRIFT algorithm
achieves CI by extracting lines in a two-dimensional frequency domain, performing phase
compensation, and using IFT operations. However, owing to the influence of velocity
mismatch, this algorithm also leads to detection performance loss.

Inspired by previous works, an improved modified Radon inverse Fourier transform
(IMRIFT) is proposed in this study for high-speed targets. In the proposed algorithm, after
obtaining the estimated velocity of the target through parameter estimation, a compensation
function is constructed to correct the RW and Doppler ambiguity effects in the echo in the
t-fm domain and the CI is achieved using FT and IFT.

Compared with [19], this study has been improved in the following aspects:

• The BSSL effect caused by velocity mismatch in [19] is analyzed and the IMRIFT can
avoid the BSSL to improve detection performance;

• The results of line extraction operation in [19] are used to achieve velocity estimation
and CI, while in IMRIFT, they are only used to obtain estimated velocity;

• A fast method for the IMRIFT is proposed, using only half the peak point compared to
MRIFT to achieve velocity estimation.

Compared to other typical coherent detection algorithms, IMRIFT can avoid the BSSL
effect and improve detection performance without increasing computational burden.

The remainder of this study is organized as follows. The signal model for high-speed
targets is described in Section 2. Section 3 describes the proposed IMRIFT algorithm and the
fast IMRIFT method. The numerical and simulation experiments are presented in Section 4.
Section 5 summarizes the study.

2. Signal Model

Let us consider a pulse-Doppler radar system that transmits a linear frequency modu-
lated (LFM) signal [13,20]

st(tm, t) = rect
(

t
TP

)
rect

(
tm

TCPI
− 0.5

)
exp

(
j2π f0t + jπµt2

)
(1)

where

rect
(

t
TP

)
=

{
1 |t| ≤ 0.5TP

0 |t| > 0.5TP.
(2)

Here, µ is the frequency modulation rate and f 0 is the carrier frequency. Tr, Tp, and t correspond
to the pulse repetition time, pulse duration, and fasting time, respectively. tm = mTr denotes the
slow time (m = 0, 1, . . ., M − 1) where M is the pulse integration number. TCPI = MTr denotes
one coherent processing interval (CPI) [20], indicating that the signal is zero when m ≥ M or
m < 0.

We assume that there is a target with an initial radial range R0 and a constant radial
velocity v0. The radial distance of the target at tm satisfies [13–18] the relation

r(tm) = R0 + v0tm. (3)

The echo signal after the down-conversion and the pulse compression (PC) can be
written as [7,20]

sc(tm, t) = AB exp
(
−j4π R0

λ

)
sinc

[
B
(

t − 2 R0+v0tm
c

)]
exp(−j2π fdtm)rect

(
tm

TCPI
− 0.5

)
(4)

where A denotes the amplitude of the target after PC and sinc(x) = sinπx/(πx) denotes the
sinc function. B, λ, and c denote the bandwidth of the transmitted signal, wavelength, and
light speed, respectively. fd represents the Doppler frequency and is given as

fd =
2v0

λ
= fd0 + G0 fr (5)
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where fd0 is the ambiguous Doppler frequency, G0 is the Doppler ambiguity integer, and fr
is the pulse repetition frequency (PRF).

From (5), it can be observed that the peak position of sc (tm, t) changes with slow time
tm. When the offset exceeds the range resolution, i.e., ∆r = c/2B, RW would occur, which
will interfere strongly with the coherent integration performance. Therefore, it is necessary
to eliminate the RW effect before achieving long-time coherent integration.

3. Coherent Detection Based on Imrift

In this section, the MRIFT algorithm in [19] is introduced and its existing disadvantages
are analyzed. In addition, the proposed algorithm (i.e., IMRIFT) is discussed in detail and
its complexity is analyzed. Finally, a fast method for IMRIFT is provided.

3.1. Review of the MRIFT

By implementing the Fourier transform (FT) along the fast and slow time axes for the
PC echoes in (4), we can obtain the 2D frequency domain echoes in the fast-slow frequency
(f –fm) domain as follows:

Sc( fm, f ) = ATCPI exp(−j4πR0/λ) exp(−j4πR0 f /c)rect( f /B)
· exp[−jπTCPI( fm + fd + 2v0 f /c)]sinc[TCPI( fm + fd + 2v0 f /c)]

(6)

Here, f and fm represent fast and slow time frequency, respectively, and fd = 2v0f 0/c is the
ambiguous Doppler frequency of the target.

