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Abstract: The performance of the extended state observer (ESO) in an Active Disturbance Rejection
Control (ADRC) is limited by the operational load in stepper motor control, which has high real-time
requirements and may cause delays. Additionally, the complexity of parameter tuning, especially in
high-order systems, further limits the ESO’s performance. This paper proposes a composite ADRC
(LTDRO-ADRC) based on a load torque dimensionality reduction observer (LTDRO). Firstly, the
LTDRO is designed to estimate abrupt load disturbances that are difficult to compensate for using
the ESO. Secondly, the transfer function under the double-closed loop is deduced. Additionally, the
LTDRO uses a magnetic encoder to gather the system state and calculate the load torque. It then
outputs a compensating current feedforward to the current loop input. This method reduces the
delay and complexity of the ESO, improving the response speed of the ADRC speed ring and the
overall response of the system to load changes. Simulation and experimental results demonstrate
that it significantly enhances dynamic control performance and steady-state errors. LTDRO-ADRC
can stabilize the speed again within 49 ms and 17 ms, respectively, in the face of sudden load increase
and sudden load removal. At the same time, in terms of steady-state error, compared with ADRC and
CADRC, they have increased by 94% and 88%, respectively. In terms of zero-speed starting motors,
the response speed is increased by 58% compared to a traditional ADRC.

Keywords: stepper motor; feedforward control; active disturbance rejection control; dimensionality
reduction observer

1. Introduction

Stepper motors, due to their straightforward architecture, high open-loop control
accuracy, low cost of drivers, and ease of speed regulation, are extensively utilized in vari-
ous industrial applications, including robotic arms, CNC machine tools, and new energy
electric vehicles. Nonetheless, the application in robotic arms exposes stepper motors to
challenges such as modeling inaccuracies, load disturbances, and other factors, leading to
potential step losses, diminished anti-interference capability, and torque variability. These
issues compromise not only the steady-speed precision of stepper motors but also the
overall performance of the robotic arm control system. Given that traditional PID and
ADRC strategies fall short of addressing the performance demands of current robotic arm
joint stepper motors, the quest for advanced steady-speed motor control algorithms has
emerged as a prominent research focus in recent years [1]. To counter the stepper motors’
reduced anti-interference efficiency under abrupt load shifts, the prevailing approach is the
implementation of closed-loop control to bolster performance. This approach bifurcates
into linear and nonlinear control methods. Linear control modalities typically integrate
traditional PID control with Field-Oriented Control (FOC) technology, tailoring the cur-
rent phase and magnitude for the two-phase hybrid stepper motor stator windings [2].
Research [3] has explored the efficacy of stepper motor FOC control through position step
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experiments employing a PI and ADRC in the current, speed, and position loops, highlight-
ing the ADRC’s enhanced load damping capabilities. Further, study [4] has adapted ADRC
for the motor’s current loop and attempts to optimize the ESO. Additionally, work [5]
has introduced a dual closed-loop architecture featuring a PI speed loop and an ADRC
position loop, proposing a method for ESO performance evaluation and a bias self-coupling
compensation strategy to augment system robustness.

A traditional Active Disturbance Rejection Control (ADRC) is characterized by its
reliance on numerous parameters, notably within the Extended State Observer (ESO),
particularly in higher-order systems where system performance is critically dependent on
the precise configuration and settings of the ESO’s structure and parameters. To mitigate
these challenges, scholars have leveraged existing algorithms for the fine-tuning of ADRC
parameters. A self-tuning decoupled controller design, utilizing the Genetic Algorithm
(GA) for the optimization of ADRC parameters, was proposed by reference [6], significantly
improving the system’s decoupling control performance. Reference [7] employed the
TD3 algorithm for the dynamic adjustment of controller parameters, thereby achieving
innovative trajectory tracking for aircraft. GAADRC, introduced by reference [8], harnesses
the genetic algorithm for the tuning of motor ADRC parameters through a multi-objective
optimization-based target function, culminating in the identification of optimal ADRC
control parameters after several iterations. An innovative ADRC design, grounded in
IMA and aiming for the determination of optimal ADRC parameters, was unveiled by
reference [9]. References [10,11] based on Particle Swarm Optimization (PSO) proposed
IPSO and APSO respectively to simplify the parameters of ADRC.

The ESO is tasked with real-time estimation of both system states and unknown
disturbances, which imposes significant computational overhead and presents challenges
for motor control systems requiring high real-time performance. As research progresses,
efforts have been made to optimize the structure of the ESO while integrating it with
other observers or algorithmic models for compensation, leading to the development of
Composite ADRC. This approach aims to maintain system performance while minimizing
the computational burden of the ESO as much as possible.

