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Abstract: Healthcare professionals are known to suffer from workplace stress and burnout, which
can negatively affect their empathy for patients and quality of care. While existing research has
identified factors associated with wellbeing and empathy in healthcare professionals, these efforts
are typically focused on the group level, ignoring potentially important individual differences and
implications for individualized intervention approaches. In the current study, we implemented N-of-1
personalized machine learning (PML) to predict wellbeing and empathy in healthcare professionals at
the individual level, leveraging ecological momentary assessments (EMAs) and smartwatch wearable
data. A total of 47 mood and lifestyle feature variables (relating to sleep, diet, exercise, and social
connections) were collected daily for up to three months followed by applying eight supervised
machine learning (ML) models in a PML pipeline to predict wellbeing and empathy separately.
Predictive insight into the model architecture was obtained using Shapley statistics for each of the
best-fit personalized models, ranking the importance of each feature for each participant. The best-fit
model and top features varied across participants, with anxious mood (13/19) and depressed mood
(10/19) being the top predictors in most models. Social connection was a top predictor for wellbeing
in 9/12 participants but not for empathy models (1/7). Additionally, empathy and wellbeing were the
top predictors of each other in 64% of cases. These findings highlight shared and individual features
of wellbeing and empathy in healthcare professionals and suggest that a one-size-fits-all approach to
addressing modifiable factors to improve wellbeing and empathy will likely be suboptimal. In the
future, such personalized models may serve as actionable insights for healthcare professionals that
lead to increased wellness and quality of patient care.

Keywords: machine learning; healthcare professionals; empathy; wellbeing; N-of-1 model; EMA

1. Introduction

Due to the demanding nature of their work, healthcare professionals often carry
a significant psychological load. Burnout, typically characterized as emotional fatigue,
depersonalization, and a diminished sense of personal achievement, is prevalent among
healthcare professionals, particularly physicians. One in three physicians report burnout [1]
and physicians express higher levels of dissatisfaction with work–life balance compared
to other workers in the U.S. [2], which results in decreased patient satisfaction and an
increase in medical errors [3,4]. Further, burnout is consistently associated with decreased
empathy and has a direct negative correlation with the amount of compassion felt for
others [5,6]. The wellness of healthcare workers has been further strained by the COVID-19
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pandemic, with consistent reports of heightened stress, anxiety, and depression compared
to pre-pandemic levels [7]. As such, it is important to mitigate burnout, improve wellness
in healthcare workers, and identify ways to increase empathy towards patients, leading to
better patient care [8–11].

From the perspective of the healthcare worker, there are uncontrollable and modifiable
factors that contribute to burnout and decreased wellness. Uncontrollable factors include
socioeconomic status, long work hours, delayed gratification, and the difficulty of their jobs,
which all subsequently affect their work–life balance [12,13]. Modifiable factors related to
burnout and wellbeing include social support, diet, sleep, and exercise, along with mental
health conditions like depression and anxiety [14,15]. Given the strong relations between
lifestyle attributes, burnout, and empathy, it could prove useful to build models exploring
these interactions and better understand underlying mechanisms.

Various intervention approaches have been examined in an attempt to improve wellbe-
ing and empathy in medical professionals; a 2021 review focused on investigating burnout
and respective treatment plans in palliative care found 10 studies with various intervention
plans including programs that span spiritual practices/meditation, mindfulness, communi-
cations skills, art therapy, educational, and physical activity [16]. Of these 10 studies, only
6 of them were successful in reducing various aspects of burnout post-study. However,
there was no follow-up to measure if the treatment plans had a sustained effect. A similar
review on improving empathy through training found 19 studies that were able to signifi-
cantly improve levels of empathy in healthcare workers [17]. The training used focused
on education, communication skills, perspective-taking, psychotherapy, direct empathy
skills, arts and humanities, mindfulness, and gaming intervention. Over half of the studies
also provided follow-up surveys at 12 weeks and found a smaller significant effect size.
Some studies have provided more vigorous interventions in an attempt to combat burnout.
For example, in a 2021 study, 76 physicians participated in an 8-week active mindfulness
training program tailored to physicians followed by a 4-month maintenance phase that
consisted of three monthly booster sessions [18]. A significant decrease in burnout at the
end of the study period was found compared to a control group at the end of the main-
tenance phase; however, at the 12-month follow-up, there was no significant decrease in
observed burnout.

