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Abstract: Recently, Machine Learning (ML)-based solutions have been widely adopted to tackle the
wide range of security challenges that have affected the progress of the Internet of Things (IoT) in
various domains. Despite the reported promising results, the ML-based Intrusion Detection System
(IDS) proved to be vulnerable to adversarial examples, which pose an increasing threat. In fact,
attackers employ Adversarial Machine Learning (AML) to cause severe performance degradation
and thereby evade detection systems. This promoted the need for reliable defense strategies to
handle performance and ensure secure networks. This work introduces RobEns, a robust ensemble
framework that aims at: (i) exploiting state-of-the-art ML-based models alongside ensemble models
for IDSs in the IoT network; (ii) investigating the impact of evasion AML attacks against the provided
models within a black-box scenario; and (iii) evaluating the robustness of the considered models
after deploying relevant defense methods. In particular, four typical AML attacks are considered to
investigate six ML-based IDSs using three benchmarking datasets. Moreover, multi-class classification
scenarios are designed to assess the performance of each attack type. The experiments indicated a
drastic drop in detection accuracy for some attempts. To harden the IDS even further, two defense
mechanisms were derived from both data-based and model-based methods. Specifically, these
methods relied on feature squeezing as well as adversarial training defense strategies. They yielded
promising results, enhanced robustness, and maintained standard accuracy in the presence or absence
of adversaries. The obtained results proved the efficiency of the proposed framework in robustifying
IDS performance within the IoT context. In particular, the accuracy reached 100% for black-box attack
scenarios while preserving the accuracy in the absence of attacks as well.

Keywords: adversarial machine learning; intrusion detection; Internet of Things; adversarial attacks;
adversarial robustness

1. Introduction

The internet has been growingly used by various computer applications and is contin-
uously associated with several emerging technologies. This widespread use and exposure
to diverse technologies widened the spectrum of potential attacks. In other words, even
more luring targets are subjected to harmful attacks. Moreover, attacks within Internet
of Things (IoT) environments that lack well-tailored security solutions proved to have
substantial impacts. Intrusion Detection Systems (IDSs) have played an important role
in ensuring IoT network security, subject to capacity and processing limitations [1,2]. In
addition, Machine Learning (ML) techniques have been widely utilized to enhance the
capabilities of several computer applications, including IDSs [3]. Typically, ML-based
models are employed to infer hidden patterns and thereby perform proper predictions.
However, such models are prone to performance degradation when Adversarial Machine
Learning (AML) is brought into play [4]. In fact, AML proactively determines potential
security threats and simulates realistic attacks using adversarial examples (AEs). Especially,
several crafting methods of AEs are conveyed to affect the detection performance and
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cause model failure. Additionally, AML investigates promising defense mechanisms to
overcome relevant issues such as standard accuracy sensitivity and AEs transferability to
ensure robust performance [5].

Recently, several studies [6–11] were introduced to investigate the impact of AML
techniques on ML-based IDSs. These works considered AML attack strategies, defense
strategies, or both for the sake of robustness enhancement. In terms of attacks, gradient-
based methods have been widely adopted because of their strength and the promising
results they yield. Similarly, Particle Swarm Optimization (PSO)-based traffic mutation
algorithms and GANs [2,3] have been coupled with AML attack strategies. With regards
to defense, only a few generic defense techniques, such as adversarial training, have
been introduced.

Despite these efforts, AML has not been investigated thoroughly within the IoT con-
text [5,12–16]. Very limited works investigated such issues and considered relevant domain
constraints. This confirms the necessity to investigate the main elements of a robust ensem-
ble adversarial machine learning framework in the IoT traffic context. Most of the related
works investigated ML solutions for IoT-based IDS without consideration for potential
vulnerabilities [17,18]. From an attack perspective, AML aims at shaping a more realistic
attack setting by assuming the unknown learning process of the target model and the secure
deployment of IDS. This is presumed due to the potential adversary behavior that is less
likely to have access to either the training data or the model’s hyperparameters [1,19,20].
From a defense perspective, an ideal situation is achieved by enhancing the intrinsic ro-
bustness of ML-based IDS while maintaining the standard accuracy of model performance.
This is obviously critical due to the increasing number of adversarial attacks, which cause
even more challenges for the target model when they are unknown. Defense methods
incorporate specific solutions to the model-based methods, while the least attention is given
to the data-based ones [21]. It is also hard to identify how good the defense is since it is
evaluated within specific contexts against specific types of attacks. Moreover, maintaining
the accuracy of legitimate examples is quite challenging after robustifying the model [22].
This confirms the research gaps that consist of addressing AML threats using ensemble
methods where both attack and defense perspectives are considered. In particular, the de-
fense perspective can be elaborated to incorporate a combination of defensive modules that
forms the “defense-in-depth” security concept. The adoption of such ensemble methods
increases the attack complexity, in terms of time, knowledge, and computational resources,
for the adversary [16].

Motivated by these observations, this triggers the need for: (i) questioning the ro-
bustness of ML-based IDS with respect to real IoT network traffic; and (ii) investigating
potentially tailored solutions to AML strategies.

Accordingly, this research aims at answering the following research questions in order
to reinforce the detection performance:

■ What are the main elements of a robust ensemble AML framework that enhances
ML-based IDS in an IoT environment?

■ How would black-box attacks be employed in hardening ML-based IDS within the
IoT context?

■ How can dual defense methods be associated with an ensemble AML framework for
ML-based IDS in an IoT environment?

■ Can an ensemble AML framework designed for IoT traffic intrusion detection enhance
performance without affecting the accuracy of the original examples?

The proposed framework is designed to tackle the IDS issues faced by black-box
AML attacks in the IoT context. In a nutshell, the key contributions of this research can be
summarized as follows:

■ Design and implementation of a robust ensemble framework, RobEns, that integrates
attack and defense strategies for enhancing the detection rate of multi-class IDS
models within the IoT context.
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■ Comprehensive investigation of state-of-the-art IDS models, namely, Support Vector
Machine (SVM), Logistic Regression (LR), Multilayer Perceptron (MLP), and Random
Forest (RF) [4]. In addition, two novel ensemble learning models are considered to
improve the proposed system’s performance further. The experiments conducted to
validate and assess the proposed work rely on three relevant benchmarking datasets,
namely UNSW-NB15 [23], ToN-IoT [24], and Edge-IIoT [25].

■ Realistic deployment of four state-of-the-art AML black-box attack strategies for eval-
uating adversarial accuracy. In particular, black-box settings of the Fast Gradient Sign
Method (FGSM) [26], Carlini and Wagner (C&W) [27], Zeroth-Order Optimization
(ZOO) [28], and HopSkipJump [29] attacks are utilized in this research.

■ A novel dual defense methodology where data-based and model-based defense
techniques are jointly considered for strengthening IDS performance and proving
substantial advantages of the proposed framework. Namely, Feature Squeezing,
Adversarial Training, and Ensemble Learning Models are considered.

The rest of the article is organized as follows: Section 2 outlines the related works in
terms of models’ selection, attack methods, and defense strategies used for IoT-based IDSs.
Section 3 details the proposed framework, while the experimental setup, experimental re-
sults, and discussions are presented in Section 4. Finally, Section 5 points out the conclusion
and future work.

2. Background and Related Work

This section outlines the background relevant to this research and reviews the state-
of-the-art ML-based IDSs. In addition, typical adversarial attacks and defense methods
adopted for IoT networks are explored. Moreover, AML frameworks in the literature
are investigated to ensure the proper understanding of the proposed ensemble-based
framework. Finally, the research gaps and challenges addressed by this study are identified
for proper positioning.

2.1. ML-Based Intrusion Detection Systems for IoT Networks

Machine learning-based IDS approaches represent promising deployments of security
tools that defend against cyberattacks. Researchers have exploited such solutions and
demonstrated their success in detecting attacks targeting IoT devices. However, special
consideration should be given to IoT workflow requirements, such as keeping the pro-
cessing load of devices to a minimum. Both conventional machine learning and deep
learning techniques have been used to support IDS adaptation to IoT networks. However,
deep learning methods raise even more challenges due to the constrained IoT storage and
processing capacity.