References [12,13] analyze the limitations of a conventional Linear ADRC and pro-
posed methods to improve ADRCs based on Model Predictive Compensation. Refer-
ence [14] removes the tracking differentiator (TD) in the first-order ADRC and reference [15]
optimizes the Luenberger Disturbance Observer to develop an ADRC-LOC controller suit-
able for linear uncertain disturbance systems of any order. Reference [16] introduced the
IPSO-BP algorithm. It utilizes IDA-PBC to establish a PCHD model of the motor, incorpo-
rating the BP algorithm to update the parameters of the ADRC in real time. Reference [17]
designed a novel current loop and proposed a Sliding Mode ADRC to regulate motor speed,
which not only retains the original characteristics of ADRC but also ensures a smooth tran-
sition of ADRC parameters. Reference [18] combined the advantages of LADRC and
NLADRC, proposing a Switching Control (SADRC) strategy. Reference [19] utilized a
nonlinear Phase-Locked Loop (PLL) combined with special nonlinear functions for esti-
mating uncertainties and load disturbances in actual conditions, designing a novel NPLLO
structure and proposing an ADRC controller based on the new Nonlinear Phase-Locked
Loop Observer (NPLLO). Reference [20] used interpolation fitting to reconstruct ESO and
NLSEF to optimize ADRC. Reference [21] designed a reduced-order ESO and proposed a
composite ADRC containing acceleration feedforward. Reference [22] improved the ESO
to handle non-decreasing second-order differentiable disturbances to achieve minimal
estimation error of the system and used the Lyapunov method to prove it. Reference [23]
introduced an improved ESO, which is beneficial for achieving high-performance current
control. Reference [24] presented a hybrid algorithm, combining a Frequency-Locked
Loop (FLL) with an enhanced Second-Order Generalized Integrator (SOGI) and a Phase-
Locked Loop (PLL) based on an ADRC to reduce rotor position estimation errors caused by
higher-order harmonics. Reference [25] proposed Fuzzy-ADRC, enhancing its disturbance
compensation capability. Reference [26] studied a composite ADRC for the second-order
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speed loop and position loop, proposing an IADRC to enhance system tracking accuracy. In
reference [27], a bicyclic ADRC with position-velocity parameters that can be self-adaption
is proposed for mechanical arm joints and applied to SCARA. Reference [28] enhances the
system’s vibration suppression capabilities by designing a reduced-order extended state
observer (RESO), while reference [29] addresses issues such as uncertain disturbances in
flexible-joint manipulators (FJMs). Based on the RESO, a novel composite control method
is devised, significantly improving the tracking performance.

Subsequent studies, such as those by references [16] through [27], have introduced
various algorithmic enhancements and novel approaches, including the integration of
genetic algorithms, particle swarm optimization, sliding mode control, and fuzzy logic, to
address specific challenges in ADRC implementation, thereby advancing the robustness,
adaptability, and performance of ADRC systems.

Existing studies commonly use observer techniques such as Luenberger observer,
sliding mode observer, and Kalman filter. Although these studies make significant theoreti-
cal contributions, their practical applications can be complex and computationally heavy.
The Load Torque Observer (LTO) design method based on the dimensionality reduction
observer principle is simple to implement and has low computational complexity. It can
be effectively combined with a high-order ESO and the two techniques complement each
other’s advantages, reducing the system computational complexity and ESO delay. As
shown in Table 1.

Table 1. Summary of Current Research on ADRCs.

Method Category Techniques/Algorithms

Parameter Optimization GA, PSO/IPM, APSO

Composite Design MPC, Luenberger, SM-ADRC, SADRC,
Fuzzy-ADRC

Structural Optimization IESO, NPLLO, RESO
Algorithm Combination TD3, IMA, Interpolation Fitting

Specifically, a traditional ADRC has many parameters, and the ESO, as the core of
ADRC control, will undoubtedly increase the burden on estimation and measurement tasks
while narrowing the scope of uncertainty for unknown controlled objects; if the estimation
capability does not meet the system requirements, requiring higher accuracy will actually
extend the system’s estimation time, thereby severely affecting the performance of the
active disturbance rejection control system. Especially for high-order systems, due to the
difficulty of parameter adjustment and optimization, the ability to identify parameters may
be reduced. At the same time, the total disturbance of the system cannot be effectively
compensated, which limits the excellent control performance of the active disturbance
rejection system. Therefore, the method of compensating part of the system model can,
on the one hand, obtain more information about the controlled object, and on the other
hand, it also reduces the burden on the controller to estimate the object and perform
compensation. The load torque observer is designed using the dimensionality reduction
observer principle to share the system burden. Through theoretical analysis, it can be
proved that the dimensionality reduction observer has a small amount of calculations,
compensates for the computational delay of high-order ESO well, and greatly improves the
overall efficiency of the system.