Notably, these previous studies have focused on assessing and intervening at the
group level, which is important for examining population trends and the average impact of
the intervention. However, it is important to recognize that what triggers and maintains
burnout likely varies at the individual level. For example, whereas inadequate social
support may be most related to poor wellbeing in one individual, for another individual
with strong social support, poor wellbeing may be most related to anxious mood or poor
sleep. Individuals may also be less receptive to an intervention if that program does
not apply to their unique life circumstances. For these reasons, personalized plans can
inform the most effective avenues for intervention in each individual. Further, group-level
interventions may also fall short because they are more challenging to sustain following
the intervention, as seen in one study where burnout levels returned during the follow-up
period [18]. Finding intervention plans based on a person’s attributes, however, can be
much easier to sustain and yield higher satisfaction as seen in studies that have used
personalized technologies in diverse cases of diabetes and hypertension management,
amblyopic eye vision, and text communication for hospital patients [19–22].

In the current study, we aim to identify personalized models of wellbeing and empathy
in healthcare professionals using mood and lifestyle data attributes collected via ecological
momentary assessments (EMAs) and passive data collected from wearables over a 30-day
study period. Theoretically, wellbeing goes beyond the absence of distress/burnout and
includes feelings of thriving [23,24]. Especially for healthcare professionals, high personal
wellbeing makes them more attentive to their patients’ experience and, thereby, may en-
hance empathy towards their patients [25]. For prediction, we focus on mood and lifestyle
variables that have been previously associated with burnout, wellbeing, and/or empathy,
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including depression, anxiety, mindfulness, diet, sleep, exercise, social relationships, and
gratitude [14,18,26–31]. This idiographic personalized modeling approach has been previ-
ously validated, examining individualized models of depressed mood [32]. This approach
is user-friendly, readily available, and enables the gathering of real-world data, potentially
offering more comprehensive and precise insight into factors most closely associated with
individual wellbeing and empathy. Personalized modeling may play an important role
in pinpointing elements that enhance or diminish wellbeing and empathy, which can in
turn guide preventive measures as well as individualized intervention strategies, with
the ultimate goal of boosting wellness in healthcare professionals. We hypothesize that
this data-driven approach will be able to firstly provide accurate predictive models for
wellbeing and empathy in physicians and show diversity in top predictors across models
highlighting the need for personalized treatment plans.

2. Materials and Methods
2.1. Participants

A total of 12 healthcare professionals participated in the study (mean age: 28 ± 3.1,
range: 24–35 years, 4 males). Participants were recruited from the UCSD School of Medicine
using email and campus flyers. All participants were fluent in English and healthy adults,
i.e., did not have any current medical diagnosis nor were taking any current psychotropic
medications. All participants gave written informed consent in accordance with the Dec-
laration of Helsinki before participating in the study. All experimental procedures were
approved by the Institutional Review Board of the University of California San Diego
(UCSD) (protocol #180140). Data collection took place during Spring 2021–Fall 2022.

2.2. Study Procedure

On day 1, participants downloaded the Unity-based BrainE application on their
iOS/Android smartphone [33]. Within the BrainE app, participants accessed daily EMAs
on a module called MindLog, on which they provided mood and lifestyle ratings once per
day for the duration of the study (a total of 60 sessions, up to 3 months). The app sent
regular notifications daily to all participants following the methodology of recent research
on longitudinal mood monitoring [32,34]. Participants also received a Samsung Galaxy
wristwatch on day 1 that they wore throughout the study, except while charging the watch
for a few hours once every 2–3 days.

2.3. Wellbeing and Empathy Ratings

Using EMA, participants rated their personal wellbeing and their empathy towards
patients on a 14-point Likert scale shown as a red-to-green color gradient. For wellbeing,
participants responded to “How is your present mental wellbeing?” with the “Thriving”
label anchored to the score of 14 shown in green, and the “Burned-out” label anchored to
the score of 1. The use of a Likert scale for the responses in the study was chosen because
we did not want to burden the user with lengthy symptom surveys at each session for up to
60 sessions. Also, Likert scales have been standardly applied for longitudinal EMA-based
mood/behavior monitoring in past research [34–39].

