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Abstract: A systematic study of the nonlinear response of Silicon Photomultipliers (SiPMs) was
conducted through Monte Carlo (MC) simulations. The MC code was validated against experimental
data for two different SiPMs. Nonlinearity mainly depends on the balance between the photon
rate and the pixel recovery time. Additionally, nonlinearity has been found to depend on the light
pulse shape, the correlated noise, the overvoltage dependence of the photon detection efficiency, and
the impedance of the readout circuit. Correlated noise has been shown to have a minor impact on
nonlinearity, but it can significantly affect the shape of the SiPM output current. Considering these
dependencies and a previous statistical analysis of the nonlinear response of SiPMs, two phenomeno-
logical fitting models were proposed for exponential-like and finite light pulses, explaining the roles
of their various terms and parameters. These models provide an accurate description of the nonlinear
responses of SiPMs at the level of a few percentages for a wide range of situations.

Keywords: silicon photomultipliers; SiPM; nonlinearity; Monte Carlo simulation; statistical model;
correlated noise

1. Introduction

Silicon photomultipliers (SiPMs) are solid-state photodetectors that offer excellent
characteristics, including high gain, fast timing properties, very good photon-counting
resolution, and high quantum efficiency [1]. Additionally, they are compact, relatively
affordable, operate at low voltage (a few tens of volts), and insensitive to magnetic fields.
Due to their numerous advantages over classical photomultiplier tubes (PMTs), SiPMs
are increasingly utilized in various fields, such as high-energy physics experiments [2,3],
medical imaging and dosimetry [4,5], biophotonics [6], light detection and ranging (LiDAR)
systems [7], and more.

A SiPM consists of an array of Geiger-mode avalanche photodiodes (G-APDs), here-
after called pixels, connected in parallel to a common readout (see Figure 1) so that the
SiPM output signal is the sum of the signals from all the pixels. The device is biased above
the breakdown voltage, with the difference between the bias voltage and the breakdown
voltage referred to as overvoltage. This configuration enables a single incident photon to
trigger a high-multiplication breakdown avalanche, resulting in a measurable signal. In
ideal conditions, when a light pulse illuminates a SiPM, the output charge should be di-
rectly proportional to the number of detected photons. However, SiPMs exhibit a nonlinear
response when the number of impinging photons is comparable to the number of pixels of
the device. Significant efforts are being carried out to extend the linear dynamic range of
SiPMs (see, e.g., [8,9]).

Nonlinearity in a SiPM depends on the time it takes for the overvoltage of a pixel to
recover after a breakdown avalanche. A fraction of photons may interact with unrecovered
pixels, which have a lower trigger probability and gain, resulting in a SiPM signal with
a lower amplitude than expected. The pixel overvoltage can also be reduced due to the
voltage drop across the readout-circuit resistance [10]. Therefore, nonlinearity depends on
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the photon rate (i.e., both the amplitude and width of the light pulse) and the recovery time
of pixels in a complex way. Additionally, SiPMs exhibit both correlated and uncorrelated
noise, further complicating their performance [11–13].

Figure 1. Schematic of a SiPM and its readout circuit.

Due to the complexity of the problem, an exact analytical treatment of the nonlinear
response of SiPMs is infeasible. Nevertheless, there exist several statistical models that rely on
various simplifications of the SiPM response [14–18]. In [14], a comprehensive statistical model
of the SiPM response to light pulses of arbitrary shape and duration was presented. This model
provides a simple expression for the mean output charge of a SiPM, which depends on only
two parameters that can be measured or fitted. However, due to the adopted approximations,
the applicability of this model is limited to situations where nonlinear effects and correlated
noise are moderate. Furthermore, the model cannot describe the statistical fluctuations of the
output charge or nonlinear effects on the signal shape.

A Monte Carlo (MC) treatment can potentially include all factors that affect the SiPM per-
formance, allowing a detailed simulation of the response of any SiPM by utilizing appropriate
input parameters. Various MC codes are available on different platforms [19–24]. The Matlab
MC code developed by Abhinav et al. [24] is especially complete, as it simulates the triggering
of breakdown avalanches from photons and noise on an individual pixel basis, including the
pixel recovering and the reduction in the pixel overvoltage due to the voltage drop across the
readout-circuit resistance. Therefore, this code is very suitable for simulating nonlinear effects.
Nevertheless, several relevant aspects of the SiPM performance are treated approximately,
particularly the description of the correlated noise and the trigger probability of recovering
pixels. On the other hand, the code uses a very detailed electrical model to simulate the
transient output response due to an avalanche, which requires a relatively large number of
input parameters, and some of them are usually not known with sufficient precision.