This paper proposes a composite ADRC method for stepper motors combined with
the Load Torque Dimensionality Reduction Observer (LTDRO). First, the closed-loop vector
control and the mathematical model of the motor are introduced, and the speed loop is
controlled by the ADRC. Secondly, in Section 3, the use of magnetic encoders to obtain
system state variables such as motor position and speed is introduced, and the LTDRO
is constructed. The observer can estimate external load disturbances in real time and
output a feedforward compensation current after internal calculation. The ESO is used
to compensate for all disturbances except load torque. In Section 4, the simulation and
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experimental results are presented. Finally, in Section 5, the effectiveness of the method
is summarized.

2. Vector Control Mathematical Derivation
2.1. Derivation of Rest Coordinate Formula

The mathematical model in a stationary coordinate system primarily consists of three parts:

(1) Voltage Equation:

Combining the winding inductance formula yields:
UA = rAiA + (L0 − L2cos2θe)

diA
dt − L2sin2θe

diB
dt

+2ωLL2(iAsin2θe − iBcos2θe)− keωrsinθe

UB = rBiB + (L0 + L2cos2θe)
diB
dt − L2sin2θe

diA
dt

−2ωLL2(iBsin2θe + iAcos2θe) + keωrsinθe

(1)

In the formula, UA, rA, UB, rB represent the phase voltage and resistance of the stator
winding of the motor, respectively; ωr represents the mechanical angular speed of the rotor;
ke is the back electromotive force coefficient.

(2) Mechanical Motion Equation:

Te = J
dωr

dt
+ Bωr + TL (2)

In the formula, Te signifies the electromagnetic torque, J denotes the inertia moment,
and TL is indicative of the torque exerted by the load.

(3) Torque Equation:

The total electromagnetic torque for a two-phase hybrid stepping motor is composed
of the main electromagnetic torque Tm and the detent torque Ts. By combining both, the
electromagnetic torque can be expressed as:

Te = Tm + Ts = Nr MsrIm(−iAsin θe + iBcos θe) + NrL2
(
i2A − i2B

)
sin 2θe

−2iAiBcos 2θe
(3)

In summary, the equations for a two-phase hybrid stepper motor in a stationary
coordinate system are as follows:

UA = rAiA + (L0 − L2cos2θe)
diA
dt − L2sin2θe

diB
dt

+2ωLL2(iAsin2θe − iBcos2θe)− keωrsinθe

UB = rBiB + (L0 + L2cos2θe)
diB
dt − L2sin2θe

diA
dt

−2ωLL2(iBsin2θe + iAcos2θe) + keωrsinθe

Te = J dωr
dt + Bωr + TL

Te = Tm + Ts = Nr MsrIm(−iAsinθe + iBcosθe)
+NrL2

((
i2A − i2B

)
sin2θe − 2iAiBcos2θe

)
(4)

2.2. Derivation of the Formula for d-q Coordinates

The conversion relationship between the rotating d-q coordinate system and the sta-
tionary α − β coordinate system is depicted in Figure 1.

Deduced from the previous analysis, this shows the angle separating the α-axis from
the d-axis is equivalent to the electrical angle.

Conversion of stator currents iα, iβ from the stationary to the rotating coordinate
system is executed via the Park transformation:[

iα

iβ

]
=

[
cosθe −sinθe
sinθe cosθe

][
id
iq

]
(5)
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The process of reverting id, iq from the rotating to the stationary coordinate system is
conducted through the reverse Park transformation:[

id
iq

]
=

[
cosθe sinθe
−sinθe cosθe

][
iα

iβ

]
(6)

Integrating the equations for the two-phase magnetic flux of the motor from both
stationary and rotating coordinate systems allows for the derivation of the voltage equation
in the d − q rotating coordinate system as:{

Ud = Ld
did
dt − Lqiqωe + idR

Uq = Lq
diq
dt + Ldidωe + iqR + Msr Imωe

(7)

The formula for electromagnetic torque within the d − q rotating coordinate for the
motor is:

Te = Nr · 2
(

Ld − Lq
)
idiq + Nr Im Msriq (8)

In vector control, there are three commonly used methods. This paper adopts the
id = 0 control, which simplifies the electromagnetic torque equation to:

Te = Nr Im Msriq (9)

In summary, when id = 0, the electromagnetic torque is only dependent on the magni-
tude and direction of iq. By controlling the magnitude and direction of iq appropriately, it
is possible to control the electromagnetic torque of the two-phase hybrid stepper motor.
This method, as utilized in this paper, achieves simplicity and avoids the demagnetizing
effect. However, this control method also has its drawbacks. Setting id to zero means
that the reactive torque of the motor cannot be utilized. This results in low utilization of
stator current, requiring larger currents to generate the same electromagnetic torque. As a
consequence, the power factor of the motor decreases as the load increases.

