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Abstract: In the highly competitive field of material manufacturing, stakeholders strive for the
increased quality of the end products, reduced cost of operation, and the timely completion of their
business processes. Digital twin (DT) technologies are considered major enablers that can be deployed
to assist the development and effective provision of manufacturing processes. Additionally, knowl-
edge graphs (KG) have emerged as efficient tools in the industrial domain and are able to efficiently
represent data from various disciplines in a structured manner while also supporting advanced ana-
lytics. This paper proposes a solution that integrates a KG and DTs. Through this synergy, we aimed
to develop highly autonomous and flexible DTs that utilize the semantic knowledge stored in the KG
to better support advanced functionalities. The developed KG stores information about materials
and their properties and details about the processes in which they are involved, following a flexible
schema that is not domain specific. The DT comprises smaller Virtual Objects (VOs), each one acting
as an abstraction of a single step of the Industrial Business Process (IBP), providing the necessary
functionalities that simulate the corresponding real-world process. By executing appropriate queries
to the KG, the DT can orchestrate the operation of the VOs and their physical counterparts and
configure their parameters accordingly, in this way increasing its self-awareness. In this article, the
architecture of such a solution is presented and its application in a real laser glass bending process
is showcased.

Keywords: digital twins; knowledge graphs; material ontologies; material manufacturing; laser
glass bending

1. Introduction

In today’s highly volatile industrial environment, businesses strive for the continuous
integration of innovations that will allow for cost reduction, reduced time to market, and the
minimization of errors that oftentimes occur during production due to faulty equipment or
substandard configurations input by inexperienced personnel. In this landscape, smart and
automated manufacturing has emerged as one of the pillars for achieving these goals [1].
Advancements in the fields of electronics have made the existence of powerful devices
possible (e.g., Raspberry Pis, ESP boards, etc.), near the network edge. These devices
coupled with the abilities of Internet-of-Things (IoT) devices (e.g., sensors, actuators, etc.)
allow for the development of solutions that enable the design of intelligent manufacturing
models [2]. These models are beneficial for enterprises because they provide means for
optimizing workflows and enable better monitoring.

In addition to these developments, semantics play a crucial role in material manu-
facturing since they provide a means to organize vast amounts of heterogeneous data
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about materials and their properties, the structure of industrial business processes, and the
employed devices in a structured manner [3,4]. Knowledge graphs emerge as suitable tools
to represent data that follow ontologies. They provide a means to handle and analyze data
originating from different aspects of the operation of a business. They support advanced
information retrieval and visualizations, and their use offers better understanding of the
domain, aiding in designing more robust intelligent manufacturing process tools.

Digital twins have been proposed for handling numerous aspects of the manufacturing
processes offering capabilities such as predictive maintenance, real-time monitoring, and
self-awareness [5]. Despite being in the spotlight for the past years as an innovative tool,
they come with certain important shortcomings. First of all, the vast majority of solutions
constitute proprietary software [6], which can pose a barrier for their adoption by the
numerous Small-Medium Enterprises (SMEs) active in the manufacturing domain. The
work in question only considers open-source tools, showcasing their flexibility to address
real scenarios in the manufacturing domain.

Moreover, DTs are highly specific to their domain and require significant effort in their
configuration to model the materials and devices used by the physical counterpart (i.e., the
actual equipment) [6] and their dependencies. Combining DTs with a KG can mitigate this
need, since it adds a semantic layer allowing for the integration of complex relationships
between different components of the digital twin. It allows, in this way, a more efficient
orchestration enforced by the digital twin in the physical and software assets it emulates.
The present work, focusing on the material manufacturing domain, adopts this approach
and proposes the connection of the DT to a KG that has a dual focus. This dual focus allows
the modeling of both materials and properties and of the equipment used for each step of
the manufacturing process.

In this article, a solution for designing intelligent manufacturing processes is presented,
based on the concept that a knowledge graph is accessible by a digital twin, and therefore,
additional context can be developed. The employed components were both designed
for manufacturing processes. The specific contributions of the aforementioned work are
the following:

• A novel KG schema was designed, focusing on two aspects. The first aims at providing
holistic descriptions of the materials used and their properties. The second aspect
aims at describing the industrial business processes (IBP) during which the materials
are transformed into the end products. The KG is stored as a neo4j database;

• By using the Nephele VO software stack [7,8], a novel architecture for designing the
digital twin (DT) is proposed. Based on this software stack, a Virtual Object (VO) is
considered as a virtual counterpart of an IoT device that can be deployed at the edge
part of the infrastructure. By combining various VOs, a DT can be implemented, acting
as an aggregating point that can fuse knowledge and exploit functions provided by
the VOs. This DT is capable of orchestrating, configuring parameters, and detecting
faults in the manufacturing operation with the aid of the KG through suitable queries;

• The ways in which the adoption of the proposed solution can be beneficial for busi-
nesses in the manufacturing domain are discussed. The combination of a KG and
DTs allows increased self-awareness of the DT components by capitulating on the
semantics stored in the KG. Moreover, the DT, by accessing the stored information
about the devices and the disposition conditions, can more effectively achieve tasks
such as predictive maintenance;

• Finally, the ways in which the solution can be used for a real-world use case, namely,
a glass bending operation that is achieved by using a furnace and a laser device, are
presented. Both the mapping of the components (KGs and VOs) for this particular
process and the implementation of two basic functionalities are showcased in detail.

The remainder of this paper is structured as follows. Section 2 discusses related works
on manufacturing ontologies, knowledge bases, and their application in the context of digi-
tal twins. In Section 3, the knowledge graph schema is presented and the proposed digital
twin architecture is discussed in detail. Then, Section 4 briefly presents how including the
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knowledge graph enhances various operations of the digital twin. Afterwards, Section 5
showcases the application of the proposed solution in a real-world scenario concerning a
laser glass bending process. In Section 6, insightful observations about the advantages of
the proposed approach and the current challenges and limitations are presented. Finally,
Section 7 concludes the paper.

