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Abstract: This paper presents a novel method for load torque estimation in three-phase induction
motors using air gap flux measurement and the conversion of this type of time-domain signal
into grayscale images for further processing as inputs for an inception-type convolutional neural
network. The magnetic flux was measured employing a Hall effect sensor installed inside the
machine, near the stator slots, and above the stator windings. In this case, the sensor was able to
measure a resultant magnetic flux density, having both rotor and stator magnetic flux contributions.
The present methodology does not require motor parameters for torque prediction. The proposed
approach successfully estimated load torque using three optimizers across almost the entire motor
load operational range, spanning from 1.5% to 93.9% of the rated load. Four model configurations
achieved a mean absolute percentage error (MAPE) less than or equal to 3.7%. Specifically, two
models for a 40 × 50 pixel image achieved MAPE of 3.7% and 3%, one model for a 40 × 25 pixel
image achieved a MAPE of 3.5%, and one model for a 50 × 80 pixel image achieved a MAPE of 3.3%.
This research has been experimentally validated with a 7.5 kW squirrel cage induction machine.

Keywords: torque estimation; image-based condition monitoring; convolutional neural networks

1. Introduction

Rotating electrical machines are the main industrial assets responsible for energy
conversion in productive segments, in a variety of applications. In this sense, three-phase
squirrel cage induction motors (TIMs) have been the most employed machines in the last
decades in the industrial environment, being responsible for operating in different types of
drives [1]. Despite the widespread use of TIMs, their measured or estimated torque and
efficiency are important information for energy diagnosis purposes and to match the motor
load [2]. In addition, as cited by [3,4], knowing the torque value helps professionals and
engineers better understand potential faults or malfunctions in the machine [5].

The monitoring of load torque can be directly assessed through a torque sensor, often
referred to as a torque meter. This technique, known as direct torque measurement, is
also addressed by some technical approaches [6], but using a torque meter has significant
drawbacks due to its difficulty in installation on the shaft, between the load and the TIM [7].
Nonetheless, the mechanical installation between rotating components renders this approach
unviable in various scenarios, particularly within critical systems [8]. The precise alignment
of torque meters with the motor shaft is imperative, as any misalignment can curtail the
operational lifespan of these instruments, resulting in protracted and costly installation
procedures. Given these constraints, numerous ongoing studies are focused on estimating
load torque indirectly [9], obviating the need for mechanical installation or coupling between
the TIM and the mechanical system.

During the past decades, many researchers have dedicated themselves to investigating
new techniques and approaches for estimating load torque in induction motors [2–8].
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Recently, new research has led to the use of airgap and stray flux measurements for
the condition monitoring of motors, including fault diagnosis [10–12] and load torque
estimation [4].

In this sense, the authors [8] proposed an alternative approach by indirectly measuring
the torque using parameters such as three-phase currents, line voltage, and stator resistance.
This approach involves calculating the electromagnetic air-gap torque (AGT) of the TIM.
The approach showcases notable benefits, demonstrating estimation errors below 2% for
load levels spanning 20% to 110% of the torque nominal range. Nevertheless, as the load
descends below 20% of the motor’s nominal load capacity, the model’s estimation capability
weakens, resulting in increased errors of up to 5%.

The AGT is one of the most known techniques [13]; however, in this approach, it is
necessary to apply several measurements, such as the voltages and currents of the TIM.

Similarly, the work by [14] also addresses the AGT estimation based on root mean
square (RMS) values of variables such as current, voltage, and power. This work suggests
presenting a method relying solely on the RMS values. However, a limitation of this method
is in the intricacies of modeling and quantifying the losses within the motor, as highlighted
by the authors [14]. These losses pose a persistent challenge due to the complexity involved
in their calculation.

The research conducted by [15] underscores the significance of diagnosing efficiency
in rotating machines by assessing load torque. It introduces a method for estimating
torque by using electric current and magnetic flux from the motor stator. This method
proposes a non-invasive technique for gauging the stator’s magnetic flux within the TIM,
achieved through the utilization of an external copper coil. This coil replicates the air gap
flux during motor operation. By incorporating the AGT method and these parameters
in the TIM model, the study facilitates estimations of electromagnetic torque. However,
relying solely on the external copper coil for estimating electromagnetic torque reveals
imprecision, which is particularly evident with errors exceeding 10% at lower loads, posing
an identifiable limitation. Nonetheless, when combining the magnetic flux from the coil
with the stator current, the errors diminish. Specifically, the combined approach reduces
errors to 8.5% under no-load conditions and drops further to below 4.1% at full load,
showcasing substantial improvement in accuracy.

Recently, many approaches have been put forward in the literature to suggest different
alternatives to asses the TIM’s patterns based on its produced data [16]. Groundbreak-
ing results have emerged, demonstrating the various benefits of applying a data-driven
approach to motors, as proposed by [17], which is based on simulated and real data for
estimating the speed and torque of a TIM through a computational model, considering a
convolutional encoder-decoder neural network architecture. According to the authors [17],
the data-driven approach to estimating speed and torque from measured currents and
voltages of a TIM has allowed the bridging of simulated data from a physical model to
the real world, using convolutional neural network techniques to learn the underlying
dynamic model of the TIM.