3. LTDRO-ADRC Speed Regulation Method
3.1. Design of the LTDRO

During sudden load changes, the Extended State Observer (ESO) within the speed
loop, which relies on a speed error detection method, may not accurately or promptly
estimate the total disturbance. This limitation stems from the fact that the ESO’s bandwidth
dictates the quickest rate at which it can track signal changes. A bandwidth set too low
hampers the ESO’s ability to swiftly adapt to abrupt load alterations. Conversely, while
ESOs commonly employ filters to diminish noise and enhance the smoothness of their
estimates, these filters can mitigate fluctuations at the cost of introducing delays, thus
decelerating the response to rapid shifts.
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To augment the ESO’s responsiveness to sudden load variations, optimizing the design
parameters to elevate its bandwidth is a viable approach. Nonetheless, an excessively high
bandwidth might provoke issues such as noise amplification and heightened sensitivity,
which could destabilize the system. Alternatively, implementing a higher-order ESO
design, like a third-order or above, could address these challenges, although it significantly
complicates the tuning process.

This paper introduces a novel approach: the design of a load torque dimensionality
reduction observer. This observer internally calculates the load torque signal, utilizing it
as a compensatory current that is fed forward into the current loop input. It is adept at
estimating and compensating for sudden load disturbances—tasks that the conventional
ESO might find challenging. Thus, it optimizes the latency issues associated with the ESO
in traditional Active Disturbance Rejection Control (ADRC) setups. As a result, it not only
accelerates the ADRC speed loop’s response rate but also bolsters the system’s overall
adaptability to load changes.

The principle block diagram illustrating the composite ADRC system, which incorpo-
rates the load torque dimensionality reduction observer for feedforward compensation, is
depicted in Figure 2.
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According to the motor’s motion equation, when the motor runs stably under no load,
the electromagnetic torque is balanced with the speed, namely:

Te − Bωm = 0 (10)

Upon encountering a sudden shift from a zero load condition, the previously estab-
lished equilibrium between electromagnetic torque and speed becomes disturbed, leading
to alterations in the motor’s rotational velocity. At this critical moment, by introducing a
compensatory electromagnetic torque, Tec, the motor’s motion equation can be reformu-
lated as follows:

J
dωm

dt
= Te − Bωm − TL + Tec (11)

Assuming the compensatory electromagnetic torque Tec applied to the motor equals
the load torque induced by the sudden load change, that is, Tec = TL, then the torque
and speed remain in equilibrium, and the motor speed remains unchanged. Based on
the relationship between electromagnetic torque and current, it is possible to achieve the
purpose of compensating the electromagnetic torque of the motor by adjusting the iq
current. The compensatory current iqc is as follows:

iqc =
2

3 · npϕ f
Tec =

2
3 · npϕ f

TL (12)

Due to the difficulty in directly measuring the load torque, the magnitude of the load
torque is indirectly determined based on the motor’s motion equation, utilizing the system’s
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state variables iq, ωm. Integrating load torque, speed, and current into one formula, the
relationship between them is as follows:

TL = −3
2

npϕ f iq − Bωm − J
.

ωm (13)

Furthermore, as previously mentioned, the following formula can be derived:{
Te = J dωr

dt + Bωr + TL
ωr =

dθm
dt

(14)

Assuming the sampling frequency is sufficiently high, the observed state variable of
the load torque can be considered constant within one sampling period, implying that the
load torque remains constant during the sampling cycle, i.e., dTl/dt = 0. By integrating this
assumption with the mechanical motion equation, the state equation for a two-dimensional
linear time-invariant system is designed as follows:{dx

dt = Ax + Bu
y = Cx

(15)

Herein, A =

[
−B

J − 1
J

0 0

]
, B =

[
1
J
0

]
, C =

[
1
0

]T

, x =

[
ωr
TL

]
, y = ωr;

It follows that: d
dt

[
ω̂r

T̂L

]
=

[
−B

J − 1
J

0 0

][
ω̂r

T̂L

]
+

[
1
J
0

]
Te +

[
k1
k2

]
ωm

Simplifying the above equation and substituting it into the mechanical motion equation
yields: ω̂r =