2. Related Work

Ontologies have been used extensively for specifying a concept regarding specific
domain information and relevant processing methods. They provide a clear and formal
description of a shared understanding of a domain [4]. Ontologies serve as data models
for domain concepts using terms like classes (entities) and relationships (properties) [3].
When an ontology is populated with instances, meaning specific entities or examples that
belong to concepts defined by the ontology, it forms a knowledge base, also known as a
knowledge graph [3]. Advancements in technology and the increasing presence of various
field devices like sensors, embedded systems, and autonomous robots have significantly
boosted Industry 4.0 (I4.0) manufacturing processes. These diverse field devices interact
in real time, generating substantial amounts of valuable data throughout production.
However, the heterogeneous nature of these devices, the diversity of their data outputs,
and their varying degrees of interoperability pose challenges for maximizing the efficiency
of I4.0 industrial operations. Ontologies have emerged as crucial tools for modeling device
concepts, capabilities, parameters, processes, etc., within the context of I4.0, facilitating
integration and interoperability efforts [3], addressing a range of issues, including domain
knowledge modeling, integration of the Internet of Things (IoT), and more [3]. This
work addresses the above matters by creating a knowledge graph structure with a dual
focus. The first point of interest is the broad descriptions of the materials used, along with
their properties. The second area pertains to detailing the industrial business processes
(IBP) involved in altering these materials into final products. Several initiatives aim at
encapsulating the domain knowledge pertinent to I4.0 through modular ontologies to fulfill
manufacturing production needs, e.g., Process Specification Language (PSL), ONTOlogy for
Product Data Management (ONTO-PDM), MAnufacturing Semantic ONtology (MASON),
ADAptive holonic COntrol aRchitecture (ADACOR), etc. [3,4]. BPMN, or the Business
Process Model and Notation, stands as a widely accepted industry standard that is also
utilized for the modeling of business processes. In [9], extensions to the BPMN designed
specifically for process modeling within the manufacturing domain are introduced, with a
particular focus on production processes.

I4.0 has been founded on enablers such as big data, cloud computing, and IoT. These
technologies also form the foundation for a novel simulation method, which capitalizes on
the widespread connectivity in production systems to provide real-time synchronization
with the production site. Such innovative simulation methods are referred to as digital
twins (DTs) [10], serving as a virtual and computerized replica of a physical system [11,12].
Digital twins have the capability to choose from a range of actions aiming at coordinating
and executing the entire production system in an optimal manner [11]. Through simulation,
prediction, and optimization of physical systems and processes, the DT contributes towards
the achievement of various objectives [11,12]. DTs enable the real-time monitoring and
control of devices and cyber-physical production components across network infrastruc-
tures, facilitating a more seamless integration and synchronization between the physical
and virtual realms [11]. A DT requires three essential elements: an information model that
summarizes the characteristics of a physical object, a communication system facilitating
two-way data exchange between the DT and its physical counterpart, and a data process-
ing module capable of extracting insights from diverse data sources to create a dynamic
representation of the physical object [12].

DTs can be categorized into three distinct classes based on their level of integration.
Initially, the Digital Model (DM) represents a physical object, either existing or planned,
without utilizing automated data exchange between the physical and digital entities. The
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Digital Shadow (DS) incorporates automated one-way data transfer from an existing
physical object to its digital counterpart. Changes in the physical object’s state result in
corresponding alterations in the digital representation, but not vice versa. Lastly, the DT
encompasses full bidirectional data exchange between the physical and digital entities.
While there is limited literature on the most advanced developmental stage, i.e., the DT,
there is relatively more information on the DM and DS [11]. The work presented in this
article implements the most advanced level of integration, meaning the digital twin, since it
supports communication with the physical counterpart and provides a means for the data
analysis of the generated data originating from IoT devices. DT-driven Predictive Health
Maintenance (PHM) integrates physical and virtual data, real-time and historical data, and
data fusion, aligning with the trend of smart manufacturing driven by big data [13,14].
These applications primarily focus on monitoring functions (such as status monitoring
and process visualization) and prediction functions (like fault prognosis, product life-cycle
management, and process optimization), serving as decision-making support tools for
humans [12]. In [15], a distributed DT structure designed to enhance decision-making
regarding abnormal occurrences at the local level is introduced. The local decision-making
module utilizes an adaptive threshold approach and the effectiveness of the framework
is demonstrated on an Industry 4.0 pilot line. Our proposed solution conforms with [15]
in terms of the monitoring and predictive maintenance capabilities of the DTs and goes a
step beyond by exploiting knowledge graphs, thus enabling dynamic DT configuration
and orchestration.

By definition, DTs rely on current and coherent data, information, and knowledge.
They can also be regarded as models themselves, applicable across various contexts within
production systems. The authors in [16] shed light on the significance of integrating expert
knowledge, data analytics, and Knowledge-Based Systems (KBSs) for production systems
in general and the development of DTs specifically. KBSs, like knowledge graphs, play
a crucial role in the realm of DTs by offering explicit semantics, such as representations
of DTs using web ontology language (OWL) [16]. In the present study, the knowledge
graph introduces a semantic layer that allows better monitoring of the business process and
enables coordination among various elements of the digital twin. The primary application
of knowledge graphs is knowledge fusion [17]. Ontologies and knowledge graphs offer
solutions to enhance DTs with advanced cognitive capabilities. Cognitive Digital Twin
(CDT) models dealing with diverse data, information, and knowledge from complex sys-
tems across various domains and lifecycle stages pose challenges for alignment among
different DTs and stakeholders. The aforementioned semantic technologies address this
issue by establishing meaningful connections among heterogeneous data sources. CDTs are
able to optimize procedures and make decisions via marshaling the support of knowledge
graph modeling and reasoning. These also serve as the foundation for key functional layers
including data ingestion and processing, model management, service management, and
twin management [18]. The study in [19] introduces an ontology model and a KG designed
to amalgamate simple DTs into a more intricate DT, which encompasses functionalities like
information fusion, multi-scale association, and multi-context interaction. The ontology
provides a comprehensive repository of information for entities across diverse DTs, while
the KG helps in establishing structural connections among DTs of different scales. The DT
developed in this work not only manages and orchestrates VOs to simulate manufacturing
processes, adapting dynamically to changes in steps or sequences without manual interven-
tion, but is also able to set operation parameters in the physical counterpart and produce
alerts, making use of the data stored in the KG.