Consequently, conventional ML-based approaches have been favored for such ap-
plications due to their simplicity, stability, and robustness [2,3]. In particular, the re-
search approaches of conventional ML for IDSs in the IoT can be grouped into tree-based,
clustering-based, probabilistic-based, and non-probabilistic-based categories. Specifically,
tree-based algorithms achieved competing results and thereby have been adopted in several
studies. Gad et al. [30] evaluated various ML methods for both binary and multi-class
classification scenarios using the ToN_IoT dataset. The selected models include Decision
Tree (DT), Random Forest (RF), Classification and Regression Tree (CART), Extreme Gra-
dient Boosting (XGBoost), K-Nearest Neighbor (KNN), Support Vector Machine (SVM),
Logistic Regression (LR), and Naïve Bayes (NB). The obtained results proved the out-
performance of tree-based algorithms, followed by K-Nearest Neighbor (KNN), which
also yielded promising results. Additionally, Alsaedi et al. [31] investigated several ML
models using the ToN_IoT [20] dataset. Particularly, probabilistic approaches such as Naïve
Bayes (NB) and Latent Dirichlet Allocation (LDA) classification algorithms showed less
detection efficiency compared to RF, SVM, LR, and CART. Moreover, ensemble learning,
which combines two or more base learners in order to reinforce the aggregated decision,
was also utilized for IDSs. This learning paradigm was considered in several research
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studies and yielded improved IDS robustness. Thaseen et al. [32] employed ensemble
learning methods based on KNN, SVM, and LR and obtained better results compared to
the involved baseline approaches. The ensemble model achieved an accuracy of around
99% using the BoT-IoT [33] and ToN_IoT [24] datasets. It is worth noting that tree-based
algorithms and ensemble learning are well-known for designing reliable IDSs in several
surveyed studies [12].

Several studies have relied on deep learning algorithms and architectures as a pri-
mary tool for IDSs in the IoT context. In fact, deep neural networks imitate human brain
structure through the use of units/neurons and layers as the main elements of the network
architecture. Examples of the earliest deep learning architectures used in such contexts
include Multi-Layer Perceptron (MLP). The researchers in [4] utilized MLP over four dif-
ferent IoT-based datasets, including UNSW-NB15 [23], ToN-IoT [24], BoT-IoT [33], and
Edge-IIoT [25]. MLP outperformed all the other conventional ML models studied and
showed promising results.

Other deep networks exhibit more complex architectures with more hidden layers,
units, and network parameters. The researchers in [34] adopted different architectures,
such as Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs),
to achieve competitive results in terms of detection performance. Particularly, one should
note that the efficiency of ML techniques is typically affected by the quality of the data.
Precisely, context-relevance, size, accuracy, integrity, and consistency are major criteria that
reflect the data condition. In other words, pre-processing techniques are required to ensure
ultimate performance and reliable detection for IDSs [4]. As such, the initial evaluations
carried out in [2,4] were extended in this study to develop a framework with adversarial
strategies to offer cost-effective means.

2.2. AML Attacks and Defense for IoT-Based IDSs

Despite the benefits of employing ML techniques, IDSs remain subjected to vulnerabil-
ities that increase misclassification rates. This increases attackers chances to evade IDS and
perform “successful” attacks. Such attack scenarios can be categorized into: (i) white-box
attacks, where the adversary performs attacks on a known learning process of the target
model; and (ii) black-box attacks, where the adversary performs attacks on an unknown
learning process of the target model [1,2].

It is worth noting that the attacks conducted during the model training cause a major
performance degradation due to their significant impact on the learning process. This
can be represented by a white-box attack scenario, which intends to reveal the whole
learning process. On the other hand, black-box attacks targeting the testing phase are
less harmful since the hackers are less likely to reach the model’s training dataset or its
hyper-parameters [1,2]. However, these models are designed with security controls and
deployed in secure environments. This confirms the importance of investigating black-box
attack scenarios in order to enhance the robustness of ML-based IDSs [12].

Different white-box attacks, such as Jacobian Based Saliency Map (JSMA) [2], Fast
Gradient Sign Methods (FGSM) [26], and Carlini and Wagner [27], were investigated by
several research works. One can notice that most AML attack methods were associated
with pattern recognition and image classification tasks, while few efforts were devoted to
the IDS application. Additionally, several research works measured the applicability of
such attacks in other domains, and they proved their effectiveness in the intrusion domain
as well [4,19].

Taheri et al. [5] applied a white-box attack scenario in the IoT context using popular at-
tack algorithms, including FGSM [26], DeepFool, and Projected Gradient Descent (PGD) [2].
The attacks proved their effectiveness against visualization-based botnet detection systems
with a high success rate. Clements et al. [35] also utilized a white-box scenario with a
selection of attacks covering FGSM [26], JSMA [2], C&W [27], and the Elastic Net Method
(ENM). Their experiment proved the effectiveness of these attacks, which continue to
inhibit classification performance, with a success rate reaching 100%.
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Black-box attacks are more practical for enhancing IDS robustness compared to
white-box attacks. The characteristics, behavior, and workflow of the target IDS sys-
tem usually remain hidden from the adversary. This reflects the suitability of black-box
attacks, where queries take place to exploit target IDS vulnerabilities. Examples of this
attack strategy include transfer-based attacks that use substitute classifiers running white-
box attacks such as FGSM [26], JSMA [2], and other popular types but within black-box
settings [6,36]. Qiu et al. [36] adopted FGSM [26] and JSMA [2] in a black-box setting where
a substitute model is also used. The obtained results revealed the transferability feature
of the adversarial examples generated by the considered attacks. In fact, the adversarial
examples successfully affected the target model’s performance with a high attack success
rate of 100%. Moreover, there are other black-box attacks in score-based and decision-based
approaches [19]. Examples of these attacks include Zeroth-Order Optimization (ZOO) [28]
and HopSkipJump [29], respectively.

From AML defense perspectives, several strategies were introduced to enhance the
model’s robustness against attacks in both a reactive and proactive manner. Commonly
employed strategies include feature squeezing, adversarial training, network distilla-
tion, adversarial detection, and ensemble classifiers. Compared to other defense meth-
ods, adversarial training is the most employed defense method for enhancing IoT-based
IDSs [5,12–16]. On the other hand, limited efforts were made to investigate the other
defense strategies in the IoT context. Some studies [6,15] suggest the use of the ensemble
learning approach in IDS contexts generally. However, limited consideration has been
given to such an approach in the IoT context [37]. Moreover, few works employ ensemble
defense methods that primarily focus on modifying the model itself without consideration
of the other defense approaches [4].

2.3. AML-Based Frameworks

For secure deployment of IoT-based IDSs, the design of a robust framework that tackles
adversarial attacks has emerged as an essential need. Robustness in such a context can be
defined as the miniaturization of the ML-based model performance against adversarial
examples [21]. The robustness has been studied with respect to two main aspects, including
either attacks or defenses separately. However, only a limited number of works addressed
the combinations of these two aspects.

Several works investigated the application of AML using deep learning-based IDSs. In
particular, Taheri et al. [5] proposed an ensemble-based defense system against adversarial
examples for IDSs. It mainly encloses three elements: (i) a detector, (ii) an attack engine,
and (iii) a defense mechanism. Specifically, the detector is a deep learning-based model
used for visualization-based botnet detection. The considered attack engine combines
gradient-based adversarial attacks and GAN-based adversarial attacks. For the defense
mechanism, adversarial training is employed to retrain the detector, which proves its
efficiency. For the defense mechanism, adversarial training is employed to strengthen the
system by giving focus to model-based defense. A similar approach was introduced by
Fu et al. [12] and Ibitoye et al. [14], but with consideration for IoT-based IDSs. The former
research employed adversarial training, while the latter one suggested the role of feature
self-normalizing in enhancing the robustness of model performance. Adversarial training
provides better results compared to feature normalization. One should note that a white-
box attack scenario is adopted only to evaluate the robustness of a deep learning-based
model. However, such works did not include black-box attack scenarios or dual-based
defense approaches.

On the other hand, other works explored the employment of conventional machine
learning-based IDSs. Anthi et al. [13] employed several target models, including Bayesian
Network (BN) [13], Support Vector Machine (SVM) [13], Decision Tree (DT) [13], and
Random Forest (RF) [13], in a white-box attack scenario. They were evaluated against
gradient-based Denial of Service (DoS) attacks using an IoT network dataset. Adversarial
training is adopted here, which also improves the model’s robustness against adversarial
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attacks. Vitorino et al. [15] studied the robustness of a non-differentiable model against
adversarial attacks for IoT-based IDS using a black-box scenario. The robustness of multiple
tree-based algorithms was evaluated against evasion adversarial attacks. For such attacks,
relevant-context adversarial examples were created using an adaptative perturbation pat-
tern method (A2PM). Adversarial training was also performed to improve its robustness,
which shows its effectiveness against the employed attacks.

2.4. Poisitioning the Paper

This research paper is intended to bridge research gaps related to machine learning,
adversarial machine learning, network security, and IoT. Overall, most of the state-of-the-
art works consider white-box attack scenarios with a single defense method, particularly
adversarial training. This implies the lack of black-box attack scenarios in the context of
IDSs and specifically within the IoT domain. It also indicates the need to investigate the
concept of “defense-in-depth” and examine its effectiveness in IoT-based IDSs.

Accordingly, the framework proposed in this paper differs from existing works in
three key ways. Firstly, black-box attack scenarios are employed to craft sufficiently good
adversarial examples and explore their transferability phenomenon. Secondly, the defense
perspective is addressed in a more advanced manner. Specifically, the proposed defense
approach combines dual-based defense methods as well as embedded defense methods.
Lastly, we expand the selection of the dual-based defense approach to accommodate both
data-based and model-based methods.