Currently, artificial neural network (ANN) models based on data, with capabilities
similar to or even better than those based on mathematical models of TIM, have further
encouraged researchers to seek meaningful insights into the dynamic behavior of the motor
through data. For example, the study conducted by [18], which employs an ANN model
considering a linear regression (LR) algorithm with supervised learning, estimates load
torque while incorporating signal processing techniques.

In the continuous pursuit of enhancing the performance of electric motors, recent stud-
ies demonstrate how convolutional neural networks can optimize topology (TO—topology
optimization) through linear regression models [19]. An illustration of this is the work
presented by [20], aiming to achieve torque performance using a convolutional neural net-
work architecture, as also demonstrated by [21]. Similarly, ref. [22] employs a convolutional
neural network to extract features from the distribution of the electric motor’s magnetic
field to predict torque characteristics.
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In the context of failure diagnostics, the data-driven approach has been demonstrated
as suitable for various types of TIM applications, such as wind turbines [23]. When it comes
to preventing failures, the data-driven approach relies on reading patterns from different
types of sensors and classifying whether a failure exists or not. However, this is based
on models that are able to perform complex linearizations in order to suggest the current
behavior of the asset.

Furthermore, beyond the fault diagnostics employed in TIM, there are also many
mechanical components mostly coupled on the TIM shaft that are important to assess, for
instance pumps, conveyors, compressors, generators, and so on, as in the work by the
authors [24], who have employed a data-driven architecture in order to detect failure on
the gearbox.

The research applied to electric motors is continually advancing, and CNNs stand
out as one of the most effective data-driven modeling strategies within the realm of deep
learning. Utilizing CNNs in proposed approaches has demonstrated feasibility and prac-
ticality, yielding robust results across various scenarios related to electric motors. These
applications span from motor fault detection [25] and analysis of specific components like
bearings [26] to the assessment of motor performance for efficiency [27]. Furthermore,
CNNs have proven valuable in the design of high-performance motors [28].

Nevertheless, despite the benefits of transforming time-series data into images for
CNN-based analysis, it is crucial to take into account potential drawbacks. On the pos-
itive side, this approach allows for the extraction of spatial patterns and relationships,
harnessing the powerful feature extraction capabilities of CNNs. Data augmentation tech-
niques become more applicable, and compatibility with pre-trained models designed for
image-related tasks offers a potential advantage. The visual nature of images enhances
interpretability, aiding in exploratory data analysis. However, challenges include the
potential loss of inherent temporal information present in time-series data, elevated compu-
tational demands associated with image processing, and the imperative need for meticulous
parameter selection in the transformation process.

Therefore, the primary goal of this article is to introduce an innovative method for
accurately estimating load torque without relying on intricate parameters or a detailed mathe-
matical model of the TIM. This approach adopts a data-driven architecture that negates the
necessity for deep TIM parameters. Instead, it utilizes a computational model founded on a
supervised convolutional neural network tasked with learning and extracting features from a
set of images generated from a periodic signal obtained from the TIM air gap.

The results demonstrated a good performance of this approach for load torque esti-
mation using three different time windows, as well as 100 ms, 200 ms, and 400 ms from a
magnetic flux, allowing us to assess the robustness of the image-based approach in indus-
trial environments. When compared to other works in the literature, the main contributions
of this work can be summarized as follows: (i) an approach capable of extracting features
from images that reflect the magnetic flux and estimating load torque without the need for
additional variables such as voltage, current or even speed; (ii) capability of estimating
the load torque even with low-sized images created by very small time windows; (iii) this
method can estimate load torque even in low load below 30% of the nominal load; and
(iv) estimation error below 3.1% in a range spanning from 1.5% to 93.9% of the nominal
load. Moreover, it should be mentioned that the image-based approach can be improved
by using different approaches to processing the images; however, this research may help
with rotor shaft speed-torque estimation under failure-in-service behavior, as well as the
unbalanced power supply for induction motors applied to distinct operational conditions.

2. Magnetic Flux Signal Conversion into Images and the Convolutional Neural
Network Model
2.1. Signal Processing for Image Construction

The digital representation of the continuous signal in the time domain originating
from the Hall effect sensor is described through the function α : I ⊂ Z → R, or more



Sensors 2024, 24, 2614 4 of 18

succinctly as α : I → R, where I denotes a set of discrete points in the domain of integers Z,
and R represents the corresponding amplitude value of the signal mapped onto the set of
real numbers. This function, α(t), expresses the value of the continuous signal for every
time instance t [29].

The sampling process involves determining the frequency at which the pulse train
p(n) ∈ Z switches from 0 to 1 activation, set here in this work at 10 kHz. The sampling
time Ts of 0.1 ms signifies the activation time of p(n) between instances n ∈ I, representing
how many times the magnetic flux analog signal is discretized within a time interval [30].

In this sense, the raw signal is discretized into 100,000 samples and stored in the
indexed vector u[n]. Considering the raw signal spans 10 s with a sampling rate of 10 kHz,
for each image creation, the vector u[n] is subdivided into smaller sets or windows W ∈ R.
This subdivision aims to assess the load torque estimation using images created from
periodic signals less than 1 s, for example, 100 ms, 200 ms, and 400 ms.