For empathy, participants responded to “How much tender concern do you feel for
your patients today?” shown as a red-to-green color gradient with the “Full Concern” label
anchored to the score of 14 shown in green and the “None” label anchored to the score of 1
shown in red.

Wellbeing and empathy were the main dependent variables that we were interested
in predicting. Out of the total 12 participants, all completed the wellbeing EMA and
7 completed the empathy EMA, as the others were healthcare staff who did not have direct
daily interactions with patients.
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2.4. Mood Ratings

Participants also rated depression and anxiety on 14-point Likert scales shown as
green-to-red color gradient scales. For depression, participants responded to “How happy
vs. sad/ depressed do you feel right now?” with the “Happy” label anchor next to the
score of 1 and the “Sad or Depressed” label anchor next to the score of 14. For anxiety,
participants responded to “How relaxed vs. anxious do you feel right now?” with the
“Relaxed” label anchor next to the score of 1 and the “Anxious” label anchor next to the
score of 14. Gratitude was also rated, on a 1–7 Likert scale with the prompt being “Take a
moment to indicate how grateful you are feeling.”; participants were given 7 icons graded
from rainy weather to sunny weather to choose from.

2.5. Interoceptive Attention to Breathing Assessment

At each EMA, participants completed a rapid 30 s assessment, Breathe, in which they
were requested to tap the mobile screen after each full breath (inhale plus exhale). Recent re-
search shows that such objective monitoring can serve as a basic assay of breath-focused at-
tention related to mindfulness and inversely related to the internally distracted/ruminative
state of the individual, which is exacerbated in depression [40–42]. Mean breathing time
and consistency data were extracted on this assessment at each EMA.

2.6. Diet Reporting

At each EMA, participants reported their recent consumption of sugars, fats, and
caffeine over the last 24 h. To improve compliance, we opted for a simplified version of
diet reporting instead of more objective methodologies which can be burdensome [43,44].
Specifically, within the context of depression, the excessive consumption of processed fats
and sugars has been related to the severity of symptoms, and intervention to change such
diet patterns has shown success [45–48]. Hence, based on a standard assessment of dietary
fats and sugars, we asked the following questions once per day, completed on a 0–12-item
scale [49].

Fats: How many of these items have you had in the last 24 h? Red meat burger/
sandwich; sausage/salami/bacon; whole egg; white bread; pizza; cheese; French fries;
chips; butter popcorn; whole milk/milkshake; and fast-food take-out.

Sugars: How many of these items have you had in the last 24 h? Cake/cookies; ice
cream; chocolate; candy; pancakes/French toast; jam/honey; soda; juice or other sweetened
beverage; and cereal with added sugar.

Caffeine: How many servings of caffeine (coffee/tea/energy drink) have you had in
the last 24 h?

Participants also rated their satisfaction with their overall diet on a 1–5-star system.

2.7. Sleep Reporting

For each daily EMA, participants reported their sleep habits of the night before,
including sleep time, wake-up time, sleep duration, a percentage estimate of the time in
bed spent asleep, and a 1–5-star rating on sleep satisfaction.

2.8. Exercise Reporting

For each daily EMA, participants reported the amount of exercise (in hours and
minutes) they engaged in in the past 24 h in the following three categories:

a. Strenuous exercise (e.g., running, vigorous sports, or bicycling)
b. Moderate exercise (e.g., fast walking, easy bicycling, swimming, or dancing)
c. Mild exercise (e.g., yoga or easy walking)

Participants also rated their satisfaction with their exercise on a 1–5-star system.

2.9. Social Connection Reporting

At each EMA, participants reported their overall social connection in the past 24 h.
Questions include the following:
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a. How many people close to you did you talk to? 1–10+
b. How much total time did you spend chatting? In hours and minutes.
c. How long were you engaged in an organized group activity in-person or online

(support/sports/exercise/hobby/professional group)? In hours and minutes.
d. How long were you engaged in volunteer work for any organization in-person or

online (religious, charitable, political, health-related)? In hours and minutes.