In [20], the authors propose a method to extract valuable insights from vast amounts of
production line data and improve manufacturing process management through enhanced
reasoning abilities. They introduce a pipeline that automates the extraction of semantic
relationships from sensor data, consisting of four key stages: feature extraction, ontology-
based manipulation, knowledge graph generation, and relation inference. The research
in [21] argues that DTs must possess the capacity to encompass the attributes of an asset
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as delineated by the manufacturer, its real-time state, and its interactions within intricate
systems. It states that semantic technologies, particularly ontologies, offer a promising
modeling approach for digital twins and are supported by readily available tools for design-
ing, managing, querying, and exploring semantic models. The present paper introduces an
ontology that models IBPs and the exploited materials in detail and, furthermore, capital-
izes on this valuable knowledge to improve the decision-making processes. The authors
of [22] introduce a method for creating actionable cognitive twins tailored to demand
forecasting and production planning within manufacturing facilities, utilizing a knowledge
graph approach. This approach enables the semantic representation of industrial processes,
encompassing data identification and the simulation and utilization of AI algorithms for
forecasting purposes. In [23], an ontology is proposed to model a shop-floor DT, covering
assets, actors, data sources, algorithms (especially AI), and decision-making processes.
This ontology enhances DTs with cognitive features and creates a KG to provide context
to data and algorithm outcomes, improving decision-making. The system learns from
historical data to detect anomalies and trigger contextual actions. It also uses probabilistic
machine learning (ML) and heuristics to aid in production scheduling [23]. Our study
improves the aforementioned approach by also representing the materials used in IBP
and their critical states, enabling the possibility of the DT to create alerts, configure itself,
and organize its individual components. The research in [24] introduces an ontology for
digital twin modeling capable of graphical visualization of digital twins, enabling both
device mapping and customizable visual attribute representation. A case study validated
the ontology’s effectiveness in mapping physical devices and facilitating DT development.
The authors in [25] explain the concept of Cognitive Twins (CT) and propose a framework
centered around KGs, which helps to identify and manage the structures of virtual model
assets to facilitate CT development. In [26], the authors define and demonstrate DTs in an
industrial context using KGs. They propose a methodology for creating DTs from different
semantic viewpoints, one centered on production parameters and the other on data flow
issues. In [27], a framework for a Knowledge-Powered Digital Twin Manufacturing Cell
(KDTMC) is presented, aiming to facilitate intelligent manufacturing. It utilizes DT models,
dynamic knowledge bases, and knowledge-based intelligent skills to enable autonomous
manufacturing through sensing, simulating, comprehending, forecasting, optimizing, and
managing processes.

Historical equipment monitoring data are used to derive features that indicate equip-
ment health, forming the basis for data-driven predictive and diagnostic models [28].
In [29], various ML algorithms are discussed for predictive maintenance in I4.0, highlight-
ing their respective advantages. Similarly, Ref. [30] offers a comprehensive review of
the existing literature on the topic, identifying anomaly detection and fault isolation as
classification or clustering challenges, and prognostics as a regression-related issue. The
DT examined in the present work is capable of incorporating all former functionalities and
enhancing them by exploiting information stored in the KG. The authors in [31] classify the
current AI-driven methods for smart manufacturing and predictive maintenance into four
categories: (i) data-centric methods; (ii) methods based on physical models; (iii) knowledge-
driven approaches; and (iv) hybrid model-based methods. In [32], it is argued that logistic
regression (LR) outperforms artificial neural networks (ANN) and support vector machines
(SVM) in the binary classification problem of machine health due to its parametric structure
utilizing explanatory variables, which offers a deeper understanding of how changes in
input variables affect the probability classification [32,33]. The hybrid approach in [31] uses
statistical AI technologies such as ML and chronicle mining (a special type of sequential
pattern mining approach) to extract machine degradation models from industrial data.
In [34], a data-driven approach is adopted using a nonlinear auto-regressive neural network
with an external (exogenous) input (NARX) to predict the dynamic model of the physical
systems and then build a stochastic model predictive controller (MPC). In [35], a hybrid
method is used, combining data-driven prediction (an RBF neural network algorithm)
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and model-based prediction (a particle filter algorithm, which leverages real-time data to
continuously update the current state estimation, thereby enhancing prediction accuracy).

3. Proposed Architecture

In this section, details on the architecture of the proposed solution of combining KGs
and DTs are presented. First, the KG’s schema is showcased, explaining its various entity
types and relationships and highlighting the most crucial ones for the connection to the DT.
Next, the DT architecture is provided, explaining how smaller components interact in order
to produce a DT. Elements of the Nephele VO stack are used and their purpose in generating
highly flexible twins that can support a number of functionalities is highlighted. Finally,
the overall architecture is discussed, explaining how the two software components interact.