As shown in (6), the arrangement of the peaks of Sc (fm, f ) is presented as a straight
line that satisfies the following equation:

fm = − fd − 2v0 f /c. (7)

From (7), it can be observed that the variable of the line is f where velocity v0 is the
only unknown parameter. Once velocity v0 is given, it is easy to calculate the position of
the corresponding peak point (f, −2v0f 0/c − 2v0f /c) using (7). By extracting these peak
points in the f –fm domain, rearranging them along the fast time dimension, and performing
the inverse Fourier transform (IFT) operation, the CI results can be obtained as follows:

sc(v0, t) = IFT{Sc(−2v0 f0/c − 2v0 f /c, f )}
= ABTCPI exp(−j4πR0/λ)sinc

[
B
(

t − 2 R0
c

)]
.

(8)

In fact, owing to the influence of discrete sampling, the peak coordinates in (8) cannot
be accurately extracted. Specifically, the sampling interval corresponding to the slow time
frequency is fr/M. When utilizing (7) to calculate the slow time frequency at the peak
position, the value of fm obtained is an integral multiple of fr/M, that is,

fmd(v0, f ) = [(−2v0 f /c − 2v0 f0/c)M/ fr]r fr/M (9)

where [·]r is the rounding operator.
The error in the coordinate extraction process leads to amplitude and phase errors in

the echo extraction operation, as follows:

Sc(v0, f ) = Sc( fmd(v0, f ), f )
= ATCPI exp(−j4πR0/λ) exp(−j4πR0 f /c)

·rect( f /B) exp[−jπTCPI∆ fm(v0, f )]sinc[TCPI∆ fm(v0, f )]
(10)

fmt(v0, f ) = − fd − 2v0 f /c (11)

∆ fm(v0, f ) = fmd(v0, f )− fmt(v0, f ) (12)
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Here, fmt (v0, f ) is the theoretical coordinate of fm for the peak point and ∆fm (v0, f ) is the
coordinate error of fm. To compensate for the phase and amplitude errors, a compensation
function was designed in the MRIFT:

Scomp(v0, f ) = exp[jπTCPI∆ fm(v0, f )]/sin c[TCPI∆ fm(v0, f )]. (13)

After the compensation and IFT operations of (10), CI can be obtained as follows:

sc(v0, t) = IFT
{

Sc(v0, f ) · Scomp(v0, f )
}

= ABTCPI exp(−j4πR0/λ)sinc
[

B
(

t − 2 R0
c

)]
.

(14)

As shown in (14), the CI for the high-speed target eliminates the RW effect. The
processes of line extraction, error compensation, and IFT are summarized in MRIFT. By
utilizing velocity search operations, the velocity of the target and the CI can be achieved.
The main steps of the process can be expressed as follows:

sc(v, t) = IFT
{

Sc( fmd(v, f ), f ) · Scomp(v, f )
}

(15)

(vu,est, Gest) = argmax
vu ,G

|sc(vu + Gva, t)| (16)

vest = vu,est + Gestva (17)

sc(vest, t) = IFT{Sc( fmd(vest, f ), f ) ·Scomp( fmd(vest, f ), f )
}

(18)

Here, vu ∈ [0, va) represents the unambiguous velocity and G ∈ Z is the ambiguity factor.
va = frλ/2 is the basis of ambiguous velocity.

However, during the velocity search, MRIFT overlooks the mismatch between the
actual target velocity and the measured velocity and because of this, the errors in (10) are
not completely eliminated.

Assuming that vest is the measured velocity and v0 is the real velocity of the target.
The compensation function in (13) should be modified as follows:

Scomp(vest, f ) =
exp[jπTCPI∆ fmr(vest, f )]
sinc[TCPI∆ fmr(vest, f )]

(19)

fmt(vest, f ) = −2vest f0/c − 2vest f /c (20)

∆ fmr(vest, f ) = fmd(vest, f )− fmt(vest, f ). (21)

Using the modified compensation function in (19) to compensate for the extracted
echo in (10), the following result (22) is obtained.