Participants also rated their satisfaction with their social connection on a 1–5-star
system.

2.10. Active Reflection

Participants also participated in a brief active reflection task where they were prompted
with one of 10 unique questions based on the literature on positive psychology and grati-
tude [50]. The question prompts were refreshed every 6 days. (1) Who or what made you
smile? (2) Who or what are you thankful for? (3) Note a moment you enjoyed. (4) Note
an act of kindness you did or observed. (5) Note a moment you found inspiring. (6) Who
or what keeps you going? (7) Note a moment worth celebrating! (8) Everyone has per-
sonal strengths. Recognize one of yours. (9) Think of a challenge you faced, small or big,
and what you learned from it. (10) Dedicate a note of appreciation to yourself or your
loved one(s).

The total time spent on the module and the amount of time they spent typing out a
response were recorded.

2.11. Screentime Reporting

At each EMA, participants reported their current and past day screentime as well as
how much of that time was spent for social purposes (social media, messaging friends, etc.)
in hours and minutes. They also rated their screentime satisfaction on a 1–5-star system.

2.12. Smartwatch Data

From the Samsung Galaxy smartwatch, we extracted features corresponding to (1) heart
rate; (2) step count and exercise including speed, calories burned, distance, and duration.
For all features, start and end times were extracted.

2.13. Machine Learning (ML) Models Training and Evaluation Strategy

The general pipeline architecture has been previously validated in our published
research and modified for this study [32]. Key components are standard across ML analysis
and include data ingesting and feature extraction, data preprocessing, and ML model
training and evaluation. Notably, the present study adds an additional ML model and new
feature sets that were not explored in the previous study, and it targets different outcomes.

2.14. Data Ingestion and Feature Extraction

The data from all the sources were carefully aligned, keeping in mind the different
sampling rates of variables (seconds for smartwatch data up to days for EMA data). All
independent data variables were either aggregated or extrapolated based on their sampling
frequencies to match the sampling frequency of the dependent variable (DV), i.e., wellbeing
and empathy EMA ratings as the reference standards. The following features were, thereby,
extracted from the EMA and smartwatch data:

EMA Data

1. Time of the day when a particular DV was taken: (6:00, 10:00), (10:00, 14:00), (14:00,
18:00), (18:00, 23:59).

2. Anxiety, depression, and gratitude ratings were completed at each time point when a
DV rating was obtained.

3. Attention to mean breathing time and consistency at each EMA when a DV rating
was obtained.
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4. Total amount of fats, sugars, caffeine, and diet satisfaction in the last 24 h of each
DV rating.

5. Sleep time, wake-up time, sleep duration, percent estimate of time in bed spent asleep,
and 1–5-star rating on sleep satisfaction in the past 24 h period prior to the DV rating.

6. Exercise duration for each intensity type and total satisfaction in the 24 h period prior
to the DV rating.

7. Number of people and total time spent chatting, total time in an organized group, total
time spent volunteering, and total satisfaction in the 24 h period prior to DV rating.

8. Amount of time the response section of the active reflection module was open and
actively used at each EMA session.

Smartwatch data

9. Heart rate was measured as the mean value from a window of ±30 min around the
time of each DV rating.

10. Cumulative step features were taken as the mean values from the past 12 h of each
DV rating for each step feature separately.

11. Cumulative exercise features were taken as the mean values from the past 24 h of each
DV rating calculated for each feature separately.

The features that participants had no responses for throughout the entire study were
considered missing and dropped for that participant. These features were calculated and
stored separately for each subject for a max of 47 features possible per participant. The
data were also inspected using both automated and manual approaches for unusable
and missing variables, as well as variables with zero variance that were dropped for that
participant. We did not implement any additional feature selection such as PCA which
would dissociate variables from their physical attributes to preserve model interpretability.
Variables that are based on logging time spent on the BrainE app (attention to breathing
and active reflection) are more prone to outliers by leaving the app running or distracted
use artificially inflating the time spent on each module. For these, outlier removal was
performed by setting 3 median absolute deviation (MAD) criteria.

The manual inspection of the raw data was only used to validate the metadata such as
file names, variable names, and data format differences that occur from different mobile
operating systems and smartwatch versions.