Therefore, to construct an image γ
j
i ∈ RL×C with a time window Tw of 200 ms, for

instance, considering a sampling time Ts of 0.1 ms, the interval Tc between each window
W from the vector u[n] spans 2000 samples. Tc =

Tw
Ts

= 200ms
0.1ms = 2000 samples. Notably, Tc

also represents the resolution of the image with dimensions of 40 × 50 (C × L) pixels.
In this case, Wi ⊂ W = {W1, W2, W3, . . . , Wi} represents a smaller amount of samples,

and W(i,j) ⊂ Wi = {W(i,1), W(i,2), W(i,3), . . . , W(i,j)} stands for each sample seen as a single
pixel, while each image is created by the subsets association of W. Therefore, each subset
Wi ∈ R represents a row L for the image γ

j
i , where i denotes the i-th subset of W for L = 50,

and i ∈ {1, 2, 3, . . . , L}.
Thus, 1 ≤ i ≤ L. Each subset Wi,j ∈ R thus represents a sample of Wi, where j denotes

the j-th index of a subset Wi,j. In the context of the image γ
j
i , j represents the columns of

the image, where for C = 40, j ∈ {1, 2, 3, . . . , C}; thereby, 1 ≤ j ≤ C. It becomes possible to
map the samples of the signal u[n] to the matrix γ

j
i using the indices i and j, as expressed in

Equation (1).

u[((i − 1)× C) + j] = Wi,j → γ
j
i (1)

Therefore, for each value of a real discrete sample between the minimum and maxi-
mum intervals, its corresponding representation in grayscale,

⋃k
k=0 Q[n] = u[n], for limits

u[n] = −1 and u[n] = 1, is determined using Equation (2).

Q[n] = Round
(

u[n]− MIN(u)
MAX(u)− MIN(u)

)
× k (2)

Where the transformation from real values to R-bit values in Z, 0 ≤ R ≤ 8, occurs, with
the resolution of the integer value k representing the grayscale with the range 0 ≤ k ≤ 255,
given that k ∈ Z = 2R−1.

Given that the time Tx for each experiment is 10 s, it results in a total of 50 images.
This relationship is expressed by the ratio Tx

Tw
= 10s

0.200s = 50 images.
Figure 1 presents a comprehensive illustration elucidating the stages involved in image

processing until the creation of multiple images.

2.2. Convolutional Neural Network for Image-Based Regression

To estimate the load torque magnitude based on preprocessed images derived from the
magnetic flux signal measured in the air gap of a TIM, the methodological process entailed
investigating whether a supervised training convolutional neural network (CNN) model
possessed the capability to estimate magnitudes from images created from temporal signals.

The present research has been carried out to explore various models and approaches
within this domain. Different architectures such as VGG-16, LeNet-5, Inception V2, and
V3, alongside some customized architectures, were tested. The primary focus was to
understand how these architectures would perform on the regression task, considering
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variations in the sampling windows of the images. Through testing various CNNs, those
with superior adaptation and regression capabilities were identified.

Figure 1. Image-based approach for time signal conversion.

Table 1 showcases the hyperparameters and configurations for the investigated models
that yielded better results, alongside model 1 to model 7 with the classical CNN architecture
and the Inception model represented by model 8. The model’s definition was based on
assigning different parameter combinations and evaluating the outcomes using the Adam,
Adagrad, and RMSprop optimizers.

Table 1. Comparison of architectures and hyperparameters among the evaluated CNN models.

Model Conv2D Momentum Dense Layer Filters Channels

1 5 0.9 256, 1 (11, 11), (7, 7) 16, 32, and 64
2 3 0.6 256, 1 (3, 3), (5, 5) 16 and 32
3 7 0.9 1024, 1 (5, 5), (7, 7) 64 and 128
4 4 0.9 512, 256, 1 (11, 11) 16 and 32
5 2 0.8 100, 1 (3, 3) 16 and 32
6 5 0.9 256, 256, 1 (5, 5) 16 and 32
7 8 0.2, 0.8 110, 1 (7, 7), (11, 11) 16 and 32
8 16 0.5 320, 50, 1 Table 2 Table 2

The configurations implemented in this work diverge from the standard settings of
each version of the Inception CNN, such as versions 1, 2, 3, and 4. These versions were
developed to address pattern classification problems, as presented in the works by the
authors [31–33].

The Inception CNN model chosen in this work was modified, as detailed in Table 2.
This approach was tailored to address the regression problem associated with estimating
load torque in the TIM. To configure the network, the Keras framework was utilized,
incorporating the essential functionalities of artificial neural networks.
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Table 2. Details of the hyperparameters and architecture of the modified Inception CNN model.

Hyperparameter Value

Conv2D Layers 16
Filters Refer to Table 3

Filter Sizes Refer to Table 3
Activation ReLU (in all convolutions)

Batch Normalization Present in all convolutions
Pooling Layers 4 MaxPooling2D
Dense Layers 3

Neurons in Dense Layers 320, 50, 1
Activation in Dense Layers Linear

Dropout None

Table 3 provides an overview of the architecture of the modified Inception CNN,
detailing the convolutional layers and describing the number of channels, and the filter
sizes used in each inception block, and their respective parallel convolutions.