S(vest, f ) = Sc(v0, f ) · Scomp(vest, f )
= ATCPI exp

(
−j4π R0

λ

)
exp

(
−j4π

R0 f
c

)
rect

(
f
B

)
· exp[−jπTCPI(∆ fm(vest, f )− ∆ fmr(vest, f ))]
·sinc[TCPI∆ fm(vest, f )]/sinc[TCPI∆ fmr(vest, f )]

= ATCPI exp
(
−j4π R0

λ

)
exp

(
−j4π

R0 f
c

)
rect

(
f
B

)
· exp[−jπTCPI∆ fmrt(vest, f )]Ssinc( f )

(22)

∆ fm(vest, f ) = fmd(vest, f )− fmt(v0, f ) (23)

∆ fmrt(vest, f ) = fmt(vest, f )− fmt(v0, f )
= 2(v0 − vest)( f + f0)/c

(24)

Ssinc( f ) = sinc[TCPI∆ fm(vest, f )]/sinc[TCPI∆ fmr(vest, f )] (25)
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By performing the IFT operation on (22), the CI result of MRIFT is obtained as follows:

sc(vest, t) = ABTCPI exp(−j4πR0/λ)sinc
[

B
(

t − 2 R0
c − TCPI ∆v

c

)]
· exp[−j2πTCPI∆v/λ]⊗ IFT{Ssinc( f )}

(26)

∆v = v0 − vest. (27)

Compared to (14), the CI contains three error terms caused by the velocity mismatch
in (26). Once v0 = vest, (26) yields the same CI result as (14).

The main impacts of these errors are discussed next. It should be clarified that the
search velocity interval does not exceed the velocity resolution of the radar, while ∆v
is typically small, not exceeding one search velocity interval. Therefore, TCPI∆v < ∆r,
indicating that the error term in the sinc function does not lead to the RW effect in CI.

The phase error term exp[−j2πTCPI∆v/λ] causes a deviation in the phase of the CI
result but does not cause RW and BSSL effects.

To better analyze the impact of amplitude error terms IFT{Ssinc(f )}, it is necessary to
simplify Ssinc(f ). ∆fmr (vest, f ) and ∆fm (vest, f ) can be calculated as follows:

∆ fmr(vest, f ) = [(−2vest f /c − 2vest f0/c)M/ fr]r fr/M
+2vest f /c + 2vest f0/c

=

{
2vest f /c , b − c fr

4vest M < f ≤ b + c fr
4vest M

∆ fmr(vest, f − nTest) , n ∈ N

(28)

∆ fm(vest, f ) = [(−2vest f /c − 2vest f0/c)M/ fr]r fr/M
+2v0 f /c + 2v0 f0/c

=

{
2v0 f /c + 2∆v f0/c , b − c fr

4vest M < f ≤ b + c fr
4vest M

∆ fm(v0, f − nTest) + n fr∆v/(Mvest) , n ∈ N

(29)

Test =
c fr N

2Mvest fs
(30)

b = [−2vest f0/c · M/ fr]r · c fr/(2vest M) + f0 (31)

Here, Test represents the periods of ∆fmr (vest, f ) and ∆fm (v0, f ).
Utilizing (28)–(31), the amplitude error term in (25) can be expressed as

Ssinc( f ) =

{
Spe( f ) , b − c fr

4vest M < f ≤ b + c fr
4vest M and n = 0

Ssinc( f − nTest) , n ∈ N
(32)

Spe( f ) = 2v0 f /c+2∆v f0/c+n fr∆v/(Mvest)
2vest f /c

· sin[2TCPI vest f /c]
sin[TCPI(2v0 f /c+2∆v f0/c+n fr∆v/(Mvest))]

(33)

Because 1/sin(x) does not satisfy the condition of absolute integrability in the entire
real field, its IFT results are difficult to obtain [21]. Example 1 is provided to validate
Equations (28)–(30).

Example 1: Figure 1 shows the simulation results of (28)–(30). The radar parameters
are listed in Table 1. To easily obtain the slope, we set N = 10000. The other parameters
were set as v0 = 1100 m/s and vest = 1100.5 m/s.
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Table 1. Parameters of radar.