3.1. Knowledge Graph Schema

The structure of the KG is described by a knowledge graph schema, provided in
Figure 1. This schema illustrates the steps describing the considered industrial processes,
along with the materials and devices involved in each step, to produce a certain product
that complies with specific standards. The main entities comprising the provided schema
along with a description of the considered relationships with other entities are as follows:

• Industrial Business Process: The manufacturing process that the schema aims to
describe as comprehensively as possible. It “HAS” steps (Intermediate and Final)
that involve certain materials (relationship “REQUIRES”) and devices that need to be
configured in a specific way to produce the desired material to be processed in the
next step. The final step of the process outputs the desired product of the industrial
business process, with which it is directly linked (“PRODUCES” relationship);

• Step: A step of a process describes a specific part of the manufacturing procedure
and can either be Intermediate or Final. It can be followed by other steps (if the
step is Intermediate), it relates to materials and is “SUPPORTED_BY” Manufacturing
Devices. Depending on whether the step is Intermediate or Final, it “OUTPUTS” a
material for the next step, or the final product of the process. The distinction between
Intermediate and Final steps aids in traceability, allowing the end product of an IBP
to be traced back to the materials and the devices employed in the process as well as
their respective states and configurations;

• Material: This entity describes the materials that are linked with the industrial busi-
ness process. A material involved in a certain step of the process “HAS” certain
Properties and “MUST_BE_IN” a specific Material State to be processed. Another
entity, called Disposition, relates to undesired states in which a material can be found
and can lead to products with defects;

• Manufacturing Device: A certain number of Manufacturing Devices are involved in the
execution of a manufacturing process. They support steps of the process and handle
certain materials. A device “NEEDS” a specific Device Configuration to properly
process a material and relates to the Disposition entity, which describes unfavorable
conditions and configurations of the devices that need to be avoided for the successful
and safe implementation of the process.

• Combination: At a specific step of the process, the Material State and the corre-
sponding Device Configuration, must form a combination (relationship “PARTICI-
PATES_IN”) that is essential for processing the material effectively. This combination
characterizes each step of the process.

The Disposition entity is used as described in the Industrial Data Ontology, while other
entities and relationships can be mapped to this ontology, the draft publication of which
can be found in [36].

The schema presented above serves the purpose of storing and organizing information
necessary for the integration with the digital twin framework, with a primary focus on
forming recipes to contribute to the efficient and safe execution of an industrial process.
However, this schema could also be leveraged for more advanced functionalities, such as
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data analysis, machine learning algorithms, and retrieval of similarities between materials
and processes.

Figure 1. Knowledge graph schema.

3.2. Digital Twin Architecture

The software employed for creating the DTs is the Nephele Virtual Object software
stack [7]. This lightweight software stack is compliant with the W3C Web-of-Things (WoT)
standard [37] and allows the virtualization of Internet-of-Things (IoT) devices in a device-
independent way.

The basic components of the software stack employed in this work for designing the
DTs are Virtual Objects (VOs) and composite Virtual Objects (cVOs). A Virtual Object
can be seen as an abstraction of specific IoT devices such as sensors, actuators, etc. These
sensors can be installed in appropriate manufacturing equipment, offering in this way
the capability of virtualizing their operation. Each VO is described by its respective
thing descriptor, a JSON file describing the properties, the actions, and the events of
the corresponding device and offering necessary metadata that give more context to the
user. The actions are implemented as separate Python scripts. More functionalities can
also be implemented in Python. The defined actions and any additional functionalities
are referred to as virtual functions (VFs). Composite VOs are software entities that can
combine information originating from multiple VOs offering in this way more advanced
functionalities and a point of management of the VOs, orchestrating their collaboration
towards emulating/simulating a complex physical counterpart (i.e., the physical twin),
while also making real-time monitoring and process control feasible. The functionalities
of the cVO (or DT) can use the results obtained from the VFs deployed in the simple VOs
that act as its parts as inputs. Data generated by the IoT devices are stored in a time-series
database, accessible from the actions through Python libraries.

Virtual objects, VOs or cVOs, can “communicate” with each other either through HTTP,
MQTT, or coAP. In this work, it is considered that the communication takes place over HTTP
APIs. These details are specified for each VO inside the respective yaml descriptor file.

Communication through the HTTP API between VOs is essential for building the
DT. In more technical detail, each VO exposes its properties and actions/virtual functions
described in the thing descriptor file. In this manner, a (c)VO can gain access to the
properties stored in another or invoke a subset of the virtual functions (i.e., those exposed as
“actions”). In this way, a cVO can check the state of a VO and issue a command if necessary.
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For example, a cVO corresponding to a large office space can check the properties of a VO
corresponding to the meeting room and, if the properties suggest that the room is empty
(e.g., light but no sound), invoke the responsible action for shutting down the lights. Of
course, communication is not only possible between a VO and a c(VO), but both VO-VO
communication and cVO-cVO communication is feasible. The developers designing each
solution need to make decisions on the manner in which the (c)VOs communicate based on
how different parts of a process or a large machine cooperate.

Based on this software, an architecture that is capable of producing the DTs for manu-
facturing processes is developed. In the following figure (Figure 2), the general architecture
can be seen. It is essentially a three-layer architecture, including edge and cloud layers
alongside the deployment layer of the toolkit. The DT toolkit can be deployed either in
servers or locally at the user’s side if the computational demand of the desired functionali-
ties is moderate.

Figure 2. General DT architecture overview.

At the edge, IoT devices are connected to the machinery and transmit data either
at regular intervals or when certain conditions, set by the user, are met. These data are
transmitted and can be aggregated, if necessary, at a gateway node. The VO obtains the data
through a suitably defined API that can be either coAP, HTTP, or MQTT. These data can
be stored in the time-series database. Virtual functions, implementing the actions defined
in the things descriptors and any additional logic needed for simulating the operations
handled by the physical counterpart, are implemented and executed in the same place:
where the Nephele VO software stack is deployed. For operations requiring a lot of
computing resources, access to cloud services can be supported as shown in the “cloud”
part of the architecture. Finally, a User Interface (UI) can be developed that allows the user
to access the information stored in the digital twin (i.e., view the status of the physical
counterpart, ask for certain actions, perform time-series analysis, etc.).