These parameters embody the optimal architecture experimentally discovered for the
research problem in this study. The interaction between the number of channels and the
various filter sizes provides insight into the wide range of features that the model can
integrate at each layer. This demonstrates the diversity of information extracted at different
levels of abstraction.

Table 3. Details of hyperparameters for the modified Inception CNN model.

Layer Kernel Filter Sizes

Conv_1 32 (1, 1)
Conv_2 32 (1, 1), (3, 3), (7, 7)
Conv_3 32 (1, 1), (1, 7), (7, 1), (1, 11), (11, 1)
Conv_4 32 (1, 1)
Conv_5 32 (1, 1), (1, 7), (7, 1), (1, 11), (11, 1)
Conv_6 32 (1, 1), (1, 7), (7, 1), (1, 11), (11, 1)
Conv_7 48 (1, 1)
Conv_8 48 (1, 1), (1, 3), (3, 1)
Conv_9 48 (1, 1), (3, 3), (7, 1), (1, 7)
Conv_10 64 (1, 1)
Conv_11 64 (1, 1), (1, 5), (5, 1)
Conv_12 64 (1, 1), (5, 5), (9, 1), (1, 9)
Conv_14 128 (1, 1)
Conv_15 128 (1, 1), (1, 7), (7, 1), (11, 11), (11, 1), (1, 11)
Conv_16 128 (1, 1), (11, 11), (11, 1), (1, 11)

3. Materials and Methods
3.1. Methodology for Load Torque Estimation

The workflow of this study was split into phases or steps, as depicted in Figure 2.
In the first step, the Hall probe was installed inside the TIM to measure the magnetic

flux density. The second step corresponds to the Hall sensor signal acquisition and signal
division. Signal sampling fragmentation was conducted in each experiment, resulting in
the creation of three distinct databases, one for a sampling period of 100 ms, another for
a period of 200 ms, and a third one for a period of 400 ms. For instance, in the case of
the 200 ms signal, the 100,000 samples were divided into 50 segments. This division was
due to each segment containing 2000 samples, derived from 100,000

2000 = 50. Similarly, for the
400 ms signal, the 100,000 samples were distributed across 25 segments, each consisting
of 4000 samples, as calculated by 100,000

4000 = 25. The same process is also performed for the
100 ms signal.
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Figure 2. Methodology for torque estimation using the present approach.

The signal preprocessing aims to generate images from the raw data collected within
the motor air gap. This approach spatially allocates discrete values of each signal sample
into an image grid. By doing so, the model can extract various patterns based on the applied
load torque on the TIM. Consequently, after its training, it becomes capable of differentiating
estimated torque load values corresponding to each image. This transformation into an
image format enables the model to discern estimated load torque values concerning each
processed image after its training. Essentially, the model learns the relationship between
visual patterns within the generated images and the diverse levels of load torque applied
to the motor. This ability allows the model to predict or differentiate these values based on
the presented images.

In step 3, the generated images were stored for further CNN training and testing
phases. Table 4 outlines the divisions and quantities of images for each of the three
dimensions of images applied to the CNN Inception model. This setup allowed for an
assessment of each image pattern across different hyperparameter combinations.

For instance, 10,000 images sized at 40 × 25 were distributed among training, vali-
dation, and test sets, with each group containing specific quantities of images. Similarly,
the other two configurations, comprising images of 40 × 50 and 50 × 80, employed fewer
images with variations in their respective dimensions and sampling times. Although larger-
sized images accounted for a smaller portion of the dataset, the amount of information they
contained remained constant. This was due to the number of samples staying the same, but
distributed across different sample windows. This distribution facilitated the evaluation
of how these parameters influenced model performance. In this context, a portion of the
experiments was dedicated to training and validation, while the remainder was exclusively
reserved for testing.

Table 4. Description of division and quantity for three image patterns.

Image Dimensions Image Quantity Train Validation Test

40 × 25 10,000 7200 800 2000
40 × 50 5000 4500 500 1000
50 × 80 2500 2250 250 500

3.2. Experimental Apparatus

To be able to observe different levels of load torque, from the motor running at the
no-load condition to its full load capacity, an electromagnetic brake known as a Foucault
brake was used, coupled with a TIM. This brake, simply referred to as a Foucault current
brake, operates due to Foucault currents or induced currents in the rotating disk installed
on the TIM shaft. The brake structure is mechanically installed within the induction motor.

A conductive metal disk is mounted on the TIM shaft and is surrounded by a pair
of stationary electromagnetic coils. When a continuous voltage level, for example, 20 V
DC, is applied, a proportional level of electromagnetic field is generated around the disk.
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Consequently, the interaction between the opposing magnetic fields of the coils creates a
resistance force against the movement of the disk installed on the TIM shaft.

The motor used in this study was a three-phase squirrel-cage induction motor, char-
acterized by a rated power of 7.5 kW or 10 HP. This motor has 2 pairs of poles, 38 rotor
bars, and a nominal synchronous speed of 1800 RPM. Additional information regarding
the machine’s characteristics can be found in Table 5.

Table 5. Motor specifications.