Carrier frequency f 0 1 GHz
Bandwidth B 10 MHz

Sample frequency fs 20 MHz
Pulse repetition frequency fr 2 kHz

Pulse duration Tp 10−6 s
Number of pulses M 256

Number of range cells N 400

Figure 1a,b show the results of ∆fmr (vest, f ) and ∆fm (v0, f ), respectively. Obviously, ∆fmr (vest,
f ) and ∆fm (v0, f ) are periodic functions and the period 5749 − 5218 + 1 = 532 is approximately
equal to Test = cfrN/(2Mvestfs) = 532.4284, calculated using (31). Additionally, the slope of ∆fmr
(vest, f ) in Figure 1a is (3.892 + 3.899)/(5749 − 5218) × N/fs = 7.3367 × 10−6, while the slope for
∆fm (vest, f ) in Figure 1b is (0.554 + 7.234)/(5749 − 5218) × N/fs = 7.3333 × 10−6. The slopes
calculated using (29) and (30) are 7.3367 × 10−6 and 7.3333 × 10−6, respectively, which proves
the correctness of (29) and (31). Figure 1d shows the IFT result of Ssinc(f ).

Owing to the velocity mismatch, the presence of convolutional term IFT{Ssinc(f )} in
sc (vest, t) causes energy to spread in the target, leading to the BSSL effect. Decreasing the
search velocity interval may result in the accurate estimation of the real velocity; however,
it will inevitably prolong the search time and reduce operation efficiency. Therefore, a more
suitable coherent detection method is required.

Example 2: Figure 2 shows the results of the MRIFT algorithm at different search
velocity intervals. The radar parameters are listed in Table 1. The simulation parameters of
the target are as follows: v0 = 3400.1 m/s, R0 = 19.9225 km, and A = 1. The SNR of the echo
received by the radar is −10 dB.
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After performing the IFT on Scc (tm, f) with respect to f, we obtain 
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Figure 2. Results of MRIFT at different searching velocity intervals. (a) Echo after the PC result.
(b) Signal echo in the 2D frequency domain. (c) Velocity search result of (d). (d) Velocity search
interval is 1 m/s. (e) Velocity search result of (f). (f) Velocity search interval is 1.17 m/s.

Figure 2a shows the results of the CI, indicating a severe RW effect caused by the high
velocity of the target. Figure 2b shows the signal echo in the 2D frequency domain, which
is clearly presented as a straight line. The CI results for a search velocity interval of 1 m/s
are shown in Figure 2d. From the CI results, the estimated velocity was 3400 m/s, and the
compensated error term was 0. The CI results when the searching velocity interval was
1.17 m/s are shown in Figure 2f. At this point, the estimated velocity was 3399.45 m/s.
Compared to that observed in Figure 2c, there is a significant BSSL effect, as shown in
Figure 2d.

3.2. IMRIFT for a Single Target

The BSSL caused by velocity mismatch in MRIFT can interfere with detection perfor-
mance but has little impact on the accuracy of estimated velocity. Therefore, this study
proposes the IMRIFT algorithm, which uses estimated velocity to correct RW and achieve
CI, effectively avoiding the BSSL effect.

The FT is performed on sc (tm, t) along tm, which can be expressed as

Sc(tm, f ) = A exp
(
−j4π R0

λ

)
rect

(
f
B

)
exp

(
−j4π

R0 f
c

)
·rect

(
tm

TCPI
− 0.5

)
exp(−j2π fdtm) exp

(
−j4π v0tm

c f
)

.
(34)

By comparing (4) and (34), it can be found that the presence of phase term exp(−j4πv0tmf/c)
induces the RW effect and the presence of phase term exp(−j2πfdtm) induces the Doppler ambigu-
ity effect in the slow-time frequency domain. Therefore, a compensation function was established
as follows:

Scor(v, f ) = exp
(

j4π
vtm

c
f
)
· exp

(
j2π

2v f0

c
tm

)
. (35)
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Once the velocity of the target is obtained, (36) can be used to eliminate the RW and
Doppler ambiguity effects in the signal. Assuming that the estimated velocity of the target
obtained using the MRIFT algorithm is vest, compensating (34) yields.

Scc(tm, f ) = Sc(tm, f ) · Scor(vest, f )
= A exp

(
−j4π R0

λ

)
exp

(
−j4π R0

c f
)

rect
(

f
B

)
rect

(
tm

TCPI
− 0.5

)
· exp

(
−j2πtm f · 2(v0−vest)

c

)
exp

(
−j2πtm f0 · 2(v0−vest)

c

)
.