Consequently, all these areas of interest are handled together to orchestrate a robust
framework based on ensemble adversarial machine learning that incorporates attacks and
defense mechanisms. Moreover, it fulfills the need for a tailored solution where domain
constraints are considered and thereby provides enhanced IoT-based intrusion detection
systems (IDSs).

3. A Proposed Robust Ensemble Adversarial Machine Learning Framework for Securing
IoT Traffic
3.1. Framework Overview

A security-by-design approach becomes essential during the development of intrusion
detection systems. To assure trustworthy performance, such designs need to consider an
attack-defense framework to ensure adversarially robust models. Moreover, the design
specifications should be identified with consideration of IoT constraints in terms of time
and space complexities [4]. Accordingly, as depicted in Figure 1, an ensemble approach is
proposed and coupled with a defense-in-depth concept that considers (i) a single layer of
attack methods and (ii) two layers of defensive techniques. The goal is to enhance the IDS’s
robustness against potential attacks and avoid performance degradation in the context of
IoT networks.
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Starting with the victim model’s selection, and given the IoT network resource con-
straints, conventional ML techniques are preferred. The robustness, stability, and simplicity
of conventional techniques reflect their suitability compared to deep learning ones [4]. A
multi-class classification scenario is adopted for detecting real-time attacks. The first phase
of the framework is illustrated in Figure 2.
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On the other hand, a black-box setting is employed to evaluate the robustness degree
of the victim’s models towards the chosen attacks. In fact, the attack methods rely solely on
three black-box types: (i) score-based methods, where a model’s class prediction is targeted;
(ii) decision-based methods, where a model’s output label is targeted; and (iii) transfer-
based methods, where a substitute model with white-box attacks is employed but in black-
box settings. In particular, the black-box scenario is adopted due to the secure deployment
of IDSs where strong security measures are used. This ensures that an adversary will
not likely have access to neither the training set nor the model and its parameters [19,20].
Specifically, several state-of-the-art evasion attacks are utilized to measure the performance
of victims’ models.

Typical defense methods for IoT-based IDSs are presented as a single layer of defense
using either data-based or model-based defense methods. However, combining the two
approaches in order to further robustify the IDS system remains an open research gap. As
such, the proposed RobEns encloses dual layers of defense stacked sequentially in order
to increase attack complexity in terms of time and cost. These layers include data-based
defense and model-based defense. Each of which represents an individual module within
the ensemble adversarial machine learning framework. The first module consists of data-
based modification defense methods, namely feature squeezing. Moreover, it focuses on
input transformation through applying specific compression mechanisms to the feature
space. On the other hand, the second module encloses a model-based modification defense
method, namely adversarial training. This module augments the training phase of the
model using adversarial examples generated by various attacks to reduce the attack’s effects
on the model decision boundary. These two modules preserve the detection performance
on benign examples in addition to adversarial examples, which tackle any potential bias
issue and thereby achieve better generalization.

3.2. Model Selection and Training for IoT-Based IDSs

In this work, two ensemble learning methods are proposed. Namely, stacking and
voting alongside four base ML models selected from former studies. The four considered
models proved to be effective in [4]. The selection of conventional machine learning
methods implied their superiority in yielding competitive results while preserving less
complex models and thereby satisfying potential resource constraints. They consume
limited capacity for learning representation and require feature engineering steps to ensure
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solid decisions [3]. The following are the selected models, which include both conventional
learning and basic deep learning methods:

- Logistic Regression (LR): A supervised probabilistic algorithm that performs clas-
sification using maximum likelihood. It relies on logistic sigmoids for both binary
classification and multi-class classification tasks. It predicts the class of target value by
assigning a threshold and output probabilities. A nonlinear transformation is applied
to convert the absolute values into a range between zero and one [38].

- Support Vector Machine (SVM): A supervised non-probabilistic algorithm that per-
forms both classification and regression tasks. It defines the dividing hyperplane
where the input variable can be separated by the maximum margin. The hyperplane
can be a linear or a nonlinear function of the input variable. This facilitates handling
both binary and multi-class prediction using the kernel trick that includes linear,
polynomial, and Radial Basis Functions (RBFs) [4,38].

- Random Forest (RF): A supervised ensemble tree-based algorithm that utilizes an
army of tree-like structures for performing both classification and regression tasks.
Each individual tree is trained on a randomly chosen subset from the training set. The
quality of such trees is based on node split, where specific split criteria are employed,
such as gini and entropy. The collective decisions of the tree army have very good
accuracy in addition to fast and scalable performance on large datasets [4,38].

- Multilayer Perceptron (MLP): An early deep learning architecture that consists of
an input layer, a hidden layer, and an output layer. This neural network contains
connections between the nodes of each layer in a forward direction. The connection
reflects a weighted summation of the previous layer that requires adjustment and
fine-tuning using a backpropagation algorithm. The generalization of the model is
achieved using multiple techniques such as weight decay, early stopping, dropout,
and others [4,38].

- Ensemble Learning (EL): A collaborative learning method based on the wisdom of the
crowd concept where collective decisions from multiple models are employed [12].
EL includes several main approaches, including “stacking” and “voting”. Stacking
extends the bagging workflow by building a meta-model that combines, in an optimal
manner, the final predictions of base models. Voting trains multiple base models in
which initial predictions are determined independently by each model, and the final
prediction is selected through averaging or majority voting [39]. In this study, stacking
and voting are employed using MLP, SVM, and LR models that prove their efficiency
individually in an IoT-based IDS context. This approach is assumed to construct
stronger models that are harder to compromise compared to a traditional one [22].

Prior to the training phase, pre-processing mechanisms are applied to enhance the models’
performance. This includes discarding the least important features with no obvious contribution
towards intrusion detection, such as origin and destination addresses. Additionally, data
transformation is performed by employing one-hot encoding to turn the categorical features
into numeric values. Then, data normalization is carried out using standard scalers, where
feature scales are defined within the same range. For optimal configuration, the GridSearch [40]
method is adopted for ensuring fine-tuned hyperparameters.

3.3. Adversarial Example (AE) Generation

The diversity of model types requires an attack scenario that can target both gradient
and non-gradient models to ensure a reliable analysis and consolidated attack setting. As
it can be seen in Figure 3, the proposed RobEns framework also takes into consideration
the secure environment of IDSs and launches realistic attacks simultaneously in a black-
box setting.
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Accordingly, four cutting-edge black-box methods are adopted to generate adversarial
examples and analyze the detection performance. These attacks employ a non-targeted
misclassification strategy where misclassifying to any false class is performed. The success
rate of non-targeted attacks usually outperforms the targeted ones and is more common to
be adopted. The attacks can be summarized as follows:

- Black-box Setting of the Fast Gradient Sign Method (FGSM) Attack: It is a transfer-
based attack with a local substitute model trained using queried information from
the target model. The method utilizes the sign of the gradient in calculating the cost
function, thereby generating adversarial examples to mislead the target model. It is a
typical white-box attack method that relies on a first-order projected gradient descent
algorithm. The adversarial example is constructed using
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- Black-box Setting of Carlini and Wagner (C&W) Attack: It can be introduced as a
transfer-based attack with a local substitute model in which the output is used to
mislead a target model. This attack is considered one of the strongest attacks where
adversarial examples are constructed using the
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Table 1. Summary of the considered FGSM configuration. 

Parameter Value 
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2-norm of Euclidean distance. The
norm is applied for quantifying the difference between the original and adversarial
examples, in which large distortions are penalized. The attack employs the Adam
optimizer, starting points, and a tanh-nonlinearity function when performing an
iterative targeted gradient attack. The attack has shown competitive performance
in bypassing 10 detection methods intended to detect adversarial examples [19,27].
Table 2 shows the attack parameters of the benchmarks C&W for all datasets.

Table 2. Summary of the considered C&W configuration.

Parameter Value

Norm (
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- Zeroth-Order Optimization (ZOO) Attack: It can be defined as a score-based attack
with an assumption of access to the prediction confidence only and a performance
as effective as the Carlini and Wagner white-box attack. This attack does not use
the gradient nor the smoothness of the target model’s output. The method performs
an attack by minimizing the distance between the decision boundary and benign
examples. A zeroth-order optimization algorithm is used with a randomized gradient-
free method to minimize such distance and formulate the attack [28,41,42]. Table 3
shows the attack parameters of the benchmark ZOO for all datasets.

Table 3. Summary of the considered ZOO configuration.

Parameter Value

Norm (
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- HopSkipJump Attack: It is a decision-based attack that relies on a novel estimation of
gradient direction to generate adversarial examples given a defined perturbation range.
The attack involves geometric progression and binary search for stepsize search and
boundary search, respectively. The approach is hyperparameter-free for both targeted
and untargeted attacks. Moreover, more complex settings, such as non-differentiable
models or discrete input transformations, can be handled by this attack approach.
Furthermore, it employs query-efficient algorithms that yield competitive performance
for boundary attacks and strong defense mechanisms [22,29]. The parameters of the
benchmark HopSkipJump attack considered for all datasets are reported in Table 4.