2.15. Data Preprocessing for ML Models

All data processing and ML modeling was conducted in python3 using various li-
braries including numpy, pandas, sklearn, seaborn, matplotlib, scipy, smogn, and timeshap.
After the preliminary cleaning mentioned above, the missing data were filled with a
regression-based iterative imputation from the sklearn library. For personalized models,
removing missing data can create unaccountable bias and lead to low accuracy on test
data [51]. This imputation did not change the overall distribution of the dataset, and on
average, only 5% of the missing data was imputed across all subjects with a min and max
of 0.6% and 7.5%. The data were then scaled using standard scalers also using sklearn.

The preprocessing steps were also wrapped in a “pipeline object”. The key advantage
this provides is ensuring the preprocessing statistics are only derived from the training
set and transforming the testing set with these statistics. This avoids any potential data
leakage into the testing set during the cross-validation stages and improves computational
efficiency.

2.16. ML Pipeline

To ensure accurate models, we employ standard best practices for ML analysis includ-
ing nested cross-validation, hyperparameter tuning, and model selection and evaluation.
This was performed for each model independently. Since subjects have different compliance
rates, the number of datapoints will not be consistent for each model. On average, 55 ± 7 of
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60 total MindLog EMAs were completed per participant with a range of 42–60 EMA sessions
across participants.

2.17. Data Augmentation and Edge Cases

Initial models were built for each participant using the data available. For the par-
ticipants with less than 45 datapoints and poor performance, a synthetic minority over-
sampling technique for regression with Gaussian noise (SMOGN) was applied, and a new
model was created [52]. If a model only predicts a constant value and has one dominant
feature, that feature is removed, and the model is re-run. This was performed so the vari-
ability in the output variable could be better represented by all available features instead of
one dominant feature. Two participants (P-7 empathy and P-28 wellbeing) had constant
predictions on the first run; however, only P-7 had one dominant Shapley feature, so it
was re-run.

2.18. Cross Validation

With a limited amount of data per subject, and wanting to limit model overfitting, we
opted for a nested CV approach instead of a single CV scheme with the only downside
being increased computation cost and time [53]. Here, we specifically used a repeated
fourfold CV scheme with ten repeats as the inner CV strategy and a simple fourfold CV
scheme as the outer CV strategy for the overall nested CV scheme. The predicted data were
generated from the single left-out fold from the fourfold CV to ensure no data leakage.
More details on the nested CV algorithm can be found in prior validations of this ML
pipeline [32].

We modeled individual wellbeing and empathy mood ratings separately using the
various modalities of data, i.e., MindLog EMA data and smartwatch lifestyle data employ-
ing supervised ML regression models with hyperparameter tuning and trained over the
nested CV scheme. Figure 1 shows the main steps of the pipeline; the pipeline compared
multiple ML strategies for each subject including random forest, gradient boost, adap-
tive (Ada) boost, elastic net, support vector, Poisson regressor, and a Long Short-Term
Memory (LSTM) model. The voting regressor that employs the best model from all the
other strategies besides LSTM was also used. LSTM was not included since this model
architecture differed from others relying on using past samples while the other regressors
operated on individual discrete time points. Details on each ML can be found in our prior
publication [32]. After hyperparameter tuning and training over all these ML models, the
results were evaluated for each model, and each subject over the regression metrics of
mean absolute percentage error (MAPE) and mean absolute error (MAE). We used MAPE
as the performance metric to choose the best model (with the lowest error) for each ML
strategy [32,54]. MAPE is calculated using the following formula:

MAPE =
1
n

n

∑
k=1

∣∣∣∣Pk − Ak
Ak

∣∣∣∣× 100 (1)

where Pk is the predicted value of the kth datapoint, Ak is the actual value of the kth
datapoint, and n is the total number of datapoints.

We compared the outcome of the best-performing models from each strategy and
calculated the overall best model with the least overall MAPE; we chose this model to
represent each participant (see Supplementary Table S1 for wellbeing models and Sup-
plementary Table S2 for empathy models). Thus, each study participant has up to two
personalized models predicting their wellbeing and empathy.
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Figure 1. Personalized machine learning pipeline flowchart adapted from [32]. This pipeline is run
for each subject with a target variable set to wellbeing and empathy.