(36)

After performing the IFT on Scc (tm, f ) with respect to f, we obtain

Scc(tm, t) = AB exp
(
−j4π R0

λ

)
sinc

[
B
(

t − 2 R0
c − 2 (v0−vest)tm

c

)]
·rect

(
tm

TCPI
− 0.5

)
exp

(
−j2πtm

2(v0−vest)
λ

) (37)

Because ∆v = v0 − vest does not exceed one searching velocity interval, tm∆v < ∆r,
which suggests that the RW effect caused by tm∆v in the sinc function can be ignored. By
performing the FT on (37) along tm, the CI result can be expressed as

SCI( fm, t) = ABTCPI exp(−j4πR0/λ)sinc
[

B
(

t − 2 R0
c

)]
sinc

[
TCPI

(
fm + 2(v0−vest)

λ

)]
(38)

Although there is still an error term caused by the velocity mismatch in the CI result
of (38), this error term causes only the peak point coordinates of the target to shift by the
fm dimension. If ∆v < va, it will not cause the Doppler ambiguity effect. In addition, the
estimated velocity of the target can be subjected to secondary estimation. Assuming that
the slow time frequency of the peak steaming point is fm0, the velocity of the secondary
estimation is

vse = vest + fm0 · λ/2 (39)

The IMRIFT algorithm is illustrated in Figure 3.
Although the CI results of the IMRFT and MRIFT algorithms both include error

terms caused by velocity mismatch, the effects caused by these error terms are completely
different. In the CI result of MRIFT, e.g., (26), the error term exists in the form of a
convolution, which can lead to the spreading of the peak energy of the target and the
BSSL effect. However, in the CI result of IMRIFT, e.g., (38), the error term exists in the
form of multiplication, which changes only the peak position of the target without causing
any spreading of the peak energy. Therefore, compared to MRIFT, IMRIFT can avoid the
BSSL effect.

To verify the effectiveness of IMRIFT, a simulated example is provided. The parameters
of the radar and target are the same as those described in Example 2 and the search velocity
interval is 1.17 m/s. Figure 4a shows the CI results for the proposed IMRIFT. Figure 4b
shows the CI results of the range cell with 129 pulses. Figure 4b shows that after the
IMRIFT, the RW and Doppler ambiguity effects were accurately removed. In addition,
compared with those in Figure 2d, the side lobes in the CI result obtained by the IMRIFT
were significantly suppressed.
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Figure 4. Results of IMRIFT. (a) CI result. (b) Slice with a pulse number of 129.
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3.3. IMRIFT for Multiple Targets

We assume that K targets move at a constant radial velocity in the scene. The PC signal
can be expressed as

smc(tm, t) =
K
∑

k=1
AkB exp

(
−j4π Rk

λ

)
exp(−j2π fdktm)sinc

[
B
(

t − 2 Rk+vktm
c

)]
rect

(
tm

TCPI
− 0.5

)
(40)

where Ak, Rk, vk, and fdk represent the amplitude, initial radial range, radial velocity, and
Doppler frequency of the kth target, respectively.

After conducting the FT along the fast time, smc (tm, t) can be expressed as

Smc(tm, f ) =
K
∑

k=1
Ak exp

(
−j4π Rk

λ

)
rect

(
tm

TCPI
− 0.5

)
·rect

(
f
B

)
exp

(
−j4π

Rk f
c

)
exp(−j2π fdktm) exp

(
−j4π vktm

c f
) (41)

It is assumed that the radial velocity of the ith target is vi and the estimated velocity is
vi_est, where vi − vi_est does not exceed one searching velocity interval, respectively.

By correcting the RW and Doppler ambiguities caused by the ith target according
to (35), we obtain

Sm f (tm, f ) = Ai exp
(
−j4π Ri

λ

)
rect

(
f
B

)
rect

(
tm

TCPI
− 0.5

)
· exp

(
−j4π

Ri f
c

)
· exp

(
−j2πtm fdi ·

2(vi−vi_est)
c

)
+ Sother(tm, f )

(42)

where

Sother(tm, f ) =
K
∑

k=1,k ̸=i
Ak exp

(
−j4π Rk

λ

)
rect

(
f
B

)
rect

(
tm

TCPI
− 0.5

)
· exp

(
−j4π

Rk f
c

)
exp[−j4π(vk − vi_est)tm f /c] exp[−j2π( fdk − fdi)tm]