Table 4. Summary of the considered HopSkipJump configuration.

Parameter Value

Norm (
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It is worth noting that
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∞ distance is chosen, which is more suitable for evaluating
defenses such as adversarial training [29].

3.4. Defenses against Adversarial Attacks

Defense methods for robustifying IDS models can be grouped into two main cate-
gories: data-based and model-based modifications. These methods are typically employed
to ensure effective countermeasures for adversarial attacks. In this work, a proactive asso-
ciation of these two methods is employed to form an ensemble-based defense technique.
Such a technique represents a “defense-in-depth” concept since a combination of defense
methods is employed. For the proposed framework, feature squeezing and adversarial
training methods are used in designing such modules, which are described as follows:

A. Module 1: Feature Squeezing-based Defense

In this module, feature squeezing is adopted as a data-based modification defense
mechanism against adversarial example attacks. Specifically, it is used for reducing the
feature space and thereby limiting the search space of potential adversaries’ perturbations.
In fact, the feature space is highly dimensional, which causes vulnerabilities for ML-based
solutions and eases the crafting of adversarial examples. The compression of the input
features is followed by a comparison of the model’s predictions obtained using the original
inputs and the compressed ones. One should mention that the input is considered adver-
sarial if the difference between the two predictions’ results is considerable. Additionally,
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different compression methods such as bit depth compression, median smoothing, and
non-local means can be utilized in this module [43,44].

B. Module 2: Adversarial Training-based Defense

In this module, adversarial training is employed as a model-based modification de-
fense mechanism. It is used to strengthen the target model for efficient detection of
adversarial examples. In particular, it trains the target model over a combined dataset that
includes both original and adversarial examples. The adversarial examples are generated
using different attack approaches and victim models, reflecting their unique transferability
characteristics. This enhances the robustness of the trained target model to defend against
possible AML attacks. Moreover, this contributes to avoiding overfitting and generalizing
well over unseen inputs [2,42]. It is worth noting that the model-based modification IDS
models have shown the most successful enhancement in terms of detection performance [2].

4. Experiments

This section starts by presenting the benchmarking IoT-based IDS datasets used for
this study alongside the evaluation metrics to measure the detection performance. Then,
the adopted classification scenarios are explained and analyzed among all the selected
models. Moreover, the results achieved by applying black-box attacks to the proposed
ML-based IDS models in multi-class classification scenarios are reported and discussed.
Finally, a robustness analysis is conducted by investigating the performance of the proposed
adversarial defense methods intended to enhance IDS models’ robustness.

4.1. Datasets and Evaluation Metrics

Classification scenarios for network intrusion detection generally, and IoT networks
specifically, are categorized into binary and multi-class classification. Binary classification
tackles the detection task by mapping traffic flow into either benign or malicious labels. On
the other hand, multi-class classification distinguishes between several attack types based
on their belonging category. The latter scenario exhibits a larger attacking spectrum, which
makes the problem even more acute compared to binary classification tasks. As such, the
multi-class classification scenario is considered in this research, where each model identifies
each attack category and differentiates between the multiple classes. It is deployed using
three IoT-based benchmarking datasets. Namely, UNSW-NB15 [23], ToN-IoT [24], and
Edge-IIoT [25] datasets were considered for this research experiment.

UNSW-NB15 Dataset: This dataset was released in 2015 by the Cyber Range Lab of the
Australian Centre for Cyber Security (ACCS) for the IDS context in general. Different tools
are used to create network traffic and extract relevant features, including Perfect Storm [23],
Argus [23], and Bro-IDS [23]. It contains hybrid network traces representing benign and
malicious activities. Nine attack categories are identified, including analysis, backdoors,
DoS, exploits, fuzzes, generic, reconnaissance, shellcode, and worms [23].

ToN-IoT Dataset: This dataset was released in 2019 by ACCS with a heterogeneous
collection of relevant IoT-based traffic. Several resources were used in the creation of
this dataset, including blur, cloud layers, edges, physical systems, and virtual machines.
Attack categories span over different types, including: Several attack categories are defined,
including backdoors, cross-site scripting (XSS), DoS, distributed DoS (DDoS), injection, man-
in-the-middle (MITM), password cracking, ransomware, and scanning. It encompasses
multiple subsets extracted from different operating system environments, such as Linux
and Windows, along with traffic from networks and telemetry data from IoT services [24].

Edge-IIoT Dataset: This dataset was newly released for the purpose of analyzing
heterogeneous data sources from both IoT and industrial IoT (IIoT). Different types of
low-cost IoT digital sensors are employed to generate real traffic, including flame sensors,
heart rate sensors, pH sensors, soil moisture sensors, ultrasonic sensors, temperature and
humidity sensors, and water level detection sensors. An employment of 14 attack types is
grouped into 5 main categories: DoS and DDoS attacks, information gathering, injection,
man-in-the-middle (MITM) attacks, and malware attacks [25].
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Accordingly, Table 5 summarizes the main characteristics of all the aforementioned datasets.

Table 5. Summary of the benchmarking datasets considered for this research.

Dataset Publisher Year Attacks Feature Sets Size by Records

UNSW-NB15 [23] Cyber Range Lab of UNSW 2015 10 classes 45 2 million

ToN-IoT [24] Cyber Range Lab of UNSW 2020 9 classes 31 22 million

Edge-IIoT [25] IEEE Dataport 2022 14 classes 61 20 million

In terms of the characteristics of datasets, they incorporate context-related IoT traffic
from both real and simulated network flows, including a mix of benign and malicious
traffic. Moreover, different types of network attacks, such as Denial of Service (DoS),
Distributed Denial of Service (DDoS), Brute Force, Botnet, Backdoor, and Injection attacks,
are enclosed in these datasets. In particular, network traffic features are utilized to identify
attacks and thereby enhance detection performance. The features are mainly grouped
into four classes: (i) Basic features, which indicate traffic state, used protocols, service
type, source-to-destination times and packet count, and destination-to-source times and
packet count. (ii) Time-related features, which define traffic inter-arrival time, active-
idle time, timestamp, source jitter, and destination jitter. (iii) Flow-related features that
identify flow characteristics such as flow length, number of bytes, number of packets,
bulk rate, downlink, and uplink ratio. (iv) Flag-related features that represent flag setting
and counts in both forward and backward directions, such as SYN, URG, ACK, and FIN.
(v) Connection-related features, which represent several connection settings, counts, and
protocols, such as the Get and Post method in the http protocol, the ftp session login status,
the number of bytes, and packets sent in both forward and backward directions.

In terms of evaluation, adding a degree of robustness is an important pillar in en-
hancing the detection of ML-based solutions for IDS. Robustness in the IDS context can
be defined as the ability of machine learning solutions to decrease their susceptibility to
adversarial examples [21]. Attacks and defenses are frequently associated with evaluating
the robustness of machine learning solutions. These two aspects are employed together,
representing a game scenario for augmenting robustness. This scenario involves measuring
robustness based on defense methods effectiveness against attacks as well as the ability
of attacks to crack such methods. This can preserve continuous learning and constant
improvement [45,46].

In the literature, several performance measures are used in the analysis of the model’s
robustness in both regular and adversarial holdout sets. With reference to adversarial ex-
amples, detection accuracy and attack success rate represent key elements in evaluating the
performance from both attack and defense perspectives. In terms of accuracy, consideration
is given in this study to the accuracy measure due to its reliability in relevant analyses. The
accuracy identifies the correctly classified sample proportion of both benign and malicious
types to reflect the detection performance of a specific model. It is derived indirectly from a
confusion matrix that reports True Positive (TP), True Negative (TN), False Positive (FP)
and False Negative (FN) values. The accuracy can be expressed as follows [47,48]:

Accuracy (Standard, Adversarail, Robust) =
TP + TN

TP + FN + TN + FP
× 100 (1)

where TP and TN reflect the successfully classified benign and malicious inputs, respec-
tively, while the latter two values, FP and FN, indicate misclassified benign and malicious
inputs. Moreover, accuracy is employed in measuring the performance of three components
of the proposed framework, including the original classification, the classification under
attacks, and the classification after applying defense methods. Thus, the metric measures
the performance of the original holdout set to be further compared with performance of
adversarial and robustified ones. There are three sub accuracy metrics for such a reason:
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standard accuracy (the model’s accuracy when there is no adversary), adversarial accuracy
(the model’s accuracy when there is an adversary without defense), and robust accuracy
(the model’s accuracy against an adversary with defense) [47,48].

Another measurement that is used to measure the level of compromising the target
model integrity by attacks is the Attack Success Rate (ASR). It represents the total number
of perturbed dataset inputs in which the adversarial examples cause misclassification by
the target model [49]. This involves classifying the adversarial examples in their target
class by the target model [50].