2.19. Personalized ML Feature Importance

We also apply SHapley Additive exPlanations (SHAP) to each of the best fit models for
model interpretability [32,55,56] These SHAP values indicate the relative importance and
directionality of each feature as it predicts the outcome variable, allowing us to better under-
stand the model architecture, i.e., how the model is making the outcome predictions. The
result will reveal the specific lifestyle attributes that are most impactful for each individual.
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3. Results

A total of 12 ML models were created separately for each participant, predicting
their wellbeing scores, and 7 ML models were also created, separately targeting empathy
scores for participants that have direct patient contact. There was a total of 47 possible
variables for each subject across the EMA and smartwatch data. After removing missing
variables and variables with zero variance, participants had an average of 33 ± 3.3 variables
(range: 27–37). Supplementary Tables S1 and S2 show the number of independent variables,
number of sessions, and the mean ± std MAPE of each type of model in the pipeline; the
best fit of all models is also indicated for each individual in the table. The average MAPE
of the individual best-fit models across all participants for wellbeing and empathy were
24.3 ± 12% and 13.6 ± 4%, respectively. This corresponds to a Mean Absolute Error (MAE)
of 1.5 ± 1.6 and 1.2 ± 1.15, respectively, on the 14-point Likert scale.

Figure 2 shows the best model for each subject by MAPE, the distribution, and the
heatmap of predicted vs. actual scores across all participants for wellbeing and empathy.
Supplementary Figures S1 and S2 show individual predictions and histograms for wellbeing
and empathy.
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Figure 2. Results from wellbeing and empathy models. (A,B). Mean absolute percentage error
(MAPE) of wellbeing and empathy models, respectively. Mean and std are shown from nested
cross-validation for each subject and the average across all participants. The dashed line at 0.2 as a
threshold for good MAPE [57]. (C,D). Combined histogram of all predicted values for wellbeing and
empathy across all participants. Blue and red represents actual and predicted values respectively.
(E,F). Heatmap of actual vs. predicted values for wellbeing and empathy.
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Figure 3 shows Spearman’s correlation between predicted and actual values for each
subject for wellbeing and empathy. The columns with only wellbeing indicate subjects who
did not have direct patient interactions to report empathy, and hence, only their wellbeing
model was built. P-28 is missing the wellbeing datapoint due to the model generating a
constant prediction possibly due to limited variance in the original input data. The overall
Spearman’s rho for all participants were r(706) = 0.81, p < 1 × 10−50 and r(426) = 0.66,
p < 1 × 10−50 for wellbeing and empathy, respectively.
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Figure 3. Spearman rank correlation coefficients with 95% confidence interval bounds for predicted
vs. actual wellbeing and empathy scores. Composite Spearman’s rho was also calculated using
all subject’s data indicated by the “overall” marker. In total, 10/11 and 4/7 participants showed
significant correlations between predicted and actual data for wellbeing and empathy, respectively.

Figures 4 and 5 show the time-course predictions of wellbeing and empathy models as
well as an overlayed histogram of predicted and actual values from all the time points. We
observed that most of the histograms showed high overlap and actual vs. predicted values
showed high correlation across time (Spearman’s values summarized in Figure 3 above).

To gain more insight into the model architecture, we computed Shapley statistics for
each feature using the best ML model for each subject. Figure 4 shows the wellbeing and
empathy model Shapley plots for participants with both dependent variables. Supplemen-
tary Figure S3 shows the remaining Shapley plots for participants with only the wellbeing
variable. Feature rank importance and individual Shapley values are both shown.