3.3. Connecting the KG with the DT

The overall architecture can be seen in Figure 3. In this figure, the digital twin is con-
sidered to be comprised of multiple (composite) Virtual Objects that act as the abstractions
of certain elements involved in the IBP (devices, materials, products, etc.). The developed
digital twin contains, beside other functions, a specific virtual function responsible for
polling data from the KG through appropriately designed queries, executed at regular
intervals. If changes in certain types of nodes (i.e., the disposition of devices or materials,
material states, or device configurations) are detected, these changes should be reflected in
the corresponding virtual function parameters that now need to be updated. The digital
twin, coordinating the operation of the rest of the VOs, notifies the subset of the VOs that
needs to update these parameters. The communication between the DT and the neo4j
database, where the KG is stored, is accomplished via neo4j’s Python API.
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Figure 3. Proposed architecture schema.

4. KG Enhanced Virtual Functions for the DT
4.1. Enhancing Self-Awareness of Digital Twin

Leveraging the information stored in the knowledge graph database, the DT can
further enhance its self-awareness capabilities by accessing the stored information when
required. The dual focus of the KG presented in Section 3.1 allows for storing the necessary
details describing how each IBP is carried out depending on different input materials and
on different products.

In greater detail, one of the key functionalities offered by the toolkit is monitoring
the IBP. Using measurements originating from IoT devices embedded in the equipment,
virtual functions that perform checks and produce alerts, or other forms of notifications,
if the specified conditions are not met, can be implemented. These conditions oftentimes
are not the same for every material employed by the user, but rather vary based on their
type, composition, etc. This means that machinery may require a different configuration
per material or per the specifications of the end product or for different steps of the process.
Instead of developing different VOs with slightly different virtual functions, or requesting
large amounts of information as the input from the user each time the DT is used, the
knowledge graph offers an endpoint that the DT can access and from which it can retrieve
all this information using minimum input by the user. The relative information is stored in
the KG in the Device Configuration and Material State nodes for each Step of the process.

Besides setting or modifying the right parameters for the VOs, because of the struc-
tured manner in which the data are stored in the schema shown in Section 3.1, the order
in which the steps are executed and the devices employed alongside their specific config-
urations are known. This allows the DT to orchestrate the operation of the VOs in order



Sensors 2024, 24, 2618 10 of 21

to emulate the manufacturing process. In this way, when a new step is introduced, or an
existing step is modified, the DT is able to reorganize the operation of the VOs without the
need of a developer to explicitly set the order in which each one should operate.

Moving one step further, if the necessary actuators are installed in the user’s site, the
DT can utilize the information stored in the KG in order to explicitly set the operation
parameters in the physical counterpart, or make the necessary adjustments if deviations
from the described process are detected. Moreover, the Disposition nodes, both for materials
and for the devices used in the IBP, offer information about undesired states. Using
these values, the VOs can produce alerts when needed, notifying the responsible party to
take action.

The enhanced self-configuration offered by the connection of the KG and the developed
digital twin also allows for reducing the amount of defective products that lead to increased
costs for the business and increased delivery time to the client.

4.2. Indicative Usage Scenarios

Following the presentation of the overall architectural approach of the proposed solu-
tion, in this section, the applicability of the solution for serving specific industrial processes,
such as predictive maintenance processes and supply chain optimization, is detailed. In a
predictive maintenance scenario, the DT can provide virtual replicas of physical assets of
the Industry4.0 infrastructure (i.e., VOs) and enable the real-time monitoring, emulation, or
simulation of such assets. Time-series data can be stored in the InfluxDB instance of the
VO. Python offers numerous options for time-series analysis algorithms, such as ARIMA
models, Prophet, or even machine learning algorithms like Random Forest Classifiers (RFF).
The results of these techniques can be applied to identify anomalies that can be attributed
to the misbehavior of the Industry4.0 infrastructure, leading to alerts for the potential
maintenance of the considered devices. Such anomalies can be further justified taking
into account the modeling of the overall IBP in the KG. Cascading effects through the
various steps of an IBP can be also analyzed, including the risk assessment of a misbehavior
in the overall IBP. Similarly, the proposed solution can also be applied for supply chain
optimization within an Industry 4.0 environment. Through the development of DTs and
the exploitation of the structure knowledge for IBPs in the KG, enterprises can identify
bottlenecks, streamline workflows, and improve the overall supply chain performance.
Finally, DTs can also be adopted for the design of products and the simulation of their
behavior, considering different conditions in the IBP, as provided through the KG. In this
way, iterations on the design of the products can be easily provided, reducing the time and
the cost that is associated with physical prototyping.

Although, in this article, the use case presented is related to the glass industry (laser
glass bending), the proposed solution is highly flexible and can be mapped to any manufac-
turing process. For example, it can be used in filament extrusion, which is a polymer-related
process whose objective is to turn pellets of polymers into filaments suitable for activities
such as 3D printing, yarn manufacturing, etc. In this process, numerous devices are in-
volved, whose configurations highly depend on the input material, as different polymers
have different properties. In such a case, the deployed VOs correspond to the devices
used (e.g., extruder, godets, etc.) The KG stores information about the order of the steps
and the different configurations needed for each device per input material (e.g., extruder
speed, godet speed, etc.). The deployed cVO that aggregates and coordinates the operation
is responsible for synchronizing the operation by setting the desired parameters in the
VOs in time, while monitoring the operation and ensuring the smooth completion of the
process. The VOs, through communication with the actual devices, monitor the operation
of their respective equipment and, if necessary, issue commands when required (i.e., begin
operation, pause, terminate, etc.).
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5. Proof of Concept: Laser Glass Bending Process

In this section, the way in which the proposed architecture can be used in an actual
manufacturing environment, i.e., a laser glass bending process, is described.

Fraunhofer IWM developed a laser glass bending process to shape glass precisely
without affecting the quality of the flat areas of the glass sheet [38]. Additionally, this
method enables highly customized bends with small radii, creating unique shapes, which
are impossible to achieve with traditional methods.