A higher attack success rate corresponds to lower adversarial accuracy [49]. It can be
given by the following formula:

Attack Success Rate (ASR) = 1 − Adevrsarail Accuracy (2)

4.2. Classification Performance

In preparation for the classification task, all datasets were divided into 70% training
and 30% testing sets in order to ensure better model generalization.

All of the aforementioned models were trained and evaluated using the three bench-
mark datasets. The obtained accuracy values are shown in Figure 4.
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As can be seen, the reported results show a variation in performance among the
different datasets, specifically UNWS-NB15 [23]. The models’ performance ranged from
74% to 77% for SVM, LR, and voting ensemble learning. The MLP and RF models exhibited
better performance, ranging between 84% and 85%. The stacked ensemble learning model
yielded the best performance with 86% accuracy. For ToN-IoT [24] and Edge-IIoT [25], the
considered models showed better performance, with accuracy ranging from 97% to 99%.
In particular, the accuracy achieved by the stacked model and ToN-IoT [20] reached 99%,
while the lowest accuracy of 97% was recorded for LR. With regards to Edge-IIoT [25],
RF yielded the highest accuracy of 99%, followed by the stacked model and MLP. The
remaining classifiers yielded accuracy ranging from 97% to 98%. One should note that the
lowest accuracy was obtained using the SVM model. All the results are summarized in
Table 6.
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Table 6. Accuracy of selected models among the benchmarking datasets.

Model UNSW-NB15 Dataset ToN-IoT Dataset Edge-IIoT Dataset

SVM 74.90% 97.28% 97.00%

LR 76.57% 97.17% 98.37%

MLP 84.50% 99.97% 99.87%

RF 85.77% 99.98% 99.99%

Voting model 77.78% 97.95% 98.53%

Stacked model 85.48% 99.99% 99.71%

4.3. Adversarial Attacks Performance against IDS Models

The four adopted attacks are applied in the context of multi-class classification sce-
narios. The scenario considered involves difficulty in crafting adversarial examples due
to the large number of targeted classes. These attacks are initially employed for image
modality, which is different from the tabular data typically used in the IDS domain. Thus,
there is a need for normalization methods where a defined range for network features is
used, resembling the image pixel value range. All the attacks obtain different performance
in terms of adversarial accuracy and attack success rates, with either minor or major effects.

A. Adversarial Results

Table 7 shows the adversarial accuracy obtained using the selected models along
with the UNSW-NB15 dataset [23]. For each attack, the detection performance exhibits a
considerable variance for the different classifiers. In particular, a significant degradation is
recorded for the HopSkipJump attack, followed by a substitute model coupled with the
FGSM attack. The rest of the attacks yielded similar performance with moderate effects. On
the other hand, the RF model achieved the highest adversarial accuracy. For this dataset,
the results achieved by the ensemble learning models exhibit non-competing performance.
In other words, ensemble learning itself was not robust enough.

Table 7. Adversarial accuracy obtained using the considered models and the UNSW-NB15 dataset [19].

Attacks None Black-Box (FGSM) Black-Box (C&W) 0th-Optimization (ZOO) HopSkipJump (HSJ)

Model Standard
Accuracy

Adversarial
Accuracy

Adversarial
Accuracy Adversarial Accuracy Adversarial Accuracy

SVM 74.90% 25.15% 27.22% 74.87% 11.43%

LR 76.57% 39.70% 41.08% 37.14% 09.93%

MLP 84.50% 55.30% 70.10% 40.97% 67.36%

RF 85.77% 64.99% 82.11% 83.60% 83.61%

Voting model 77.78% 28.44% 26.51% 77.69% 11.14%

Stacked model 85.48% 53.98% 66.46% 49.31% 07.81%

Table 8 reports the models’ performance achieved under the four attacks using the
ToN-IoT dataset [24]. As can be seen, the extreme deprivation is attained under the
HopSkipJump attack with an adversarial accuracy ranging from 0% to 2%. On the other
hand, the ZOO attack is the weakest attack in this experiment. As can be seen, minor
accuracy changes are observed. One should also note that RF was able to resist better with
an adversarial accuracy between 65% and 99%. Regardless of the HopSkipJump attack, the
stacked model yielded the second-best adversarial accuracy, followed by LR. The rest of the
models achieved similar performances, coupled with different levels of recorded effects.
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Table 8. Adversarial accuracy results recorded using the considered models and the ToN-IoT dataset [20].

Attacks None Black-Box (FGSM) Black-Box (C&W) 0th-Optimization (ZOO) HopSkipJump (HSJ)

Model Standard
Accuracy

Adversarial
Accuracy

Adversarial
Accuracy Adversarial Accuracy Adversarial Accuracy

SVM 97.28% 39.36% 4.19% 97.25% 1.46%

LR 97.17% 56.41% 83.43% 65.30% 1.18%

MLP 99.97% 59.47% 32.57% 63.75% 6.50%

RF 99.98% 65.61% 69.28% 99.67% 72.14%

Voting model 97.95% 57.32% 2.83% 97.80% 1.51%

Stacked model 99.99% 68.17% 76.87% 75.41% 0.00%

Table 9 also outlines the adversarial accuracy obtained using the Edge-IIoT dataset [25].
As one can see, HopSkipJump keeps achieving the highest performance degradation, while
ZOO yields the weakest attack. In particular, the attacks associated with substitute models,
including FGSM and C&W, caused notable effects on the investigated models. However,
RF outperformed the other models in terms of robustness, in which adversarial accuracy
was decreased by only 20%. To sum up, different levels of degradation were recorded
for all models’ adversarial accuracy under the considered attacks, except for the ZOO
attack, which yielded a slight decrease. Moreover, there was a notable effect of substitute
models’ attacks, which confirmed the effectiveness of adversarial examples transferability
in degrading the performance of other target models. On the other hand, models such as RF,
MLP, and stacked models exhibit more robust performance and higher adversarial accuracy.

Table 9. Adversarial accuracy results obtained for using the selected models on and the Edge-IIoT
dataset [21].

Attacks None Black-Box (FGSM) Black-Box (C&W) 0th-Optimization (ZOO) HopSkipJump (HSJ)

Model Standard
Accuracy

Adversarial
Accuracy

Adversarial
Accuracy Adversarial Accuracy Adversarial Accuracy

SVM 97.00% 57.29% 50.74% 97.00% 2.39%

LR 98.37% 65.44% 93.09% 70.76% 1.36%

MLP 99.87% 93.20% 84.27% 91.17% 0.22%

RF 99.99% 64.13% 83.64% 99.77% 72.14%

Voting Model 98.53% 68.90% 44.12% 98.50% 1.14%

Stacked Model 99.71% 90.61% 78.40% 94.30% 0.27%

Tree-based algorithms and ensemble learning are well-known for designing reliable
IDSs in several surveyed studies [12]. However, RF shows better performance compared
to ensemble learning, which indicates a potential investigation of employing RF as a base
learner within ensemble learning methods [15,51]. It is worth noting that employing tree-
based algorithms has obtained competitive performance in a wide range of applications
due to several factors, including simplicity, interpretability, and efficiency [42]. This is
inferred from the use of rule sets that are easy to interpret, analyze, and integrate into
real-time technologies [52].

B. Attack Success Rate (ASR) Analysis

As shown in Figure 5, the substitute model increased the ASR considerably using
all datasets when associated with the FGSM attack [26]. It yielded the third-best ASR
out of the four studied attacks. This is expected due to the simple attacking method of
FGSM [26] with one-single step adversarial sample generation. However, a substitute
model coupled with a C&W attack [27] yielded the second-best ASR. This can be attributed
to the complexity of such attacks. For the other black-box attacks, the ZOO attack [28]
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yielded the lowest performance of ASR. Moreover, for the three datasets, the proposed
IDS models exhibit considerable performance degradation. Notably, the HopSkipJump
attack [29] achieved the first-best ASR, reaching 100% successful exploitation. Accordingly,
the HopSkipJump attack [29], followed by substitute models’ attacks, proved to be highly
efficient in generating adversarial samples. As such, this can be considered a serious threat
that requires the corrective action of different defense strategies. The performance of each
attack against the different IDS models, including the average ASR, is jointly presented
in Figure 5. Shedding the light on IDS models, they achieved similar performance with
fluctuating attack success rates, except for the HopSkipJump attack [29], which attained a
competitive ASR level. Obviously, the robustness and vulnerability of models vary based
on the deployed algorithm, attack, and dataset types.
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The xxRF model yielded low attack success rates ranging between 17% and 28%. On
the other hand, SVM, MLP, and LR achieved fluctuating performances in terms of ASR.
Additionally, the voting ensemble model achieved similar performance compared to the
considered base learners, including SVM, MLP, and LR. Specifically, the ASR obtained
using the voting model reflects fair results, with averages of 64%, 60%, and 46% for UNSW-
NB15 [23], ToN-IoT [24], and Edge-IIoT [25], respectively. On the other hand, the stacked
ensemble learning model gives lower attack success rates in comparison with the voting
ensemble learning model. This reflects the better resilience of the model stacking method
in such attack scenarios, with only a limited effect on detection accuracy. Stacking involves
producing high-level learners based on the strengths of several levels of base learners with
high generalized performance. However, the voting ensemble model generates the final
decision based on averaging the predictions of the base learners. The weighted voting
process is more prone to learning biases [53].