Motor Parameter Value

Rated power 7.5 kW
Rated torque 41 Nm

Rated speed and slip 1740 r/min and 3.4%
Stator slot count 48

Number of pole pairs 2
Rotor bar count 38

Nominal frequency 60 Hz
Nominal voltage 220 V
Air gap distance 0.8 mm

Similarly, applying a continuous voltage level, for example 240 V DC, yields an
approximate load torque of 40 Nm as a consequence of the interaction between the brake
system and the TIM during its nominal rotation. This voltage induces a proportional
electromagnetic field, where this interaction allows the measurement, evaluation, and
capture of the magnetic flux signal close to the TIM’s air gap. This signal analysis provides
the dynamic in-service behavior of the TIM. During the experimental trials, the signal
acquisition was performed by using a Hall effect probe, and its specifications are shown in
Table 6.

Table 6. Hall sensor specifications.

Parameters Range Classification

Maximum output 2.0 V
Conversion 1 T/V or 0.1 T/V

Precision 2% at 25 °C
Frequency response DC to 5 kHz (1 T/V) and 700 Hz (0.1 T/V)

Sensor type Transverse Hall

The direct measurement of the load torque was accomplished using a load cell, de-
signed to accurately capture and quantify torque exertion. This load cell was installed on
the shaft of the TIM and integrated with a digital indicator to display the real-time measured
torque values. These measurements are aligned with the specifications detailed in Table 7,
enabling us to assess the torque applied in-service during the experimental observations.

Table 7. Load cell and display specifications.

Load Cell Specifications Indicator Specifications

Sensor sensitivity = 2 mV/V Display = 3 ½ digits (LED)
Nominal scale = 0 to 50 kgf Nominal voltage = 110/220 V AC

Input impedance = 400 ± 15 Ω Frequency = 60 Hz
Thermal response = −5 ºC to +60 ºC Thermal response = 0 ºC to +50 ºC

Sensor type = Wheatstone bridge Analog output = 0 to 10 V DC
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4. Experimental Results

This section reveals the results obtained from each experimental test. The estimated
torque in each scenario is divided into three distinct subsections, outlined as follows. The
results obtained from investigating image preprocessing techniques in conjunction with
the CNN Inception model are presented, alongside their respective behaviors concerning
54 combinations and applied hyperparameters. The study’s objectives focused on eval-
uating the predictive performance of the model after training, comparing it with direct
load cell measurements. Additionally, the investigation delved into exploring the impact of
different sample window dimensions derived from the magnetic flux signal.

Table 8 depicts a comprehensive set of hyperparameter combinations employed across
the Adam, Adagrad, and RMSprop optimizers. These combinations encompass varying
batch sizes (16, 32, and 64), training epochs (5 and 10), and diverse image dimensions
(40 × 25, 40 × 50, and 50 × 80). This arrangement results in a total of 54 unique configura-
tions, allowing for an extensive analysis of model performance encompassing the spectrum
of 54 potential hyperparameter combinations.

Table 8. Hyperparameter combinations for different optimizers and image dimensions.

Optimizer Batch Size Epoch Image Dimension
Options Options Options Options

Adam 16, 32, 64 5, 10 40 × 25, 40 × 50, 50 × 80
Adagrad 16, 32, 64 5, 10 40 × 25, 40 × 50, 50 × 80
RMSprop 16, 32, 64 5, 10 40 × 25, 40 × 50, 50 × 80

During the training and cross-validation phase, the iterative process involves saving
the model version with the lowest mean absolute error for each of the 10 stages. Conse-
quently, this results in the availability of 10 distinct model versions. To ascertain the most
effective performer among these variations, a step involves subjecting the test image dataset
to each of these top 10 models. This evaluates and compares their individual capabilities to
generalize beyond the training data.

The significance of this evaluation lies in determining the model’s ability to perform
well on unseen data, ensuring it does not overfit or underfit. The process involves testing
these 10 models against the test dataset, essentially assessing their adaptability to new,
previously unseen inputs.

As an example, in Figure 3, it is possible to observe a detailed representation of the per-
formance exhibited by each optimizer, considering the image dimension of 40 × 50 pixels.
This analysis considers their corresponding batch sizes across 5 and 10 training epochs
for each k-fold iteration. Here, k represents each specific iteration within the 10-fold cross-
validation framework, enabling an intricate examination of how these models perform
across different settings and folds. This thorough exploration helps in discerning patterns of
performance and robustness across varying hyperparameters and training iterations. This
evaluation has been carried out for the other two image dimensions as well. The next sub-
sections shows the torque estimation using each image dimension for each hyperparameter
configuration.
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Figure 3. Results of 18 combinations of hyperparameters and optimizers for 5 and 10 training epochs.

4.1. Estimated Load Torque for Image Dimension of 40 × 50 Pixels

Within this context, Table 9 shows the outcomes obtained from 18 diverse combinations.
These specific combinations are associated with images sized at 40 × 50 pixels, generated
utilizing a sampling window of Ts = 200 ms. The results encompass evaluations across
training, validation, and test datasets.

Table 9. Images of 40 × 50 pixels—18 experimental results for 5 and 10 different epochs.