The process starts with preheating flat glass sheets in a hot furnace to the process
target temperature. This step is monitored by thermal couples for the furnace and a thermal
camera for the glass itself. Once the target temperature is reached, a high-powered CO2
laser beam is used to heat designated areas of the glass along the desired bend lines. The
laser scanner precisely controls the number of laser cycles, path, speed, and power based
on specific programs for the final product. This localized laser further heats the glass by
an additional 150–200 °C and the softened section of the glass is then shaped through
controlled mechanical force or gravity. Finally, the shaped glass is removed from the
furnace and undergoes quality checks to ensure the bending radius and angles meet the
specifications. A schematic representation of this process is shown in Figure 4.

(a) (b) (c)
Figure 4. Schema of laser glass bending process. (a) Preheating; (b) localized heating and shaping;
(c) quality check.

5.1. Knowledge Graph Formation for This Use Case

The knowledge graph of the proposed solution stores and organizes the information
of the laser glass bending process along with the steps, the types of glass (materials), and
the device settings (device configurations), described at the beginning of Section 5, which
are utilized to produce final glass products. For this specific industrial process, there are
several steps that involve configuring the relevant devices to specific settings that are the
same for each type of glass.

The devices and the elements linked to them (configurations and disposition), which
are the same regardless of the type of glass they process (only the laser scanner config-
uration varies), are described in Table 1. The basic devices are the furnace, which is the
device in which the operation takes place, the motor, which is used for moving the sheet
of glass inside and outside of the furnace, and the laser, which bends the glass in the
desired position.

Next, in Table 2, the steps, which are the same regardless of the material, and the
devices that support them, are described in order of occurrence. The Device Configuration of
the furnace changes depending on the step (100% for steps “Preheating furnace”, “Glass
enters furnace”, and “Heating glass (global)”, 60% for “Stabilizing temperature” and
“Lasering glass (local)”, and 0% for “Glass exits furnace”).

The materials that this industrial process handles participate in the Heating glass
(global) Step and the Lasering glass (local) Step and produce certain products for which
the Device Configuration (laser program) of the laser scanner Device that participates in the
Lasering glass (local) Step varies. An overview is presented in Table 3. The manufactured
products cover various needs, ranging from automotive glass to glass for windows with
certain properties (e.g., double glazing for insulation, consisting of two-layered glass). In
the latter case, only one sheet of glass is treated at a time.
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Table 1. Devices.

Device “NEEDS” “HAS_DISPOSITION”

Furnace Heating power varies Heating rate < 5 K/min (20–400 °C)
between 100, 60, and 0% Heating rate < 2 K/min (400–600 °C)

according to step; Heating rate < 1 K/min (>600 °C)
Target temperature 500 °C

Thermal couples Positions represented Temperature values < 0 °C
in (x,y,z) coordinates Temperature values > 1000 °C

Thermal camera Filter: glass (20–900 °C) Temperature of thermal
camera housing > 70 °C

Motor Moving from position 0 No moving between
mm to position 2000 mm 0 mm to position 2000 mm

Laser source 80% max. laser power Laser power < 500 W

Laser scanner The laser program is Laser speed > 10 m/s
different according to Laser jump speed > 50 m/s
the processed material

Table 2. Steps.

Step “SUPPORTED_BY”

Preheating furnace Furnace, thermal couples, thermal camera

Glass enters furnace Motor, furnace, thermal couples, thermal camera

Heating glass (global) Furnace, thermal couples, thermal camera

Stabilizing temperature Furnace, thermal couples, thermal camera

Lasering glass (local) Laser scanner, laser source, furnace
thermal couples, thermal camera

Glass exits furnace Motor, furnace, thermal couples, thermal camera

Table 3. Laser scanner configuration per material and product.

Materials Materials State Laser Program Products

Float Glass Thickness 2.5 mm, Laser speed = 3 m/s Bent glass
edge polished Number of laser lines = 10 laminated outer

Laser cycle = 100 automotive glass
Width between laser lines = 0.6 mm (radius 6 mm,

bending angle 120°,
thickness: 2.5 mm)

Float Glass Thickness 5 mm, Laser speed = 2 m/s Bent glass single
edge polished Number of laser lines = 40 laboratory

Laser cycle = 180 device door
Width between laser lines = 0.5 mm (radius 20 mm

bending angle 90°,
thickness: 5 mm)

Float Glass Thickness 4 mm, Laser speed = 3 m/s Bent glass
with low-E edge rough Number of laser lines = 10 double glazing outer

coating Laser cycle = 120 corner windows
Width between laser lines = 1.5 mm (radius 15 mm,

bending angle 90°,
thickness: 4 mm)

In Figure 5, an instance of the knowledge graph that differentiates among the different
materials is provided. The instance illustrates the first Float Glass Material Lasering glass
(local) step, only showing the relationship with the laser scanner and the related product.
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The rest of the information described in this section is not depicted in the figure, so that
the representation is meaningful and not extensive. It is also worth noting that the KG
schema described in Section 3.1 is a more comprehensive schema, capable of describing
more complex industrial business processes than the current one, which requires fewer
entities and relationships to be adequately represented. In particular, for the laser glass
bending process, there is no Disposition and Property entity associated with each material
and it is not regarded necessary for this process to report the output material of each step
and, hence, the IS_MADE_OF relationship of the materials is not required.

Figure 5. Laser glass bending process.

5.2. Digital Twin Architecture

The digital twin for this specific use case is designed as follows. A composite VO monitors
the entire operation and communicates with the KG by utilizing the neo4j Python library.

The database used by the composite VO contains a table matching the devices found
in the graph to the corresponding VOs. This table should be provided by the user and is
essential for the software since it allows the orchestration of the rest of the Virtual Objects.

The VOs that need to be defined here are the following: the furnace, motor, and laser.
These are the active devices used for this process. The passive devices used for this business
process, meaning devices that measure the temperature, power, etc., are considered as parts
of the furnace VO, which also stores their desired configurations (coordinates, operation
ranges, polling rates, etc.). All the VOs share a set of common virtual functions, but they
also contain distinct ones that are tailored to the specific functionalities of their respective
devices. In greater detail, all the VOs have functions that handle the data population to a
time-series database. Moreover, all have an update function that is executed periodically
and sets the current state of the VO. In addition, a virtual function checking the current state
is responsible for notifying the composite VO on whether the device has reached the desired
state in order to proceed with the next step. In this use case, the distinct functionalities
for the furnace VO focus on providing visualizations, details of which are provided in
Section 5.3.1. For the laser VO, the distinct functionality is setting the correct laser program,
which is transmitted to the manufacturer’s site as an SLD formatted file.