Out of the seven participants who had both wellbeing and empathy models (Figure 4),
four of them had empathy as a top predictor (i.e., among the top five) for their wellbeing
model, and five had wellbeing as a top predictor (i.e., among the top five) in their empathy
model. When looking at other common top predictors, 8/12 participants had depressed
mood as a top predictor in their wellbeing model while only 2/7 participants had depressed
mood as a top predictor in their empathy model. Anxiety was a top predictor for 8/12
and 5/7 wellbeing and empathy models, respectively. Features related to social connection
were found in 9/12 wellbeing models but only 1/7 empathy models. Sleep attributes were
seen in 4/12 wellbeing and 3/7 empathy models, exercise attributes in 2/12 wellbeing and
3/7 empathy models, diet attributes in 6/12 wellbeing and 1/7 empathy models, attention
to breath in 2/12 wellbeing and 2/7 empathy models, and gratitude in 3/12 wellbeing and
1/7 empathy models, respectively. A visual representation of the percentages can be seen
in Figure 5.
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Figure 4. SHapley Additive Explainer (SHAP) plots across participants comparing wellbeing and
empathy models. Rank feature importance and feature effects are shown. P28’s wellbeing slide shows
timeshap [58] rank feature importance for their LSTM best-fit model. Individual effects of each feature
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on the dependent variable of wellbeing/empathy are depicted using the colored points to the right of
the bar graph from low (blue) to high (pink) feature values relative to the outcome plotted on the
x-axis (from low to high wellbeing/empathy going from left to right). For example, the P-6 Empathy
Shapley plot shows that their top-ranking predictors of empathy are mild exercise over the past day
followed by sleep satisfaction; since the color dots for mild exercise progress from pink to blue from
left to right, lesser mild exercise supports greater patient empathy in this case but for sleep, greater
sleep satisfaction (color dots progressing from blue to pink) supports greater patient empathy.
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Figure 5. Percentages of models with specific mood and domain variables as top predictors, depres-
sion, anxiety, social connection, sleep, diet, breath attention, and gratitude. The first row, Empathy–
Wellbeing, indicates percentages of wellbeing models with empathy as a top predictor and percentages
of empathy models with wellbeing as a top predictor. Wellbeing model percentages are out of 12 total
models except for the empathy variable which is out of 7. Empathy models are out of 7.

4. Discussion

Understanding factors that predict wellness and empathy at the individual level in
healthcare professionals has significant implications for optimizing patient care while
reducing burnout and supporting the wellbeing of the provider. In this study, we present
a systematic PML pipeline that provided accurate predictions (average MAPE~10–20%
across all best-fit models) of mental wellbeing and empathy towards patients based on
mood and personal lifestyle data collected from smartphones and wearables. Notably, we
were able to pinpoint the exact lifestyle attributes, such as sleep, exercise, diet, or social
connection, that were most impactful for each individual. Notably, these features can
be uniquely intervened on for each participant informing individual-adaptable wellness
strategies tailored to each person’s lifestyle.

When examining the empathy and wellbeing models from the 7 participants who had
both of these outcome reports, empathy and wellbeing were revealed as top predictors
for each other in 9 of 14 (7 × 2) models, indicating a link between the two constructs.
Additionally, it was always the case that higher wellbeing biased the model to predict
higher empathy ratings and vice versa for empathy predicting wellbeing. In fact, the
relationship between wellbeing and empathy in physicians is well studied and more
nuanced than just establishing a link between them. One model of burnout suggests
that higher empathy may help prevent burnout [59]. Although wellbeing and empathy
are important predictors of each other, we found little overlap otherwise in the lifestyle
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variables. This is especially interesting since it may suggest that although wellbeing and
empathy influence each other, they each have separate driving mechanisms.

Depressed mood was a top predictor of wellbeing in 8 of 12 participants, which aligns
with the current understanding of the link between depression and wellbeing/burnout [14,60].
However, depression was only a top predictor of empathy in two of seven participants.
There is less consensus on the link between depression and empathy. For example, among
medical students, studies have found that depression was negatively associated with
empathy [61,62], whereas another study found that depression was positively associated
with empathic concern [63]. Anxiety, on the other hand, occurs at the same frequency
for both wellbeing (8 out of 12) and empathy (5 out of 7) models. It has also been well
documented that anxiety has a direct link to both wellbeing and feelings of empathy [26,64].
Despite the good characterization of anxiety and empathy, it is worth noting that one subject
(P16) seemed to show an inverted relationship between anxiety and empathy; as seen in
their Shapley plots (Figure 4), higher levels of anxiety were associated with greater patient
empathy, which may not have been considered a possibility when looking at group-level
analysis, though studies in nurses do suggest that greater anxiety can relate to greater
personal warmth [65] and that in general, there is a positive relationship between social
anxiety and affective empathy [66,67].