Te+ωm

(
k1 J− k2

s

)
sJ+B

T̂L = ωm

(
k1 J − k2

s

) (16)

According to the simplified Equation (16), the block diagram of the observer can be
obtained, as shown in Figure 3.
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Herein, A = − −0 0 , 𝐵 = 0 , 𝐶 = 10 , x = 𝜔𝑇 , y = ω ; 

It follows that: 
ωT =  − −0 0 ωT + 0 T + kk ω  

Simplifying the above equation and substituting it into the mechanical motion equa-
tion yields: 

⎩⎪⎨
⎪⎧𝜔 = 𝑇 + 𝜔 𝑘 𝐽 − 𝑘𝑠𝑠𝐽 + 𝐵𝑇 = 𝜔 (𝑘 𝐽 − 𝑘𝑠 )  (16)

According to the simplified Equation (16), the block diagram of the observer can be 
obtained, as shown in Figure 3. 
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Figure 3. Observer structure diagram. Figure 3. Observer structure diagram.

In practical applications, to facilitate the design of the observer’s pole placement,
the damping coefficient B is considered negligible. By setting k1J = kp and k2 = ki, the
following can be derived:

ω̂r =

(
kp +

ki
s

)
ωm + Te

sJ
(17)

At this juncture, the Dimensionality-Reduced Observer (DRO) can achieve a perfor-
mance closely paralleling that of the widely recognized Proportional–Integral (PI) controller.
In the development and subsequent refinement of the DRO, attention can be exclusively
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directed towards the proportional and integral components. This approach simplifies the
tuning process significantly.

Regarding the decoupled control strategy employed for the current loop, when the
motor’s damping coefficient (B) along with the impacts of sampling and filtering present
in both the speed and current loops are disregarded, the open-loop transfer function
characterizing the stepper motor’s control current loop is delineated as follows:

Gc(s) =
sKPi + KIi
s(sLs + R)

(18)

In the equation, s is the Laplace transform variable, representing frequency in the
complex frequency domain; KPi is the proportional gain, KPi can be equivalent to propor-
tional control; KIi is the integral gain, making up the integral part of the PI controller; Ls
is the motor inductance, characterizing the electromagnetic response of the motor coils to
changes in current; R is the motor resistance, representing the resistance of the motor coils.

To simplify the calculation, assume that KPi, KIi are related only to the cutoff frequency
fc of the current loop, and let KPi = fcLs, K Ii = LsR. Consequently, the closed-loop transfer
function of the current loop can be simplified as follows:

Gcl(s) =
Gc(s)

1 + Gc(s)H(s)
=

fc

s + fc
(19)

The open-loop transfer function of the velocity loop is:

Gω(s) =
fc(sk Pω + KIω)

s(s + fc)
(20)

By simultaneous Equations (19) and (20), the system transfer function can be expressed as:

G(s) =
(sk P + KI)

s
(
sJ + kp

)
+ KI

= Go(s)/(1 + Go(s)) (21)

The open-loop transfer function Go(s) can be determined as:

Go(s) =
skP + KI

s2 J
(22)

As demonstrated by the transfer function depicted in Figure 4, the system exhibits
the dynamic properties characteristic of a second-order system. Here, J symbolizes the
inertia of the system. Such a configuration is proficient in eliminating steady-state errors
while achieving precise tracking of the observed load torque. Nonetheless, the absence of
damping contributes to potential oscillations, rendering the system excessively sensitive
under specific conditions.
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3.2. Torque Feedforward Compensation

In motor speed control systems, the conventional application of Proportional–Integral
(PI) controllers within the speed loop frequently results in extended adjustment periods
following speed variances provoked by alterations in load, thereby complicating the swift
minimization of discrepancies between the predetermined speed and its actual counterpart.
To augment the system’s dynamic responsiveness to perturbations in load, the introduction
of a load torque feedforward compensation strategy is proposed.

This approach entails incorporating a torque current directly into the motor current
loop input, which is proportional to the load torque, thereby enabling immediate feedfor-
ward compensation for the impact of load disturbances. As depicted in Figure 5, the torque
current is determined based on the load torque as estimated by the observer. Following
low-pass filtering, it is then injected into the motor current loop, significantly enhancing
the motor system’s ability to respond to abrupt changes in load conditions.
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3.3. Stability Analysis

From the preceding analysis, the system’s transfer function has been derived as G(S).
To analyze stability, it is necessary to define the system’s state space. For simplicity, a
reduced model with similar dynamic behavior is considered:{ .

x = Ax + Bu
y = Cx

(23)

Here, x represents the state vector, u the input, and y the output. Incorporating the
specific form of the original system’s transfer function, and defining the system state vector
as x = [x1, x2]