The user needs to specify the type of material and end-product desired. Then, the DT
toolkit accesses the neo4j database and retrieves the steps of the process together with the
necessary information about the device configurations from the knowledge graph. Then,
each VO monitors the respective equipment by polling the corresponding IoT devices
(thermal couples, camera, etc.). When the necessary conditions for each step are met, only
then is the operation allowed to continue to the next step. If some conditions are not
met, then the user is notified by messages on the screen and/or emails. For example, if
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the temperature of the furnace does not reach (or exceeds) the specified 500 degrees (the
device configuration of the furnace device for the preheating step), then it is not possible to
continue to the next step successfully.

If suitable IoT equipment is installed in the manufacturing site, the digital twin can
control the operation of the equipment by adjusting the power of the equipment, the
position of the motor, or by controlling any other equipment that is connected.

The connection with the KG allows for increased flexibility for the laser-controlled
glass bending process. A new glass type or desired product can be inserted without the
need to manually set parameters in the VOs. New steps can be inserted in the knowledge
graph and, provided that the table matching devices connected to the VOs is updated to
include any new devices, there is no further need for modifications in the digital twin for
the co-ordination of activities.

The architecture of the DT for this particular use case can be seen in Figure 6.

Figure 6. Laser glass bending process architecture.

5.3. Basic Functionalities

In this subsection, some basic functionalities of the developed digital twin are pre-
sented. All software employed is open-source and the setup in which the knowledge graph
and the Virtual Objects were deployed was a laptop with AMD Ryzen 7 3.2 GHz with
16 GB RAM and 4 GB of GPU memory. The front-end used for all the screens included
in the figures was implemented in Python with the NiceGUI library. For the KG, neo4j
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5.12.0 was employed. For storing the time-series measurements (i.e., the temperature,
power, and motor position), InfluxDB was chosen. For generating dashboards, Grafana
was selected. All the developed virtual functions for monitoring, alerting, and coordinating
were developed in Python.

5.3.1. Temperature Distribution Visualization

In Figures 7 and 8, the developed User Interface (UI) from which the user can select to
view the temperature distribution from the furnace used for glass bending is presented.
Through the front-end, the users are given certain options from which they can choose
either to view the entire furnace or a certain slice. In addition, by clicking the “View
Dashboards” button, they are transferred to a Grafana dashboard page where they can see
the evolution of the thermal couple values over time, as can be seen in Figure 9. Users
can select from the options the subset of the thermal couples whose values they want to
see plotted over time. Visualization of the temperature distribution is essential for the
personnel handling the furnace because the mechanical properties of glass are strongly
influenced by temperature, particularly in the range near or above the glass transition
temperature [39]. As a result, the temperature distribution within the current furnace
is a critical factor in the hot glass bending process. Currently, temperature gradients of
up to 10 °C can be observed across the plane where glass workpieces are located. By
utilizing furnace temperature visualization, the most uniform temperature location within
the furnace can be identified. This enables the design of the glass bending process with the
aim to improve the quality of the final product.

Figure 7. Initial page for furnace temperature visualization.

Besides the furnace, the devices used are thermal couples. The produced visualization
is updated in real time from the thermal couples placed inside the furnace. The furnace
VO retrieves the coordinates of the sensors and any disposition conditions from the cVO
(i.e., the DT) orchestrating the operation, which have been retrieved from the KG. In order
to produce the visualizations, a simple interpolation technique, called Inverse Distance
Weighting (IDW) is employed. The premise of this method is that each sensor has more
influencing power for points in the plane located close to it, with this influence diminishing
for points located further away from it.

The users can select the boundaries of the slice they want visualized along the Z-
axis or they can select to view the entire furnace visualized (the outer walls). In order
to produce the visualization, either for the whole furnace or for a slice, six surfaces are
constructed, containing sampled points alongside each dimension. Then, for the sampled
points, the temperature is interpolated based on the actual measurements of the thermal
couples, which are also displayed in the figure alongside their measurements. The produced
visualization is generated with the Mayavi Python library and it is interactive, meaning the
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user has the ability to rotate, zoom-in or out, etc. In addition to the visualization, the user
can see the range of temperatures, the thermal couples displayed as spheres together with
their measured values, and some simple statistics of the temperature metric (e.g., mean,
standard deviation, etc.). The visualization is updated every 10s, which was selected as an
acceptable interval that allows for avoiding computational overhead but still captures the
changes in temperature. This visualization tool captures the changes in the temperature
inside the furnace, as can bee seen in Figure 10, where the temperature distribution across
two different time stamps corresponding to different steps of the procedure can bee seen.
From the figure, it is easy to see that the heating of the furnace is reflected in the two screens,
as the second one, which corresponds to a latter stage, also reports higher temperatures.

Figure 8. Visualization of selected slice.

Figure 9. Grafana dashboard for thermal couple temperature visualization.

(a) Heating glass (global). (b) Lasering glass (local).
Figure 10. View of the same slice across two different time stamps. (a) 2021-03-04T12:21:05; (b) 2021-
03-04T12:46:55.

5.3.2. Monitoring of Laser Glass Bending Process

One of the most important functionalities of the digital twin is the ability to monitor
the entire business process. By accessing the KG, the DT is aware of the steps required and
how each device that takes part in each step should be configured. This information is
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crucial because, on the one hand, it allows configuring the data flows between the different
components (VOs) (i.e., what data to expect as input and when). On the other hand, this
capability allows for increased control over the physical counterpart, as it can begin, pause,
or terminate the operation of the equipment, provided that the necessary actuator IoT
devices are embedded in the equipment.