Accordingly, one can claim that the obtained results proved that RF, MLP, and stacked
ensemble models achieved the most robust performance against three black-box attacks
with the lowest ASR rates. It is worth noting that the ensemble model by itself represents
a model-based modification defense mechanism. However, HopSkipJump showed the
extreme weakness of the ensemble method, and further investigation of better algorithm
selection is needed [42,54]. Obviously, the robustness and vulnerability of models vary
based on the deployed algorithm, attack, and dataset types.

A venue for improvement in such a context includes the optimal selection of the base
model and relevant hyperparameters to enhance the performance of the final ensemble
learning model [55]. This is important to ensure that ensemble learning models are effective
in hardening the IDS performance and complicating any potential attack attempt.

4.4. Adversarial Defense Performance for Robustifying IDS Models

In this experiment scenario, two-layer defense modules are employed for robustifying
IDS against the four considered attacks. In particular, the two-layer approach includes
feature squeezing and adversarial training as data-based modification and model-based
modification defense methods, respectively. This approach starts with analyzing individual
components performance as well as their combination as ensemble defense modules. One
should recall that feature squeezing is used to compress the input features and compare
them with the original inputs, mimicking the hash mechanism. Bit-depth compression is
employed as a compression method and shows improvement in terms of robust accuracy.
The conducted experiments showed the properness of this approach for IDSs. For the
experiments, the parameters of the feature-squeezing defense method shown in Table 10
were adopted.

Table 10. Summary of the considered feature squeezing configuration.

Parameter Value

Bit depth (5)

Clip value (0, 1)

In terms of performance results, the method resulted in a notable improvement in
robust accuracy, ranging between 5% and 80%. It is worth noting that feature squeezing is
more effective in robustifying models against score-based and decision-based black-box
attacks (i.e., ZOO and HopSkipJump) compared to transfer-based attacks with substitute
models. However, considering feature squeezing as a standalone solution, it proved to be
slightly effective when associated with transfer-based attacks. Moreover, the performance
of the ensemble learning models remained unchanged in most cases or yielded a slight
increase ranging between 1% and 2%. This indicates the lowest effectiveness of this defense
method when ensemble learning models are deployed.
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With regards to adversarial training, it is also employed for enhancing models’ robust-
ness using the adversarial examples generated by the four studied attacks. The substitute
models are used to approximate the decision boundaries of the target’s models due to
the indirect utilization of powerful white-box attacks. The synthetic inputs generated by
FGSM [26] and C&W [27] attacks were employed for adversarial training of the target
models. Moreover, ZOO [28] and HopSkipJump [29] attacks were deployed directly to
the target models, and their resulting examples were also employed for adversarial train-
ing. The key parameters of the adversarial training defense method used for all datasets,
including classifier type, attack type, and number of training epochs, are listed in Table 11.

Table 11. Summary of the considered adversarial training configuration.

Parameter Value

Classifier The assigned target model (i.e., six candidate models)

Attack The assigned attack for generating AEs (i.e., FGSM. C&W,
ZOO, and HopSkipJump)

Number of Epochs (20)

For performance evaluation, this method significantly improved the robust accuracy
of the target models throughout the entire attack and, in some cases, exceeded its standard
accuracy. However, the obvious increment in robust accuracy over the standard accuracy
reflects the label leakage issue. This issue is associated with adversarial training defense
methods when the accuracy of adversarial examples is higher than the accuracy of original
examples [56]. This happened due to using the true label as input, especially while per-
forming a non-iterative attack. In addition, slight drops in standard accuracy are noticed in
some cases when applying adversarial training.

For ensemble learning, revisiting adversarial accuracy indicates the importance of
reassessing the method selection for the base learner of ensemble models. The performance
of the ensemble learning models varies depending on the selected base learners. In our
experiment, the performance of the two proposed ensemble learning models that rely on LR,
SVM, and MLP learners was below expectations. In particular, the voting ensemble model
did not enhance adversarial accuracy, and its performance exceeded slightly in adversarial
accuracy compared to the base learners. On the other hand, the stacked ensemble model
outperformed the voting technique and yielded one of the top three best accuracies.

For the proposed RobEns framework, combining the two defense methods, including
feature squeezing and adversarial training, reveals a significant improvement in terms of
robust accuracy while maintaining a better level of standard accuracy compared to the
single defense method. On average, the robust accuracy increased between 70% and 100%
for all the datasets and considered models. Figure 6 shows the robust accuracy for each
model after adopting the RobEns defense framework (hatched bars in the upper part of
the plot) and the adversarial accuracy before considering RobEns (bars in the lower part of
the plot).

In terms of standard accuracy, Table 12 reports the standard accuracy recorded with
and without adopting the proposed defense mechanisms. The results confirm the effec-
tiveness of the proposed method in maintaining standard accuracy in the vast majority of
experiment results. Frameworks ensure providing more secure frameworks to mitigate
potential security vulnerabilities targeting IoT networks.
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Table 12. Comparison of standard accuracy obtained using the considered datasets.

Dataset Models Standard Accuracy RobEns Standard Accuracy

SVM 74% 75%

LR 76% 76%

MLP 84% 79%

RF 85% 86%

Voting model 77% 77%U
N

SW
-N

B
15

Stacked model 85% 87%
To

N
-I

oT
SVM 97% 97%

LR 97% 97%

MLP 99% 99%

RF 99% 90%

Voting model 97% 97%

Stacked model 99% 99%

SVM 97% 97%

LR 98% 98%

MLP 99% 99%

RF 99% 100%

Voting model 98% 98%Ed
ge

-I
Io

T

Stacked model 99% 99%

Table 13. Performance results obtained using the related works and proposed RobEns framework.

Reference Datasets Attack Scenario Attack Method Defense Type Defense Method Results and Findings

Taheri et al. [5] CTU-13 White Box

FGSM
DeepFool
PGD
GAN

Single Adversarial
Training

- Robust accuracy less
than standard accuracy
- No investigation of
defense effect over the
standard accuracy

Fu et al. [12] CSE-CIC-
IDS2018 White Box FGSM Single Adversarial

Training

- Robust accuracy less
than standard accuracy
- The defense method
reduces the standard
accuracy significantly

Anthi et al. [13] Private White Box Rule-based
Approach Single Adversarial

Training

- Robust accuracy less
than standard accuracy
- No investigation of
defense effect over the
standard accuracy

Ibitoye et al. [14] BoT-IoT White Box
FGSM
PGD
BIM

Single Feature
Normalization

- Robust accuracy is poor
compared to standard
accuracy
- Positive impact on the
standard accuracy

Vitorino et al.
[15] IoT-23 Bot-IoT Black Box A2PM Single Adversarial

Training

- Robust accuracy is
slight less compared to
standard accuracy
- Negative impact on the
standard accuracy

Proposed
RobEns
Framework

UNSW-NB15
ToN-IoT
Edge-IIoT

Black Box

FGSM
C&W
ZOO
HopSkipJump

Dual

- Feature
Squeezing
- Adversarial
Training

- Framework’s robust
accuracy achieve same
standard accuracy results
- Framework’s standard
accuracy is maintained
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Overall, the two-layer defense methods implemented using the RobEns framework en-
hanced the resilience against attacks, improved the robust accuracy of the models, decreased
adversarial accuracy, and mostly maintained the standard accuracy of the classification
tasks. This can be inferred from Table 13, where a comparison between the performance of
related works in Section 2.3 and the proposed method is presented.

5. Conclusions

In this research, a robust ML-based IDS framework is proposed, named RobEns, for
defending against AML attacks in the context of IoT. Specifically, the framework incor-
porates both attack and defense perspectives. The latter one relies on two-layer defense
modules, representing an ensemble approach intended to ensure high defense capability.
Moreover, the proposed two-layer defense approach combines data-based and model-based
defense methods, including feature squeezing and adversarial training, aiming at designing
multi-based defense strategies. The proposed framework is designed by taking into consid-
eration IoT limitations in terms of capacity and capability. Accordingly, the encompassed
techniques exhibit simplicity, scalability, and manageability. Moreover, four state-of-the-art
machine learning models—SVM, LR, MLP, and RF—were investigated, along with two
ensemble learning models. The framework models were evaluated using four cutting-edge
black-box attack methods. Namely, transfer-based attacks using FGSM and C&W, ZOO,
and HopSkipJump were considered in addition to the three benchmarking datasets in
the conducted experiments. The obtained results revealed the potential compromising of
ML-based IDSs by adversarial attacks and the effectiveness of defense methods in ensuring
the intended robustness. The robust accuracy of target models improved substantially by
30% to 100% using the proposed two-layer defense methods for the considered black-box
attacks. Moreover, robustifying IDS models did not affect the standard accuracy, which was
maintained at a level similar to the one achieved using legitimate examples. Additionally,
slight decrements of nearly 7% were recorded in very few cases.