(43)

By performing fast-time and slow-time FT, the CI result of the ith target can be
represented as follows:

Smc( fm, t) = AiBTCPI exp(−jπTCPI fm)sinc
[

B
(

t − 2Ri
c

)]
·sinc

[
TCPI

(
fm +

2(vi−vi_est)
λ

)]
+ Sother( fm, t)

Sother( fm, t) = FFT
tm

{
IFFT

f
{Sother(tm, f )}

} (44)

3.4. Computational Complexity Analysis

In this subsection, we analyze the computational complexity of the main steps in
the proposed algorithm. The KT [16], RFT [13], MLRT [17], SCIFT [18], and MRIFT [19]
algorithms were compared. The number of echo pulses, number of range cells, search
ambiguity factor, and search ambiguity velocity are M, N, NG, and NS, respectively.

For IMRIFT, the computational complexity of a certain velocity estimation is O
[0.5MN(log2M + log2N) + Ns(0.5Nlog2N + N))]. For velocity compensation and CI, O
[0.5MN(log2M + log2N)] is needed. Therefore, the complexity of IMRIFT can be repre-
sented as O[MN(log2M + log2N) + Ns(0.5Nlog2N + N))].

The main steps contain searching for the fold factor, sinc interpolation, and FT oper-
ation. Hence, the computational complexity was O(NGNMM). Because of the 2D search
in terms of range and velocity, the computational cost of RFT is O(NsNM). For MLRT,
angle searching is required; therefore, its computational complexity is O(NsNM). In ad-
dition, SCIFT has a computational cost of O(NMM) for the symmetric autocorrelation
operation. In terms of MRIFT, the computational complexity is O[(Ns + 1)(0.5Nlog2N + N)
+ 0.5MN(log2M + log2N)] because of velocity research and error compensation.
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The computational complexity and actual processing time of the aforementioned
method are listed in Table 2. The parameters of the radar and target are the same as those in
Example 2. The time overhead of IMRIFT is less than those of KT, RFT, MLRT, and SCIFT,
indicating that IMRIFT is more efficient than these methods. However, the time complexity
of IMRIFT was slightly higher than that of MRIFT.

Table 2. Computational complexity.

Algorithm Complexity Time Cost (s)

KT O(NG NMM) 9.4956
RFT O(NS NM) 12.0155

MLRT O(NS NM) 11.9839
SCIFT O(NNM) 0.3248
MRIFT O

[
(Ns + 1)(0.5N log2 N + N)
+0.5MN(log2 M + log2 N)

]
0.0655

IMRIFT O
[

Ns(0.5N log2 N + N)
+MN(log2 M + log2 N)

]
0.0821

Configuration of the computer: CPU: Intel Core i9-10900K 3.7 GHz; RAM: 32 GHz; Operating System: Windows
10; Software: MATLAB R2021b.

3.5. A Fast Implementation Method for IMRIFT

In the implementation process of IMRIFT, multiple line extractions and IFT operations
are required to obtain the estimated velocity of the target. To improve the efficiency of
IMRIFT, we propose a fast implementation method to optimize the velocity estimation
process.

The Nyquist–Shannon sampling theorem states that to accurately sample and recon-
struct a signal, the sampling frequency must be equal to or greater than twice the signal’s
bandwidth [22,23]. In this study, the sampling frequency is set as fs = 2B, which means the
range of fast time-frequency f is from −B to B.

For (7), the presence of the rectangular window function rect(f /B) causes the energy
of the echo signal in the 2D frequency domain to be concentrated within the range of −0.5B
to 0.5B. Therefore, performing line extraction operations within the range of −0.5B to 0.5B
can accurately obtain the energy of the echo signal, without the need for line extraction
operations throughout the fast-time dimension. At this point, the main idea of the fast
method of IMRIFT is to extract peak points within the range of −0.5B to 0.5B during the
velocity estimation process to perform IFT operations and count the peaks in the IFT results
for velocity estimation.