In Figure 11, a high-level flowchart of this functionality is displayed. The parts of
the operation where the KG is employed are colored in blue and the parts where actions
in the VOs are invoked by the DT are colored in yellow. For brevity, the details of each
specific virtual function are omitted. In general, the operation begins with retrieving details
on the specific step, the devices used, and their configurations from the KG. Then, each
VO corresponding to the device begins two operations. The first one has to do with the
necessary health checks in order to be able to monitor the operation of the real equipment
(to ensure no “disposition” conditions are met). The next invoked operation is to begin the
necessary virtual functions in each VO. Then, the DT polls each consumed VO in order to
determine if it has completed the desired operation (e.g., reached a desired state). When all
the VOs involved in a step have accomplished their tasks, the operation continues with the
next step, until the IBP terminates.

Figure 11. Monitor operation flowchart.

In the following figure (Figure 12), the developed front-end, allowing the user to
monitor the overall process, is presented, with annotations that explain the origins of the
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various displayed values. The screen is divided into three parts, each one corresponding to
a device. The metrics monitored by each VO and the corresponding target values for each
step are displayed in the appropriate sections. The target values of the metrics (e.g., power
and temperature) are stored in the KG in the respective device configuration nodes. The
VOs are notified about these values from the digital twin (i.e., the bending glass cVO) after
the latter queries the KG. The current values are retrieved from the current measurements
of the VOs and reflect the condition of the manufacturing step.

Figure 12. Webpage for monitoring the bending glass operation.

6. Discussion

In this section, some interesting insights gained through the design and development
of the proposed solution are discussed.

6.1. Suitability of the Solution to Handle Larger Use Cases

The proposed solution of combining a KG stored as a neo4j and developing the DT
using the Nephele VO offers numerous benefits. First of all, for structured data such as
those presented in this paper, using neo4j, a graph database, is faster than using a relational
database [40]. Moreover, neo4j is a scalable database that allows for handling big data
using sharding, i.e., dividing the single database in smaller databases (shards). In addition,
the Nephele VO software stack is lightweight, allowing it to be deployed even in resource-
constrained devices (e.g., Raspberry Pis). Moreover, the proposed architecture can combine
operations in three tiers, namely, the physical, the edge, and the cloud. In this way, it can
even be employed in resource-demanding applications that require significant computing
power for data analysis.

6.2. Challenges and Limitations of Combining KGs and DTs

The proposed combination of KGs with DTs has been shown to work effectively espe-
cially in the specific setting presented in this paper, but, at the same time, one may identify
emerging challenges and limitations in the more general case. Specifically, due to the more
particular definition of a KG with respect to the considered application, at the moment, a
holistic methodology to exploit the KG structure in an arbitrary DT is missing. A significant
challenge, with a potential high pay-off, is to work towards a broader methodology capable
of mapping a given KG structure to architectural components of a relevant DT structure.
A second equally interesting challenge would be to explore the dynamic evolution of the
combination, namely, the modification of the mapping in cases that additional function-
alities and processes need to be included. Currently, such combinations seem to be more
rigid; however, the descriptive power of the KG structure together with the aforementioned
mapping methodology can potentially allow for the dynamic modification from the KG to
the DT. Namely, if one can modify the KG structure to include processes or parameters,
and a broader methodology for KG mapping to DT modules is available, it will be more
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straightforward to dynamically accommodate additions of processes and functionalities.
Moreover, another challenge is to be able to provide digital twins, which can offer complex
synchronization mechanism supporting in this way, manufacturing processes that involve
numerous steps that should run in parallel. To accomplish this, an even more nuanced
knowledge graph schema should be developed and an architecture containing numerous
(c)VOs that communicate with the KG.

6.3. Benefits of the Proposed Solution for the Laser Glass Bending Scenario Presented

While the existing laser glass bending method, which does not utilize the digital twin
with the knowledge graph approach, is capable of producing bent glasses with certain
variations of geometric features, the manner of transferring the knowledge to bend glasses
into different shapes (or even information for other types of glass materials) still remains a
challenge. If the relationships between physical properties, process variables, and the sensor
readings are not traceable, the efforts to generalize this laser bending technology to other
applications will be significant. The combination of a DT and KG provides the solution
to create extensive and executable process recipes to solve this problem. Capitalizing on
the structured form of the KG, the users can access relationships among different physical
properties of glass materials and equipment setups, while the DT can offer access to sensor
readings obtained from the execution of different scenarios. All these can pave the way
for creating simulations in a virtual environment that can help in deciding the optimal
parameters to set in devices located in real facilities. In this way, costs will be reduced as
less time will be spent performing experiments using the actual equipment.

7. Conclusions

In this work, we present a novel combination of a KG with a DT and its proof-of-
concept application in a material manufacturing process. Initially, a novel KG schema is
proposed, which is capable of incorporating knowledge relevant to the material industry.
The coupling of this KG schema with the digital twin through the highly flexible software
stack Nehpele VO allows for deployment of various algorithms. Due to its flexible schema,
the KG stores information about the materials and the industrial business processes in
which they partake. This allows for the development of a DT comprised of simpler software
entities, which are referred to as Virtual Objects (VOs), whose parameters are dynamically
configured and their operation is coordinated by the DT through suitable queries to the KG.
This contribution is of broader value, as it can be exploited in other similar or relevant DT
development attempts. This combination of tools (KG and DT) is beneficial since it allows
a number of the DT’s functionalities to be enhanced, resulting in increased self-awareness.
Finally, we present a tangible demonstration of the proposed approach in a real-world use
case concerning a laser glass bending process.

Plans for future work include developing more advanced functionalities for the digital
twin so that it can dynamically adjust its operation to any modification of the information
stored in the knowledge graph. Moreover, it is our goal to design DTs that handle different
parts of the business operations, encapsulating different IBPs with DTs that support an
increased level of inter-communication.
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