Setup Test Attributes
Optimizer Batch Epochs MAE MAPE Fs Ts

Adam 16 5 1.25 5.1% 10 kHz 200 ms
Adagrad 16 5 1.49 6.1% 10 kHz 200 ms
RMSprop 16 5 1.5 5% 10 kHz 200 ms

Adam 32 5 0.96 3.7% 10 kHz 200 ms
Adagrad 32 5 1.38 5.1% 10 kHz 200 ms
RMSprop 32 5 0.82 3% 10 kHz 200 ms

Adam 64 5 1.15 4.2% 10 kHz 200 ms
Adagrad 64 5 1.45 4.9% 10 kHz 200 ms
RMSprop 64 5 1.83 7.6% 10 kHz 200 ms

Adam 16 10 1.17 4.8% 10 kHz 200 ms
Adagrad 16 10 1.46 5.1% 10 kHz 200 ms
RMSprop 16 10 1.34 5.5% 10 kHz 200 ms

Adam 32 10 1.08 4.5% 10 kHz 200 ms
Adagrad 32 10 1.09 4.1% 10 kHz 200 ms
RMSprop 32 10 1.32 5.2% 10 kHz 200 ms

Adam 64 10 1.09 4% 10 kHz 200 ms
Adagrad 64 10 1.02 3.9% 10 kHz 200 ms
RMSprop 64 10 1.47 5.8% 10 kHz 200 ms

Figures 4 and 5 showcase comparisons based on the optimal outcomes obtained by
the RMSprop and Adam optimizers applied to the test image set. They aim to illustrate the
relationship between the measured and estimated TIM load torque.



Sensors 2024, 24, 2614 11 of 18

Figure 4. Correlation analysis results for images of 40 × 50 pixels.

Figure 5. Correlation analysis results for images of 40 × 50 pixels.

Within the 40 × 50-pixel image standard, employing the Adam, Adagrad, and RM-
Sprop optimizers alongside three distinct batch sizes and training cycles of 5 and 10 epochs,
a distinct trend surfaced. Notably, the Adagrad optimizer, with a batch size of 64, showed
superior performance based on the MAE and MAPE metrics across the test image set for
the 10-epoch training cycle. Similarly, RMSprop displayed the most favorable outcome for
the 5-epoch training cycle.

This observation underscores an intriguing distinction in optimizer behavior. Ada-
grad showcased an inclination towards improved performance with larger batch sizes.
Conversely, both Adam and RMSprop demonstrated their best performance with a batch
size of 32. However, it is worth noting that the difference in performance of the Adam
optimizer for the 10-epoch between batch sizes 32 and 64 was not significantly discernible.

Moreover, a noteworthy observation emerges from the performance analysis of the
Adam and RMSprop optimizers, indicating an enhancement in their performance with a
reduction in the number of epochs. These findings suggest that, among the various batch
sizes tested, the batch size of 32 consistently yielded optimal results. Notably, the reduction
in training epochs to 5 yielded a reduction in error rates for both optimizers.

Specifically, upon reducing the training epochs, the RMSprop optimizer achieved a
significantly lowered MAE of 0.82 Nm, showcasing an improvement in predictive accuracy.
Similarly, the Adam optimizer, with a reduced training period, attained an MAE of 0.96 Nm,
indicating an improvement in its predictive precision compared to higher epoch counts.

Moreover, the top-performing models, identified by a MAE below 1 Nm, are illustrated
in images sized at 40 × 50 pixels, highlighted in Figures 6 and 7. These regressions dis-
tinctly display a linear correlation among the observed outcomes within each model. This
correlation emphasizes that variations in the measured torque variable have a proportional
impact on the estimated torque variable.
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Figure 6. A comparison between estimated and measured load torque for 40 × 50-pixel image.

Figure 7. A comparison between estimated and measured load torque for 40 × 50-pixel image.

4.2. Estimated Load Torque for Image Dimension of 40 × 25 Pixels

Similarly, the 40 × 25-pixel images created using a sampling window of Ts = 100 ms
were generated from a thousand samples, constituting the image set with the smallest
sampling window, as indicated in Table 10. This set comprised a total of 10,000 images.
These images underwent evaluation with the CNN Inception model, generating outcomes
for a total of 18 configurations across both 5- and 10-epoch training settings.

During the 5-epoch training phase, the Adam optimizer displayed an improvement in
performance as the batch size increased from 16 to 32. However, when tested with a batch size of
64, there was a rise in the test MAE, indicating a potential saturation or limitation of the model.
This optimizer yielded the best result among these 5-epoch hyperparameter combinations. On
the contrary, the RMSprop optimizer did not exhibit a clear trend in performance with regard to
batch size variation. The results displayed fluctuations without a distinct trajectory towards
either improved or deteriorating performance as the batch size increased.

In the case of Adagrad, a reduction in test MAE was observed as the batch size
increased from 16 to 32, signifying an enhancement in model performance. However,
testing with a batch size of 64 led to an increase in test MAE, suggesting a performance
decline compared to the 32 batch size. Considering the 10-epoch training phase, the only
prominent result was the RMSprop optimizer, with an MAE value of 0.97 Nm.
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Table 10. Images of 40 × 25 pixels—18 experimental results for 5 and 10 different epochs.