The process of velocity estimation in the fast method based on IMRIFT is as follows:

sq(v, t) =
∫ 0.5B

−0.5B
Sc( fmd(v, f ), f )Scomp(v, f ) exp(j2π f t)d f (45)

(vu,est, Gest) = argmax
vu ,G

∣∣sq(vu + Gva, t)
∣∣ (46)

vest = vu,est + Gestva (47)

where the resolution of t is 2/fs. After obtaining the estimated velocity vest, CI can be
achieved using (36)–(39).

For the fast method based on IMRIFT, during the velocity searching process, only
0.5N points in the fast time-frequency dimension are required, resulting in a time cost of
O[Ns(0.5log20.5N + 0.5N)] for velocity searching. Therefore, the time cost of the fast method
is denoted as O[MN(log2M + log2N) + Ns(0.5Nlog20.5N + 0.5N)].

A comparison of the time costs of the fast method, MIRFT, and IMRIFT is shown in
Figure 5. It can be observed that as the number of range cells N increases, the fast method
has a lower time cost compared to MRIFT and IMIRFT.
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However, note that there may be peak information loss when using these 0.5N points
to achieve the IFT. The peak position of the IFT results corresponds to the initial range
cell of the target. The IFT result obtained by the fast method only consists of 0.5N points,
which is lesser than the number for IMRIFT and equivalent to losing half of the range
cell. Assuming that the search velocity is known, the IFT result of the fast method in
velocity estimation is scn(nnew), where n = 0, 2, 4, . . ., N − 1. When the initial range cell of
the target is odd, the fast method obtains the maximum value of point P1 using scn(nnew),
instead of the peak point. As shown in Figure 6, the peak point was located between
P1 and the second maximum value point P2 and the amplitude was higher than that of
P1. Therefore, in this case, the maximum value of scn(nnew) obtained at different search
velocities will have varying degrees of amplitude loss, which could lead to errors in the
velocity estimation result and thus affect the detection performance of the fast method. The
detection performance of the fast method was equivalent to that of IMRIFT when the initial
distance unit of the target was even.
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4. Experimental Results

Several numerical experiments were conducted to verify the effectiveness of the
proposed IMRIFT algorithm. The parameters of the radar are listed in Table 1. In addition,
comparisons with other common coherent integration algorithms such as KT, RFT, MLRT,
SCIFT, and MRIFT are provided.
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4.1. Coherent Integration for a Single Target

To evaluate the performance of the IMRIFT in the case of a single target, the results
of CI were obtained as shown in Figure 7. The motion parameters of the target were as
follows: A = 1, v0 = 3400.1 m/s, and R0 = 19.75 km. The received signal is contaminated by
zero-mean Gaussian white noise with an SNR of −25 dB.
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Figure 7. CI results for a single target via several other methods. (a) Echo after PC. (b) Velocity search
result of IMRIFT. (c) Distance walk correction result of IMRIFT. (d) CI result for IMRIFT. (e) CI result
for KT. (f) CI result for RFT. (g) CI result for MLRT. (h) CI result for SCIFT. (i) CI result for MRIFT.

Figure 7a shows the PC results in which severe RW effects can be observed. Figure 7b
presents the velocity estimation results obtained using the velocity search method. The
velocity was estimated as 3399.61 m/s based on (18). Figure 7c shows the result of the RW
correction based on the measured velocity and Figure 7d displays the CI results of IMRIFT,
where the energy accumulation of the target appears as a distinct peak (3665).

We compared the CI results of five methods: KT, RFT, MLRT, SCIFT, and MRIFT.
Figure 7e–i shows the CI results of the five methods. The integration amplitudes of KT
(3471), RFT (3584), and MLRT (3565) were lower than those of IMRIFT (3665). Furthermore,
a clear effect of BSSL was observed in the RFT results. Figure 7i shows the results of MRIFT.
The integration amplitude of the MRIFT (3776) is slightly higher than that of the IMRIFT.
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4.2. Coherent Integration for Multiple Targets