In the future, further investigation of advanced ensemble learning methods can be
conducted. This represents a promising research direction to improve the proposed frame-
work. Moreover, more efforts shall be devoted to diversifying base learners in order to
enhance IDS robustness while reducing the computational overhead. This can incorporate
the employment of federated learning to provide a more secure context and investigate
its effectiveness within the AML domain. Some recent studies reveal promising results in
enhancing the detection of IoT-based IDS through collaborative modeling. This involves
considering the limitations of IoT resources by not requiring direct data sharing [57,58].

Author Contributions: Conceptualization, S.A., S.A.-A. and M.M.B.I.; methodology, S.A.; software,
S.A.; validation, S.A. and M.M.B.I.; formal analysis, S.A.; investigation, S.A.; resources, S.A., S.A.-A.
and M.M.B.I.; data curation, S.A.; writing—original draft preparation, S.A.; writing—review and
editing, S.A., S.A.-A. and M.M.B.I.; visualization, S.A.; supervision, S.A.-A. and M.M.B.I.; project
administration, M.M.B.I.; funding acquisition, S.A.-A. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Research Centre of College of Computer and Information
Sciences, Deanship of Scientific Research, King Saud University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data have been presented in the main text.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Papadopoulos, P.; von Essen, O.T.; Pitropakis, N.; Chrysoulas, C.; Mylonas, A.; Buchanan, W.J. Launching adversarial attacks

against network intrusion detection systems for iot. J. Cybersecur. Priv. 2021, 1, 252–273. [CrossRef]

https://doi.org/10.3390/jcp1020014


Sensors 2024, 24, 2626 22 of 24

2. Alkadi, S.; Al-Ahmadi, S.; Ismail, M.M.B. Better Safe Than Never: A Survey on Adversarial Machine Learning Applications
towards IoT Environment. Appl. Sci. 2023, 13, 6001. [CrossRef]

3. Paleyes, A.; Urma, R.-G.; Lawrence, N.D. Challenges in deploying machine learning: A survey of case studies. ACM Comput.
Surv. 2022, 55, 1–29. [CrossRef]

4. Alkadi, S.; Al-Ahmadi, S.; Ismail, M.M.B. Toward Improved Machine Learning-Based Intrusion Detection for Internet of Things
Traffic. Computers 2023, 12, 148. [CrossRef]

5. Taheri, S.; Khormali, A.; Salem, M.; Yuan, J.-S. Developing a robust defensive system against adversarial examples using
generative adversarial networks. Big Data Cogn. Comput. 2020, 4, 11. [CrossRef]

6. Wang, J.; Pan, J.; AlQerm, I.; Liu, Y. Def-ids: An ensemble defense mechanism against adversarial attacks for deep learning-based
network intrusion detection. In Proceedings of the 2021 International Conference on Computer Communications and Networks
(ICCCN), Athens, Greece, 19–22 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–9.

7. Mohammadian, H.; Ghorbani, A.A.; Lashkari, A.H. A gradient-based approach for adversarial attack on deep learning-based
network intrusion detection systems. Appl. Soft Comput. 2023, 137, 110173. [CrossRef]

8. Sharon, Y.; Berend, D.; Liu, Y.; Shabtai, A.; Elovici, Y. Tantra: Timing-based adversarial network traffic reshaping attack. IEEE
Trans. Inf. Forensics Secur. 2022, 17, 3225–3237. [CrossRef]

9. McCarthy, A.; Andriotis, P.; Ghadafi, E.; Legg, P. Feature vulnerability and robustness assessment against adversarial machine
learning attacks. In Proceedings of the 2021 International Conference on Cyber Situational Awareness, Data Analytics and
Assessment (CyberSA), Dublin, Ireland, 14–18 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–8.

10. Alotaibi, A.; Rassam, M.A. Enhancing the Sustainability of Deep-Learning-Based Network Intrusion Detection Classifiers against
Adversarial Attacks. Sustainability 2023, 15, 9801. [CrossRef]

11. De Lucia, M.J.; Cotton, C. A network security classifier defense: Against adversarial machine learning attacks. In Proceedings of
the 2nd ACM Workshop on Wireless Security and Machine Learning, Linz, Austria, 13 July 2020; pp. 67–73.

12. Fu, X.; Zhou, N.; Jiao, L.; Li, H.; Zhang, J. The robust deep learning–based schemes for intrusion detection in internet of things
environments. Ann. Telecommun. 2021, 76, 273–285. [CrossRef]

13. Anthi, E.; Williams, L.; Javed, A.; Burnap, P. Hardening machine learning denial of service (DoS) defences against adversarial
attacks in IoT smart home networks. Comput. Secur. 2021, 108, 102352. [CrossRef]

14. Ibitoye, O.; Shafiq, O.; Matrawy, A. Analyzing adversarial attacks against deep learning for intrusion detection in IoT networks.
In Proceedings of the 2019 IEEE global communications conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019;
IEEE: Piscataway, NJ, USA, 2019; pp. 1–6.

15. Vitorino, J.; Praça, I.; Maia, E. Towards adversarial realism and robust learning for IoT intrusion detection and classification. Ann.
Telecommun. 2023, 78, 401–412. [CrossRef]

16. Kumar, K.N.; Vishnu, C.; Mitra, R.; Mohan, C.K. Black-box adversarial attacks in autonomous vehicle technology. In Proceedings
of the 2020 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Washington, DC, USA, 13–15 October 2020; IEEE:
Piscataway, NJ, USA, 2020; pp. 1–7.

17. Faysal, J.A.; Mostafa, S.T.; Tamanna, J.S.; Mumenin, K.M.; Arifin, M.M.; Awal, M.A.; Shome, A.; Mostafa, S.S. XGB-RF: A hybrid
machine learning approach for IoT intrusion detection. Telecom 2022, 3, 52–69. [CrossRef]

18. Nguyen, X.-H.; Nguyen, X.-D.; Huynh, H.-H.; Le, K.-H. Realguard: A lightweight network intrusion detection system for IoT
gateways. Sensors 2022, 22, 432. [CrossRef] [PubMed]

19. Li, P.; Yi, J.; Zhang, L. Query-efficient black-box attack by active learning. In Proceedings of the 2018 IEEE International Conference
on Data Mining (ICDM), Singapore, 17–20 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1200–1205.

20. Maseer, Z.K.; Yusof, R.; Mostafa, S.A.; Bahaman, N.; Musa, O.; Al-rimy, B.A.S. DeepIoT. IDS: Hybrid deep learning for enhancing
IoT network intrusion detection. Comput. Mater. Contin. 2021, 69, 3945–3966.

21. Qayyum, A.; Usama, M.; Qadir, J.; Al-Fuqaha, A. Securing connected & autonomous vehicles: Challenges posed by adversarial
machine learning and the way forward. IEEE Commun. Surv. Tutor. 2020, 22, 998–1026.

22. Zhang, C.; Costa-Perez, X.; Patras, P. Adversarial attacks against deep learning-based network intrusion detection systems and
defense mechanisms. IEEE/ACM Trans. Netw. 2022, 30, 1294–1311. [CrossRef]

23. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network
data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, Australia,
10–12 November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6.

24. Moustafa, N.; Keshky, M.; Debiez, E.; Janicke, H. Federated TON_IoT Windows datasets for evaluating AI-based security
applications. In Proceedings of the 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), Guangzhou, China, 29 December–1 January 2021; IEEE: Piscataway, NJ, USA, 2020; pp. 848–855.

25. Ferrag, M.A.; Friha, O.; Hamouda, D.; Maglaras, L.; Janicke, H. Edge-IIoTset: A new comprehensive realistic cyber security
dataset of IoT and IIoT applications for centralized and federated learning. IEEE Access 2022, 10, 40281–40306. [CrossRef]

26. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572.
27. Carlini, N.; Wagner, D. Towards evaluating the robustness of neural networks. In Proceedings of the 2017 IEEE Symposium on

Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 39–57.

https://doi.org/10.3390/app13106001
https://doi.org/10.1145/3533378
https://doi.org/10.3390/computers12080148
https://doi.org/10.3390/bdcc4020011
https://doi.org/10.1016/j.asoc.2023.110173
https://doi.org/10.1109/TIFS.2022.3201377
https://doi.org/10.3390/su15129801
https://doi.org/10.1007/s12243-021-00854-y
https://doi.org/10.1016/j.cose.2021.102352
https://doi.org/10.1007/s12243-023-00953-y
https://doi.org/10.3390/telecom3010003
https://doi.org/10.3390/s22020432
https://www.ncbi.nlm.nih.gov/pubmed/35062393
https://doi.org/10.1109/TNET.2021.3137084
https://doi.org/10.1109/ACCESS.2022.3165809


Sensors 2024, 24, 2626 23 of 24

28. Chen, P.-Y.; Zhang, H.; Sharma, Y.; Yi, J.; Hsieh, C.-J. Zoo: Zeroth order optimization based black-box attacks to deep neural
networks without training substitute models. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security,
Dallas, TX, USA, 3 November 2017; pp. 15–26.