T , the simplified model of the system can be expressed as:{ .
x1 = x2

.
x2 = −Kp

J x2 − KI
J x1 +

1
J u

(24)

A Lyapunov function, V(x), is selected as:

V(x) =
x2

1
2

+
x2

2
2

(25)
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This function is positive definite for x ̸= 0 and attains its minimum value of 0 when
x = 0, fulfilling the basic requirements for a Lyapunov function. Further derivation yields
the derivative of V(x) with respect to

.
V(x):

.
V(x) = x1

.
x1 + x2

.
x2

= x1x2 + x2

(
− kP

J x2 − KI
J x1 +

1
J u

)
= − kP

J x2
2 −

KI
J x1x2 +

1
J x2u

(26)

Given that KP and KI are non-negative, by designing an appropriate control law, it
can be ensured that

.
V(x) ≤ 0 always holds true, indicating that the system is stable. On

the other hand, as derived from the preceding discussion, regarding the system’s poles, it
is known that:

s2 J + skp + KI = 0 (27)

This constitutes a quadratic equation in terms of S, with the general solution being:

s =
−kP +

√
k2

P − 4JKI

2J
(28)

The stability of the system necessitates that the real parts of all poles be less than zero.
Therefore, it is imperative to examine the real part of the aforementioned solution.

Should the condition k2
P − 4JKI > 0 hold, the roots are real numbers. If −kP < 0, the

real part is negative, which implies kP > 0;
If k2

P − 4JKI = 0, there exists a repeated root, upon which the system’s stability also
hinges, requiring that kP > 0;

In the event that k2
P − 4JKI < 0, the roots are complex conjugates, with their real

parts determined by −kP
2J . Under these circumstances, the stability of the system similarly

depends on kP > 0.
In summary, the stability of this system is primarily dependent on the control parame-

ters kP, K I . With appropriate parameter settings, the system is stable.

4. Simulation and Experimental Verification
4.1. Simulink Simulation

The LTDRO-ADRC control system for a stepper motor was developed and assessed
through simulation in Simulink, thereby validating the effectiveness of the control method-
ology proposed in this investigation.

The parameters defining the chosen stepper motor are delineated in Table 2.

Table 2. Main parameters of stepper motor.

Parameter Value

Winding inductance 0.0042 H
Winding resistance 2.10 hm

Step angle 1.8◦

Maximum flux linkage 0.00424 Vs
Maximum detent torque 0.065 N·m

Total inertia 0.0058 kg·m2

Total friction 0.0013 N·m·s
Number of pole pairs 50

To assess the control performance of the designed controller regarding motor speed,
a simulation model of the control system was designed and evaluated within the Mat-
lab/Simulink environment. The simulation employed identical parameters to those utilized
in the experimental setup.
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To enrich the evaluation of the controller’s efficacy, the speed loop incorporates four
distinct controllers for comparative analysis: PI, ADRC, another variant CADRC, and the
LTDRO-ADRC proposed in this study. The comparison among these four control systems
is depicted in Figure 6.
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Figure 6. Comparative Block Diagram of Different Speed Loop Controls.

In the simulation setup, a step speed signal is applied to the stepper motor at 0 s, with
a target speed of 50 rpm. The time it takes for the motor to accelerate from zero to the target
speed is observed, waiting for the motor to initiate. This procedure facilitates a comparative
assessment of the efficacy of various control methodologies. Once the motor’s speed
stabilizes, a 1 N·m load is introduced to the test stepper motor at 0.1 s. The variations in
speed following the application of this load under different control strategies are monitored.
For a more intuitive comparison, all results are consolidated into a waveform graph. After
the motor’s speed stabilizes once more, the previously applied 1 N·m load is removed at
0.4 s, and the outcome of this change under each control method is observed. The entire
simulation spans 0.5 s. The simulation process and methodology are detailed in Table 3.

Table 3. Load Application and Removal Simulation Procedure.