In this work, a hybrid strategy was followed. We used the MC code developed in [24]
to conduct a systematic analysis of the different factors affecting the nonlinear responses of
SiPMs, regarding both the output charge and the signal shape. To this end, we modified
this code to improve the description of the correlated noise and the trigger probability of
recovering pixels. In addition, we implemented new light pulse shapes and a simplified
electrical model to more easily identify the main parameters on which nonlinearity depends
and to understand their role. Secondly, based on a previous statistical model described
in [14], we found phenomenological analytical expressions that fit the simulation results
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of the mean output charge for light pulses of different shapes and arbitrary intensity over
a very wide range of SiPM parameters (e.g., overvoltage, correlated noise, and photon
detection efficiency). The proposed models provide a simple but accurate description
(at the level of a few percentages) of the SiPM response in the nonlinear region, clearly
showing the relationships among the many variables of the problem.

The rest of this paper is structured as follows. In Section 2, the SiPM performance and
its parameterization are described. In Section 3, the upgraded MC simulation validation
with experimental data is discussed, and the different factors affecting the nonlinearity are
identified and evaluated. In Section 4, we present our analytical models for nonlinearity,
discussing the meaning of their several terms and fitting parameters. The conclusions are
presented in Section 5.

2. Overview of the SiPM Response
2.1. Output Signal

Let us assume a SiPM biased at a certain voltage Vbias = Vbr + Uop, where Vbr is the
breakdown voltage, and Uop is the operation overvoltage. When the SiPM is in a steady
state, i.e., no signal is produced, all the pixels have the same overvoltage Uop. If a photon
interacts with a pixel, it can trigger a self-sustaining charge avalanche in the diode PN
junction. The charge avalanche rapidly grows, generating a current I across the pixel,
which comprises a quenching resistor Rq placed in series with the diode (see Figure 1). As
I increases, the voltage across Rq increases, while the voltage across the diode decreases.
When the diode overvoltage U reaches a value close to 0, the avalanche stops. The current
continues to flow until U is restored to Uop. The diode overvoltage as a function of the time
elapsed from the photon arrival is therefore given by

U(t) = Uop − I(t) Rq . (1)

The avalanche duration is sub-nanoseconds, while the recovery of the diode over-
voltage typically takes a few tens of nanoseconds. When assuming that the avalanche is
instantaneous and U drops to 0 at that moment, the current flowing through the pixel is

I(t) =
Uop

Rq
exp

(
− t

τrec

)
. (2)

The time constant τrec, called the recovery time, is approximately given by RqCd, where Cd
is the diode capacitance. Therefore, the mean total charge of an avalanche is

⟨Q1⟩ = CdUop . (3)

If ⟨Q1⟩ and Rq are known, then the recovery time can be obtained as

τrec =
Rq⟨Q1⟩

Uop
. (4)

The gain of the SiPM is defined as the avalanche multiplication

G =
⟨Q1⟩

e
, (5)

where e is the elementary charge. Its typical value is around 105 − 106. The gain is
customarily characterized as a function of Uop under single-photon conditions. If a photon
triggers an avalanche in a pixel with U < Uop, i.e., while it is recovering from a previous
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avalanche, U drops to 0, I rises to Uop/Rq again, and the pixel recovery restarts. Therefore,
the multiplication of the second avalanche is

G′ =
CdU

e
= G

U
Uop

. (6)

The output current of a SiPM is the sum of the currents of all the individual pixels, as
illustrated in Figure 2. When the SiPM is illuminated with light pulses, the signal is usually
integrated to measure the output charge Q for each pulse.

0
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Figure 2. Simulated current signals generated by three pixels of a SiPM and total output signal. The
origin of each avalanche (i.e., photon, crosstalk, or afterpulsing) is tagged in the simulation, although
avalanches are indistinguishable from each other. The effect of the pixel recovery in the avalanche
amplitude can be appreciated in the signals from pixels 1 and 2.