When considering lifestyle factors (sleep, diet, exercise, social connection), there was
large variability among participants, with some overall trends between the wellbeing and
empathy models. One notable observation is that variables relating to social connection
were highly represented in wellbeing models, showing up in 9 of 12 participants compared
to the empathy model where only 1 of 7 participants had a social connection variable as a
top predictor. The significant role of social life in predicting physician wellbeing suggests
that personal social life does impact their overall health, possibly by providing a necessary
outlet for stress and contributing to a balanced work–life dynamic. Interestingly, the lack of
overlap between social life and empathy could reflect the professional training physicians
receive, which often emphasizes the development of empathy as a clinical skill, indepen-
dent of personal life [59]. Furthermore, the interplay between social life and workplace
environment warrants further investigation. A supportive workplace environment could
foster social interactions and provide opportunities for physicians to decompress, thereby
enhancing overall wellbeing. Conversely, a high-pressure, unsupportive environment
could lead to burnout and reduced wellbeing. These findings underscore the complex rela-
tionship between personal and professional lives in healthcare settings, emphasizing the
need for a holistic approach in devising strategies for physician wellbeing and patient care.

Group analysis, while useful in many contexts, has its limitations when it comes
to individual healthcare [18,68]. Although there are general trends in our findings, the
specific predictive features drastically vary across participants, which has direct implica-
tions for intervention. For example, although social connection was a consistent predictor
of wellbeing, an intervention targeting this domain would likely be suboptimal for 3 of
the 12 participants based on the directionality of the relationship between the identified
top features and wellbeing. For example, increasing social connection attributes would
potentially result in P-16 seeing a reduction in wellbeing since their model shows reduced
chat time related to improved wellbeing.

Personalized treatments, tailored to an individual’s lifestyle, offer a variety of unique
advantages in healthcare. By considering lifestyle factors, these treatments can be seam-
lessly integrated into a person’s daily routine. Individuals may be generally more receptive
to modifications that align with their existing lifestyle, as opposed to an external program
that may feel disruptive or overwhelming [69]. This approach may not only ensure that the
treatment plan is realistic and achievable but it also increases the likelihood of adherence.
Furthermore, the ability to make incremental adjustments can lead to sustainable lifestyle
changes over time. Thus, personalized treatments represent a promising strategy in health-
care, fostering a patient-centered approach that respects individual lifestyle choices and
promotes long-term health and wellbeing.
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Overall, this PML research may offer an alternative to traditional approaches in man-
aging burnout and improving empathy by helping to inform individualized intervention
plans. Another notable strength of our approach is the scalability of both data collection and
treatment planning using mobile devices and wearables. Another significant advantage
of a personalized modeling approach is that it eliminates the need for one model that is
generalizable across participants and populations, which is likely an impossible task [70].
Adopting personalized models would bypass the main problem with ML in healthcare,
which is the question of generalizability across subjects.

There are also limitations to the current study. First, we tested the PML pipeline in a
relatively small sample of research participants. Second, the pipeline is also susceptible to
the quality of the data each participant provides. We also do see poor model performance
in participants such as a near-constant predictor for one subject, possibly stemming from
a lack of variability in the data collected. Further testing in a larger, more diverse cohort
is required to help validate our methodology. It is also worth noting that research has
indicated that interventions directed at healthcare workers are less effective compared to
systematic changes in their respective organizations [71–73]. However, there is still validity
in operating at the individual level because it is something that can be easily implemented.

Despite the limitations, this study offers a systematic and standardized way of iden-
tifying top features of wellbeing and empathy at the individual level among healthcare
professionals. We found a high degree of feature variability across participants. Future
research is needed to determine if tailored wellness and empathy interventions based on
individualized modeling offer advantages over traditional one-size-fits-all approaches.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s24082640/s1: Table S1: Individual wellbeing model performance; Table S2: Individual
empathy model performance; Figures S1 and S2: Individual predictions and histograms for wellbeing
and empathy, and Figure S3: SHapley Additive Explainer (SHAP) plots for subjects with only
wellbeing model.
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