Time Node Operation

0 s Start motor,
V = 50 rpm

0.1 s Apply load,
Te = 1 N·m

0.4 s Remove load,
Te = 0 N·m

0.5 s Simulation over

The observed torque waveforms in the add and subtract load simulation are shown in
Figure 7, which shows that there is an instantaneous torque observed by the LTDRO to exist
during the 0–0.05 s time period, even though there is no external load applied, due to the motor
starting from zero speed. After the motor speed is stabilized, the load changes at 0.1 s and 0.4 s
are accurately observed by the LTDRO. This validates the effectiveness of the LTDRO.
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Figure 8 shows the comparison of the response under the use of different control
methods. From the figure, it can be seen that there is a contradiction between overshooting
and fast response in the PI control method. Here KP = 50, KI = 10. The PI speed loop
can quickly make the motor reach the target speed, but there is overshooting and some
oscillation. The peak speed is reached at 0.02127 s with Vmax = 51.51 rpm. Both the ADRC
and CADRC have good smoothness and responsiveness. Specifically, the ADRC here has
better responsiveness and reaches the target speed in 0.0557 s. This is because the TD in
the ADRC has a certain delay for the tracking of the input signal, while the CADRC tends
to make a certain trade-off in responsiveness due to the inclusion of other algorithms and
observers, as well as the delay of the ESO, and the CADRC reaches the target speed in
0.0656 s. As the LTDRO-ADRC proposed in this paper adopts the principle of the reduced
dimension observer, the computational volume is small, and the computing burden of
the system is then reduced a lot, sharing part of the task of the ESO. According to the
simulation results, the target speed is reached at the moment of 0.0233 s. The performance
comparison table of different control methods in the startup phase is shown in Table 4.
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Table 4. Comparative performance data for the startup phase.

Time Node Control Method Peak/Valley Response Moment Error

Start-up phase PI 51.51/49.34 0.0275 1.51
Start-up phase ADRC 50 0.0557 0
Start-up phase CADRC 50 0.0656 0
Start-up phase LTDRO-ADRC 50 0.0233 0

After applying the load at 0.1 s, as shown in Figure 9, it can be seen that all the ADRC
methods have better anti-jamming ability. The PI control will quickly reduce the speed to
48.74 rpm after applying the load, and then the P controller will pull the speed back to the
original speed, but at this time there will be the phenomenon of tiny overshoot, and the
speed will be increased to 50.03 rpm. The I controller will pull the speed down to the target
speed again, and overshooting and oscillation of the speed will occur under PID control.
This is also in line with the flaws of PID control in the previous theoretical analysis. It can
be seen from Figure 9a that, after the speed is stabilized again, the different control methods
all have certain steady-state errors. The PI enters the steady state at the moment of 0.1158 s,
with a steady-state error of −0.27 rpm, while the ADRC and CADRC enter the steady state
at the moments of 0.1142 s and 0.1128 s, respectively. The steady-state error is −0.17 rpm
and −0.09 rpm, respectively. As shown in Figure 9b, the LTDRO-ADRC proposed in this
paper enters the steady state again at the moment of 0.1049 s, and the steady-state error
of the speed is −0.01 rpm. It exhibits an excellent anti-interference capability. Table 5
shows the table of performance comparison data of different control methods in the applied
load stage.

Table 5. Performance Comparison Data for Applied Load Stage.

Time
Node

Control
Method

Peak/
Valley

Response
Moment

Steady-State
Error

Steady-State
Moment

Load application PI
48.74 0.1019 −0.27 −0.2750.03 0.1046

Load application ADRC 49.54 0.1133 −0.17 0.1142
Load application CADRC 49.72 0.1038 −0.09 0.1128
Load application LTDRO-ADRC 49.98 0.1029 −0.01 0.1049
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As shown in Figure 10, the plots comparing the steady-state errors of different control
methods are consistent with the data in Table 5.

Sensors 2024, 24, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure 10. Comparison of velocity steady-state error in 0.2–0.3 s. 

Figure 11 shows a comparison of the speed change after removing the load for 0.4 s, 
and it can be seen that the speed of the PID control rises rapidly after removing the load, 
and there are still oscillations in the regulation process. All ADRC controls have basically 
no fluctuation in speed after removing the load, but from the specific data, the LTDRO-
ADRC has the shortest response time. Detailed data comparisons are shown in Table 6. 

 
Figure 11. Comparison of speed change after unloading at 0.4 s. 

Table 6. Comparative performance data for the unloading phase. 

Time 
Node 

Control  
Method 

Peak/ 
Valley 

Response  
Moment 

Steady-State 
Error 

Steady-State 
Moment 

Remove load PI 50.57 0.4009 0.01 0.4147 49.64 0.4024 
Remove load ADRC 50.03 0.4017 0 0.4091 
Remove load CADRC 49.99 0.4098 0 0.4119 
Remove load LTDRO-ADRC 50 0.4009 0 0.4017 

In order to better verify the effectiveness of the LTDRO-ADRC, increase and decrease 
speed control experiments are added. Set the stepper motor startup target speed value as 
50 rpm, increase the speed to 70 rpm at 0.2 s, and the speed plummets to zero at 0.3 s. 
Observe the speed change curve of different control methods. As shown in Figure 12, it 
can be seen that LTDRO-ADRC has excellent tracking ability compared to other control 
methods. The speed response is fast and no overshoot occurs. 