29. Chen, J.; Jordan, M.I.; Wainwright, M.J. Hopskipjumpattack: A query-efficient decision-based attack. In Proceedings of the 2020
IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–21 May 2020; IEEE: Piscataway, NJ, USA, 2020;
pp. 1277–1294.

30. Gad, A.R.; Nashat, A.A.; Barkat, T.M. Intrusion detection system using machine learning for vehicular ad hoc networks based on
ToN-IoT dataset. IEEE Access 2021, 9, 142206–142217. [CrossRef]

31. Alsaedi, A.; Moustafa, N.; Tari, Z.; Mahmood, A.; Anwar, A. TON_IoT telemetry dataset: A new generation dataset of IoT and
IIoT for data-driven intrusion detection systems. IEEE Access 2020, 8, 165130–165150. [CrossRef]

32. Thaseen, I.S.; Mohanraj, V.; Ramachandran, S.; Sanapala, K.; Yeo, S.-S. A hadoop based framework integrating machine learning
classifiers for anomaly detection in the internet of things. Electronics 2021, 10, 1955. [CrossRef]

33. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the internet of
things for network forensic analytics: Bot-iot dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [CrossRef]

34. Khamis, R.A.; Matrawy, A. Evaluation of adversarial training on different types of neural networks in deep learning-based idss.
In Proceedings of the 2020 International Symposium on Networks, Computers and Communications (ISNCC), Montreal, QC,
Canada, 20–22 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6.

35. Clements, J.; Yang, Y.; Sharma, A.A.; Hu, H.; Lao, Y. Rallying adversarial techniques against deep learning for network security.
In Proceedings of the 2021 IEEE Symposium Series on Computational Intelligence (SSCI), Orlando, FL, USA, 5–7 December 2021;
IEEE: Piscataway, NJ, USA, 2021; pp. 1–8.

36. Qiu, H.; Dong, T.; Zhang, T.; Lu, J.; Memmi, G.; Qiu, M. Adversarial attacks against network intrusion detection in IoT systems.
IEEE Internet Things J. 2020, 8, 10327–10335. [CrossRef]

37. Dankwa, S.; Yang, L. Securing iot devices: A robust and efficient deep learning with a mixed batch adversarial generation process
for captcha security verification. Electronics 2021, 10, 1798. [CrossRef]

38. Mahdavinejad, M.S.; Rezvan, M.; Barekatain, M.; Adibi, P.; Barnaghi, P.; Sheth, A.P. Machine learning for Internet of Things data
analysis: A survey. Digit. Commun. Netw. 2018, 4, 161–175. [CrossRef]

39. Rani, D.; Gill, N.S.; Gulia, P.; Chatterjee, J.M. An Ensemble-Based Multiclass Classifier for Intrusion Detection Using Internet of
Things. Comput. Intell. Neurosci. 2022, 2022, 1668676. [CrossRef] [PubMed]

40. Liashchynskyi, P.; Liashchynskyi, P. Grid search, random search, genetic algorithm: A big comparison for NAS. arXiv 2019,
arXiv:1912.06059.

41. Wu, H.; Hu, Z.; Gu, B. Fast and scalable adversarial training of kernel SVM via doubly stochastic gradients. Proc. AAAI Conf.
Artif. Intell. 2021, 35, 10329–10337. [CrossRef]

42. Chen, H.; Zhang, H.; Boning, D.; Hsieh, C.-J. Robust decision trees against adversarial examples. In Proceedings of the
International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 1122–1131.

43. Xu, W.; Evans, D.; Qi, Y. Feature squeezing: Detecting adversarial examples in deep neural networks. arXiv 2017, arXiv:1704.01155.
44. Brendel, W.; Rauber, J.; Bethge, M. Decision-based adversarial attacks: Reliable attacks against black-box machine learning

models. arXiv 2017, arXiv:1712.04248.
45. Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards deep learning models resistant to adversarial attacks. arXiv

2017, arXiv:1706.06083.
46. Athalye, A.; Carlini, N.; Wagner, D. Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial

examples. In Proceedings of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018;
pp. 274–283.

47. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J. Survey of intrusion detection systems: Techniques, datasets and challenges.
Cybersecurity 2019, 2, 20. [CrossRef]

48. Hossin, M.; Sulaiman, M.N. A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag.
Process 2015, 5, 1.

49. Guesmi, A.; Khasawneh, K.N.; Abu-Ghazaleh, N.; Alouani, I. Room: Adversarial machine learning attacks under real-time
constraints. In Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022;
IEEE: Piscataway, NJ, USA, 2022; pp. 1–10.

50. Khettaf, D.; Bouzar-Benlabiod, L. Defending The Defender: Detecting Adversarial Examples For Network Intrusion Detection
Systems. Comput. Sci. Math. 2022; preprint. [CrossRef]

51. Salman, O.; Elhajj, I.H.; Kayssi, A.; Chehab, A. A review on machine learning–based approaches for Internet traffic classification.
Ann. Telecommun. 2020, 75, 673–710. [CrossRef]

52. Rai, K.; Devi, M.S.; Guleria, A. Decision tree based algorithm for intrusion detection. Int. J. Adv. Netw. Appl. 2016, 7, 2828.
53. Alexandropoulos, S.-A.N.; Aridas, C.K.; Kotsiantis, S.B.; Vrahatis, M.N. Stacking strong ensembles of classifiers. In Proceedings of

the Artificial Intelligence Applications and Innovations: 15th IFIP WG 12.5 International Conference, AIAI 2019, Hersonissos,
Greece, 24–26 May 2019; Proceedings 15. Springer: Berlin/Heidelberg, Germany, 2019; pp. 545–556.

54. Alotaibi, Y.; Ilyas, M. Ensemble-Learning Framework for Intrusion Detection to Enhance Internet of Things’ Devices Security.
Sensors 2023, 23, 5568. [CrossRef] [PubMed]

https://doi.org/10.1109/ACCESS.2021.3120626
https://doi.org/10.1109/ACCESS.2020.3022862
https://doi.org/10.3390/electronics10161955
https://doi.org/10.1016/j.future.2019.05.041
https://doi.org/10.1109/JIOT.2020.3048038
https://doi.org/10.3390/electronics10151798
https://doi.org/10.1016/j.dcan.2017.10.002
https://doi.org/10.1155/2022/1668676
https://www.ncbi.nlm.nih.gov/pubmed/35634069
https://doi.org/10.1609/aaai.v35i12.17237
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.20944/preprints202212.0409.v1
https://doi.org/10.1007/s12243-020-00770-7
https://doi.org/10.3390/s23125568
https://www.ncbi.nlm.nih.gov/pubmed/37420734


Sensors 2024, 24, 2626 24 of 24

55. Devine, S.M.; Bastian, N.D. An Adversarial Training Based Machine Learning Approach to Malware Classification under
Adversarial Conditions. In Proceedings of the 54th Hawaii International Conference on System Sciences, Kauai, HI, USA,
5 January 2021; pp. 1–10.

56. Kurakin, A.; Goodfellow, I.; Bengio, S. Adversarial machine learning at scale. arXiv 2016, arXiv:1611.01236.
57. Thantharate, P.; Anurag, T. CYBRIA-Pioneering Federated Learning for Privacy-Aware Cybersecurity with Brilliance. In

Proceedings of the 2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life Using AI, Robotics
and IoT (HONET), Boca Raton, FL, USA, 4–6 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 56–61.

58. Dhasaratha, C.; Hasan, M.K.; Islam, S.; Khapre, S.; Abdullah, S.; Ghazal, T.M.; Alzahrani, A.I.; Alalwan, N.; Vo, N.; Akhtaruzza-
man, M. Data privacy model using blockchain reinforcement federated learning approach for scalable internet of medical things.
CAAI Trans. Intell. Technol. 2024. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1049/cit2.12287

	Introduction 
	Background and Related Work 
	ML-Based Intrusion Detection Systems for IoT Networks 
	AML Attacks and Defense for IoT-Based IDSs 
	AML-Based Frameworks 
	Poisitioning the Paper 

	A Proposed Robust Ensemble Adversarial Machine Learning Framework for Securing IoT Traffic 
	Framework Overview 
	Model Selection and Training for IoT-Based IDSs 
	Adversarial Example (AE) Generation 
	Defenses against Adversarial Attacks 

	Experiments 
	Datasets and Evaluation Metrics 
	Classification Performance 
	Adversarial Attacks Performance against IDS Models 
	Adversarial Defense Performance for Robustifying IDS Models 

	Conclusions 
	References