Setup Test Attributes
Optimizer Batch Epochs MAE MAPE Fs Ts

Adam 16 5 1.3 4.4% 10 kHz 100 ms
Adagrad 16 5 1.94 7.5% 10 kHz 100 ms
R msprop 16 5 1.16 3.9% 10 kHz 100 ms

Adam 32 5 1.07 3.6% 10 kHz 100 ms
Adagrad 32 5 1.1 4.4% 10 kHz 100 ms
R msprop 32 5 1.21 4.4% 10 kHz 100 ms

Adam 64 5 1.22 4.1% 10 kHz 100 ms
Adagrad 64 5 1.65 6% 10 kHz 100 ms
R msprop 64 5 1.09 3.9% 10 kHz 100 ms

Adam 16 10 1.59 5.6% 10 kHz 100 ms
Adagrad 16 10 1.47 5.3% 10 kHz 100 ms
R msprop 16 10 0.97 3.5% 10 kHz 100 ms

Adam 32 10 1.52 6.2% 10 kHz 100 ms
Adagrad 32 10 1.41 5.3% 10 kHz 100 ms
R msprop 32 10 1.48 5.9% 10 kHz 100 ms

Adam 64 10 1.29 4.6% 10 kHz 100 ms
Adagrad 64 10 1.59 5.8% 10 kHz 100 ms
R msprop 64 10 1.69 6.2% 10 kHz 100 ms

Comparison between the results from Tables 9 and 10 suggests that while the
40 × 25-pixel image format demonstrated good performance, the model exhibited superior
generalization with 40 × 50-pixel images. Based on the outcomes presented in Table 10, for
40 × 25-pixel images, the configuration that exhibited the best performance, achieving the
lowest mean absolute error for the test set, was the model utilizing the RMSprop optimizer,
trained over 10 epochs with a batch size of 16, and its estimation compared with real load
torque is outlined in Figures 8 and 9.

Figure 8. Correlations analysis for 40 × 25-pixel image results.

Figure 9. A comparison between estimated and measured load torque for 40 × 25-pixel image.
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4.3. Estimated Load Torque for Image Dimension of 50 × 80 Pixels

The 50 × 80-pixel images, sampled with a window interval of Ts set at 400 ms,
constitute the dataset with the largest sampling window, as indicated in Table 4. This set
comprises a total of 2500 images, which were processed through the CNN Inception model,
resulting in evaluations for 18 combinations involving 5- and 10-epoch training, as depicted
in Table 11.

Table 11. Images of 50 × 80 pixels—18 experimental results for 5 and 10 different epochs.

Setup Test Attributes
Optimizer Batch Epochs MAE MAPE Fs Ts

Adam 16 5 0.91 3.3% 10 kHz 400 ms
Adagrad 16 5 1.71 6.8% 10 kHz 400 ms
RMSprop 16 5 1.45 6% 10 kHz 400 ms

Adam 32 5 1.14 4.3% 10 kHz 400 ms
Adagrad 32 5 1.58 6.1% 10 kHz 400 ms
RMSprop 32 5 1.4 5.2% 10 kHz 400 ms

Adam 64 5 1.21 4.6% 10 kHz 400 ms
Adagrad 64 5 1.38 4.9% 10 kHz 400 ms
RMSprop 64 5 1.56 6% 10 kHz 400 ms

Adam 16 10 1.31 5.3% 10 kHz 400 ms
Adagrad 16 10 1.63 6.3% 10 kHz 400 ms
RMSprop 16 10 1.34 5.1% 10 kHz 400 ms

Adam 32 10 1.02 4% 10 kHz 400 ms
Adagrad 32 10 1.6 6.5% 10 kHz 400 ms
RMSprop 32 10 1.27 4.6% 10 kHz 400 ms

Adam 64 10 1.06 4.1% 10 kHz 400 ms
Adagrad 64 10 1.27 4.8% 10 kHz 400 ms
RMSprop 64 10 1.21 4.5% 10 kHz 400 ms

Regarding the outcomes illustrated in Table 11, the mean absolute error values for the
test set indicate a noticeable trend concerning the Adam optimizer. There was a reduction in
error as the batch size increased from 16 to 32. However, a slight decline in performance was
observed when using a batch size of 64, making Adam the optimal optimizer among the
10-epoch hyperparameter combinations. Adagrad showcased a consistent improvement
pattern in performance with increasing batch sizes. Conversely, RMSprop exhibited a
more stable behavior, maintaining similar error values across different batch sizes. In the
outcomes for the 5-epoch training, the Adam optimizer exhibited a decrease in performance
as the batch size increased. Conversely, Adagrad showcased a tendency to reduce the MAE
with larger batch sizes. Regarding RMSprop, its optimal performance was observed with a
batch size of 32.

Comparison between Tables 9 and 10 highlights a discernible trend, quite similar to
the 40 × 50-pixel images, in which the model’s performance notably improved when the
training epochs were reduced from 10 to 5 for the 50 × 80-pixel images. This observation
suggests a potential pattern where larger image dimensions could potentially yield better
outcomes with a reduced number of training epochs. However, confirming this correlation
definitively necessitates further in-depth experimentation under these specific conditions.