Figure 10. Comparison of velocity steady-state error in 0.2–0.3 s.

Figure 11 shows a comparison of the speed change after removing the load for 0.4 s,
and it can be seen that the speed of the PID control rises rapidly after removing the load,
and there are still oscillations in the regulation process. All ADRC controls have basically no
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fluctuation in speed after removing the load, but from the specific data, the LTDRO-ADRC
has the shortest response time. Detailed data comparisons are shown in Table 6.
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Table 6. Comparative performance data for the unloading phase.

Time
Node

Control
Method

Peak/
Valley

Response
Moment

Steady-State
Error

Steady-State
Moment

Remove load PI
50.57 0.4009

0.01 0.414749.64 0.4024
Remove load ADRC 50.03 0.4017 0 0.4091
Remove load CADRC 49.99 0.4098 0 0.4119
Remove load LTDRO-ADRC 50 0.4009 0 0.4017

In order to better verify the effectiveness of the LTDRO-ADRC, increase and decrease
speed control experiments are added. Set the stepper motor startup target speed value
as 50 rpm, increase the speed to 70 rpm at 0.2 s, and the speed plummets to zero at 0.3 s.
Observe the speed change curve of different control methods. As shown in Figure 12, it
can be seen that LTDRO-ADRC has excellent tracking ability compared to other control
methods. The speed response is fast and no overshoot occurs.
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4.2. Experimental Verification

To verify the feasibility of the LTDRO-ADRC proposed in this paper, a stepper motor
drive testing platform was built based on a custom closed-loop vector control board, with
data collected via serial port and CAN bus for ease of testing and data collection. The
control core hardware and its installation are illustrated in Figure 13.
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Experiments were carried out using the LTDRO-ADRC speed ring, using the same
current loop and control parameters, with the speed command kept at 50 r/min, and a
1 N-m load was applied abruptly at 0.1 s and removed at 0.4 s, respectively. The observer
output is shown in Figure 14.
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As shown in Figure 15, the current response of the stepper motor is continuous and
does not show any abnormal jumps or instability, and the motor is loaded and running
within 0.1–0.4 s, and the current reaches a steady state without obvious noise, which
indicates that the system can well realize the closed-loop vector control, and verifies the
reasonableness and validity of the LTDRO-ADRC for the speed loop.
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Ideally, after a sudden load change, the error between the actual speed and the
expected speed should be zero. However, under actual working conditions, when the load
is increased, the speed will first decrease and then quickly approach the expected speed.
The difference between the actual speed and the expected speed after the system stabilizes
again is called the steady-state error. The experimental results show that the LTDRO-ADRC
can stabilize the speed error in a range closer to the expected value.

In summary, simulation and experiment show that the LTDRO-ADRC speed control
method proposed in this study can effectively reduce the fluctuation of stepper motor
speed under sudden load change, and improve the system’s anti-interference ability and
robustness. It can be well applied in robot ground joints, and can achieve light weight, low
cost, and high performance of joint motors.

5. Conclusions

To address the traditional stepper motor vector PI speed control system: the internal
and external perturbations, such as sudden load changes, and the contradiction between
response and overshoot affects the speed control performance, and the ESO in ADRC
technology in a high-performance stepper motor system is limited by the arithmetic load,
which may lead to delays in the real-time requirements of the motor control; especially
in the higher-order system, the complexity of parameter tuning limits the performance
of the ADRC problem. Based on the vector control of stepper motors, according to the
principle of self-immunity control, a self-immunity control strategy is adopted in the
speed loop, and on this basis, a dimensionality reduction observer (DRO) is utilized for
load estimation to reduce the system burden of the ESO, and at the same time, the load
torque dimensionality reduction observer (LTDRO) internally calculates and outputs the
feedforward torque current to be compensated to the input of the current loop. Simulation
and experimental results show that the LTDRO-ADRC parameter design is effective and
feasible, and the parameter design can be accomplished by using fewer indicators, which
reduces the difficulty of design and calculation. This speed control method can effectively
improve the dynamic control performance of the system, realize fast response, and improve
the system stability at the same time. Simulation results show that the LTDRO-ADRC can
stabilize the speed again within 49 ms and 17 ms, respectively, when faced with sudden load
increase and sudden load removal. Meanwhile, in terms of steady-state error, compared
with the ADRC and CADRC, the improvement is 94% and 88%, respectively. In terms
of zero-speed motor starting, the response speed is improved by 58% compared with the
traditional ADRC. This provides a solid foundation for applying this control technology to
high-performance servo applications.
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