The results of multitarget CI using the proposed algorithm and other methods are
shown in Figure 8. Table 3 lists the motion parameters of Targets A and B. The SNR of the
received echo signal is −20 dB. Figure 8a shows the results of PC and Figure 8b presents
the results of the velocity search, from which the velocities can be calculated as 4429.69 m/s
(target A) and 2539.45 m/s (Target B). The CI results of IMRIFT, KT, MLRT, and SCIFT are
shown in Figure 8c–u. It can be seen that all four algorithms achieved CI for both targets.
Figure 8s,t shows the results of MRIFT. It can be seen that the energy of both Targets A and
B accumulates well. However, there is a strong sidelobe in the CI result of Target B, which
may affect the detection performance of multiple targets. Figure 8u shows the CI results of
RFT, in which there is an obvious BSSL effect. The “CLEAN” [24–26] method is usually
used to suppress this effect.
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Figure 8. CI for multitarget via several other methods. (a) Echo after PC. (b) Velocity searching result
of IMRIFT. (c) CI result of IMRIFT for targetA. (d) CI result of IMRIFT for targetA. (e) CI result of
IMRIFT for targetB. (f) CI result of IMRIFT for targetB. (g) CI result of KT for targetA. (h) CI result of
KT for targetA. (i) CI result of KT for targetB. (j) CI result of KT for targetB. (k) CI result of MLRT for
targetA. (l) CI result of MLRT for targetA. (m) CI result of MLRT for targetB. (n) CI result of MLRT
for targetB. (o) CI result of SCIFT for targetA. (p) CI result of SCIFT for targetA. (q) CI result of SCIFT
for targetB. (r) CI result of SCIFT for targetB. (s) CI result of MRIFT for targetA. (t) CI result of MRIFT
for targetB. (u) CI result of RFT.

Table 3. Motion parameters of two targets.

Target Initial Range (km) Velocity (m/s)

A 19.60 4430
B 19.75 2540

4.3. Detection and Parameters Estimation Performance

In this experiment, Monte Carlo simulations were used to analyze the detection, range
estimation, and velocity estimation performances of KT, RFT, MLRT, SCIFT, MRIFT, IMRIFT,
and fast IMRIFT methods. The false alarm probability was set to Pfa = 10−3 and the SNR
was varied from −50 dB to −10 dB. Five hundred experiments were conducted for each
scenario. The motion parameters of the target were set as A = 1, v0 = 3400.1 m/s, and
R0 = 19.9225 km. The range cell number of R0 is 123.
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Figure 9 shows the detection probabilities of the seven methods at different SNR levels.
The results indicate that IMRIFT has better detection performance than MRIFT and SCIFT;
this performance is comparable to that of KT. Additionally, the proposed method suffers
some performance losses in low-SNR scenarios compared with the case of MLRT. In the
case of fast IMRIFT, there is a 2 dB loss in detection performance compared to that of IMRFT,
while there is still a 1 dB advantage compared to that of MIRFT.
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The RMSE results for this range are shown in Figure 10. When the SNR ≥ −33 dB, the
estimation error of IMRIFT is zero. Meanwhile, when the SNR ≥ −31 dB, the estimation
error of MRIFT zero. In other words, IMRIFT obtains more accurate range estimates than
MRIFT. However, compared with the cases of KT, RFT, and MLRT, there was still a 2dB
performance loss. In addition, the performance of the fast method is comparable to that
of MRIFT in terms of range estimation. Fast IMRIFT has a 2 dB loss in range performance
compared to IMRFT, while its performance is comparable to that of MRIFT in terms of the
range estimation performance.
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Figure 11 shows the RMSE results for the velocity. Because IMRIFT and MRIFT use
the same method for velocity estimation, their velocity mean square errors are comparable.
From Figure 11, it can be seen that the velocity estimation performance of IMRIFT is similar
to that of KT and MLRT and better than that of SCIFT. However, compared with RFT,
IMRIFT still exhibits a 2 dB performance loss. In addition, compared to IMRIFT, the fast
method has a 4 dB loss in velocity estimation but the velocity estimation performance is
still better than that of SCIFT.
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5. Conclusions

In this study, an effective coherent detection algorithm, IMRIFT, was proposed for
high-speed moving targets. In this method, the RW is corrected using the target estimated
velocity obtained from the velocity search in the 2-D frequency domain; subsequently, a
slow-time FT is performed to realize the CI. Compared with MRIFT, the proposed IMRIFT
effectively avoids the BSSL effect, while maintaining better detection performance with a
slight increase in computational cost. In addition, to reduce the time complexity of IMRIFT,
this study proposes a fast method based on IMRIFT. This method can effectively reduce
computational cost but its performance decreases when the initial range units of the target
are odd. The experimental results demonstrate the effectiveness of IMRIFT and the fast
method.
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