A detailed electrical model of a SiPM, such as the one described in [24], should include
the rise and decay times of the charge avalanche, the parasitic capacitance of the quenching
resistors, and their connections to the silicon substrate, as well as the input impedance
of the readout electronics. As a consequence, the shape of the transients is not a simple
exponential function, as assumed by Equation (2), but it can be modeled using multiple
exponential terms [25]. In principle, the output charge Q is independent of the shape of the
transients. However, in ref. [10,24] the input impedance Rs of the readout electronics (e.g.,
a shunt resistor placed in parallel with the pre-amplifier, as shown in Figure 1) was shown
to have an influence on nonlinearity in SiPMs with a large number of pixels (Npix ≳ 1000).
Notice that the voltage drop across Rs may be significant when Rs (typically ∼ 10 Ω) is not
negligible compared to the overall resistance due to the quenching resistors (Rq ∼ 100 kΩ)
of thousands of pixels in parallel.

2.2. Photon Detection Efficiency

The probability that an incident photon causes a charge avalanche is called photode-
tection efficiency (PDE), which can be approximately described as the product of the fill
factor, the quantum efficiency, and the avalanche trigger probability. The fill factor is the
ratio of the sensitive area of the SiPM (i.e., excluding the inactive regions between pixels)
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to its total area. The quantum efficiency is the probability that a photon incident in a
pixel creates an electron-hole pair inside the depleted volume around the PN junction,
which is a function of wavelength. The avalanche trigger probability is the probability
that free carriers generated in the depleted volume cause a successful charge avalanche.
This probability depends on Uop and the depth at which the photon is absorbed; hence, it
depends on wavelength.

In this work, we assumed the following expression for the PDE at a given wavelength:

ε(Uop) =

{
εmax

[
1 − exp

(
−Uop−U0

Uch

)]
if Uop > U0

0 if Uop ≤ U0 ,
(7)

which generally fits the experimental data of typical blue-sensitive SiPMs well (see, e.g., [26]).
In this equation, εmax is the saturation PDE value, Uch is a characteristic overvoltage value
that determines how fast the PDE grows with Uop, and U0 is a small overvoltage threshold
that has to be included to fit the PDE data for some SiPMs (e.g., U0 = 0.66 V at 405 nm
for the Hamamatsu S13360-1325CS SiPM [14]). More sophisticated models of the PDE
proposed in [27,28] may be used instead of Equation (7) to fit experimental data if needed,
especially for red- and NIR-sensitive SiPMs.

As with the gain, the PDE is characterized at low-light intensity conditions, at which
all the pixels can be assumed to be in a steady state. However, the trigger probability in a
recovering pixel with overvoltage U < Uop is smaller. We assumed that the trigger probability
varies with U in the same fashion as the PDE varies with Uop, as given by Equation (7). Notice
that the trigger probability is not proportional to U, unlike the avalanche multiplication in
Equation (6).

2.3. Parameterization of the Response

It is customary to characterize the SiPM response in terms of ⟨Q⟩/⟨Q1⟩ (i.e., the
effective number of full-charge avalanches), as a function of the number of avalanche seeds:

Nseed = ε(Uop)Nph , (8)

where ⟨Q⟩ is the mean output charge for light pulses with a given number of photons Nph.
Although an avalanche seed is just a mathematical construct, we can assume that

any photon can generate an avalanche seed with a fixed probability ε(Uop), regardless
of whether it interacts with a recovered pixel or an unrecovered pixel. Therefore, a seed
generated in a pixel with overvoltage U has a probability of triggering a charge avalanche:

Ptrig(U) =
ε(U)

ε(Uop)
. (9)

Ideally, ⟨Q⟩/⟨Q1⟩ = Nseed holds when all the seeds are generated in fully recov-
ered pixels and there is no noise, but ⟨Q⟩/⟨Q1⟩ < Nseed when nonlinearity is significant.
In addition, we define two new variables:

y =
⟨Q⟩

Npix⟨Q1⟩
, (10)

x =
Nseed
Npix

. (11)

Notice that both y and x are independent of Npix and G, allowing for comparisons of
the responses of different SiPMs or of the same device at different Uop values.

In the case of light pulses with a duration much shorter than τrec (i.e., no pixel recovery
between two consecutive avalanches in a pixel), assuming that photons are uniformly



Sensors 2024, 24, 2648 6 of 22

distributed among all the pixels of the SiPM and ignoring noise, the SiPM response is given
by the fraction of pixels that are fired, i.e., those with one or more seeds:

yfired = 1 − e−x . (12)

However, for light pulses with a duration comparable to τrec, the relationship between
y and x is much more complex, and y can be greater than the unity, because a pixel can be
triggered several times during the light pulse.