The significant understanding gleaned from Table 11 is visually depicted in Figure 10,
effectively showcasing the comparative analysis between the actual measured torque and
the torque estimated by the model. This visualization distinctly underscores the model’s
ability to generalize, particularly when utilizing the Adam optimizer alongside a batch size
of 16 for 50 × 80-pixel images.

Therefore, it is essential to emphasize that out of the 54 hyperparameter combina-
tions analyzed, training with 5 epochs consistently yielded superior results. This finding
implies that while achieving satisfactory outcomes with 10 epochs, the hyperparameter
configuration of 5 epochs appears to be the most effective under the tested conditions and
specifically for the problem addressed in this work.
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Figure 10. Correlations analysis for 50 × 80-pixel image results.

To assess the correlations between the measured torque and estimated torque, the re-
sults are depicted graphically using regressions, as illustrated for images sized at
40 × 25 pixels in Figure 9 and for images sized at 50 × 80 pixels in Figure 11.

Figure 11. A comparison between estimated and measured load torque for 50 × 80-pixel image.

Assessing the correlation levels between measured and estimated load torque across
the top four models, calculations for both Pearson and Spearman correlation coefficients
were conducted. The comprehensive findings are summarized in Table 12.

Table 12. Correlation results for optimization methods.

Correlation Analysis among the Top 4 Models
MAE Test Optimizer Pearson Spearman

0.82 (Table 9) RMSprop 0.99 0.85
0.96 (Table 9) Adam 0.99 0.86

0.97 (Table 10) RMSprop 0.98 0.86
0.91 (Table 11) Adam 0.99 0.85

Based on the data in Table 12, the Pearson correlation coefficients reveal strong linear
relationships, scoring 0.99 and 0.98 for RMSprop and 0.99 for Adam optimizer. Conversely,
Spearman coefficients, registering at 0.85 and 0.86, suggest a robust but not necessarily
linear correlation between the variables.

Based on these findings, it is evident that the most efficient training outcomes were
achieved within 5 epochs. Across the three image dimensions, the Adam, Adagrad, and
RMSprop optimizers demonstrated good results in both training and validation. Notewor-
thy is RMSprop’s best performance, in two of the top four results, particularly with the
200 ms sample window image pattern. The ideal image size for this study appears to be
40 × 50 pixels, with RMSprop as the preferred optimizer, showcasing superior performance
in two instances with a batch size of 32, as detailed in Table 13.



Sensors 2024, 24, 2614 16 of 18

Table 13. Images of 40 × 50 pixels—results of experiments with different optimizers and hyperpa-
rameters.

Configuration Test Attributes
Optimizer Batch Epochs MAE MAPE Fs Ts

RMSprop 32 5 0.82 3% 10 kHz 200 ms

5. Conclusions

In conclusion, several approaches suggest low-error load torque estimation, particularly
when operating close to or above 30% of the nominal load. However, according to the authors
of [2], estimating torque accurately at low loads, especially below 30% of the TIM’s nominal
load, remains a challenge. This study delves into the model’s training and generalization
capabilities specifically at low load levels, evaluating torque estimation below 30% of the
TIM’s nominal load, thus examining estimations below 12 Nm. For instance, in the approach
by [14], torque estimation showed less than 2% error for all points above 30% of the nominal
load and less than 4% error below that threshold. Similarly, the authors of [34] emphasize
their approach’s high precision in torque estimation with load intervals of 25% to 100%.

Additionally, in the work by [35], a maximum error of around 4.03% was reported.
However, as highlighted by the authors, low slip condition could compromise their model’s
performance. This contextualization is important for understanding the robustness and
capability of the employed method, showing its ability to generalize results post-supervised-
training, maintaining a mean absolute percentage error below 3.1% across the entire load
range, spanning from 1.5% to 93.9% of the TIM’s nominal load. It is worth emphasizing
the significance of the covered mechanical power range, particularly in areas deemed low
load in the literature, where operational conditions resemble no-load operation. These
conditions encompass operational behavior without load, representing 1.5% of the TIM’s
nominal load, equivalent to 0.59 Nm, up to 29.8% of the nominal load, which equals
11.91 Nm. This characteristic underscores the model’s ability to handle low torque intensity
scenarios up to conditions nearing its maximum capacity.

When compared to other studies, the main contributions of this research can be summa-
rized as follows: (i) approach capable of estimating load torque even for 1.5% of the nominal
load; (ii) a computational model capable of generalizing low-sized images even with just
5 and 10 training epochs; and (iii) an approach capable of estimating load torque without
needing other features than magnetic flux. Although this study presents a novel approach for
estimating load torque in TIM, yielding good results, future research avenues could enhance
its applicability by applying this proposed methodology considering the TIM running under
failure conditions, such as broken rotor bars [36], shaft imbalance [37], and angular misalign-
ment [38]. Furthermore, investigations regarding the performance of the model under various
ranges of power supply frequency, for instance spanning from 0 to 60 Hz, could be conducted.
This could expand the applicability of this approach. Additionally, further studies could delve
into alternative image processing methods, such as Gramian angular field or morphological
mathematics, to expand the methodology’s scope and potentially optimize its efficacy in load
torque estimation.
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