2.4. Noise Effects

SiPMs present both correlated and uncorrelated noise, which produce charge avalanches
that are indistinguishable from the ones produced by photons, making the SiPM response
even more complex. Uncorrelated noise is caused by thermally generated electron-hole pairs
inside the pixel-active region. In our approach, this can be modeled as a Poissonian generation
of seeds uniformly distributed among all the pixels. However, the uncorrelated noise rate
per pixel is typically below kHz, which is much smaller than 1/τrec. Therefore, this effect
generally has a negligible contribution to the nonlinear responses of SiPMs.

On the other hand, correlated noise is the stochastic production of secondary avalanches
induced by a primary avalanche. This effect scales with the signal amplitude and thus might be
relevant to nonlinearity. There are three components of correlated noise (see Figure 2). Prompt
crosstalk is the nearly simultaneous production of secondary avalanches in neighboring pixels
to the pixel where the primary avalanche took place, and it is due to the emission of infrared
photons in the primary avalanche (see [12] and references therein). Delayed crosstalk is caused
by charge carriers produced by infrared photons in the non-depleted region, which diffuse in
the silicon until they reach a neighboring pixel, triggering secondary avalanches with some
delay with respect to the primary avalanche [11]. Finally, afterpulsing is similar to delayed
crosstalk, but the secondary avalanches are produced in the same pixel where the primary
avalanche took place, usually while it is still recovering.

A full-charge avalanche is assumed to produce a random number of seeds of each
noise component i (ct, dct, or aft) following a Poisson distribution with a mean of λi
proportional to Uop, because the number of emitted infrared photons is proportional to the
avalanche multiplication. In the case that an avalanche is produced in a recovering pixel
with overvoltage U, the mean number of seeds of each noise component is

λ′
i = λi

U
Uop

, (13)

which is consistent with Equation (6). Avalanches due to correlated noise can produce
further seeds through correlated noise in a cascade process. Notice that the variables Nseed
and x are defined without including seeds due to correlated noise. However, correlated
noise does contribute to the output charge. Consequently, y may be greater than x when
correlated noise is significant and nonlinearity is low.

For both crosstalk components, the generated seeds are assumed to be uniformly dis-
tributed among the four closest neighbors of the primary pixel, which is an approximation
that generally reproduces the experimental data well, as shown in [11,12]. For prompt
crosstalk, the small delay of the generated seeds with respect to the primary avalanche can
be ignored. On the other hand, according to [11], the delay time distribution for afterpulsing
and delayed crosstalk is given by

dλi
dt

(t) =

{
Ci tai exp

(
− t

τbulk

)
if t > tmin

0 if t ≤ tmin ,
(14)
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where τbulk is the minority carrier lifetime in the silicon bulk, which may range from a few
ns to hundreds of ns, aaft = −1 for afterpulsing, adct = −0.5 for delayed crosstalk, Ci is a
normalization constant such that

λi =
∫ ∞

tmin

dλi
dt

(t)dt , (15)

and tmin is the minimum time delay between two avalanches that the readout circuit can
distinguish, which is typically around 5 ns. This time distribution assumes that afterpulsing
is mainly caused by charge carriers diffusing in the silicon bulk, as discussed in [11], but
afterpulsing can also be due to the trapping and subsequent release of charge carriers in
the depleted volume, resulting in a delay time distribution that can be generally modeled
as the sum of exponential functions (see [24] and references therein ).

A seed due to crosstalk or afterpulsing is assumed to be able to trigger an avalanche in
a recovering pixel with the probability of Equation (9), just as a seed due to a photon. Notice
that if the PDE is assumed to be proportional to Uop, the number of correlated avalanches
would grow quadratically with Uop, as is commonly assumed in the literature. Actually,
the overvoltage dependence of the trigger probability of seeds due to correlated noise will
differ from that of seeds due to photons, because of their different depth distributions,
resulting in distinct Uch and U0 values for each correlated noise component. Nevertheless,
this approximation should be sufficient if the correlated noise is not too high.

Correlated noise is usually characterized at single-photon conditions, measuring the
probability Pi that a primary avalanche produces one or more secondary avalanches of
each type. For both crosstalk components, this probability is related to λi by

Pi = 1 − e−λi . (16)

On the other hand, the trigger probability of an afterpulsing seed is a function of the
delay time, because the pixel is recovering from the primary avalanche. The afterpulsing
probability is related to λaft by

Paft = 1 − exp
[
−

∫ ∞

tmin

dλaft
dt

(t) Ptrig(U(t))dt
]

. (17)

Therefore, the normalization constant Caft and hence λaft can be obtained from the
measured Paft value.

3. Simulation Results

As mentioned above, in this work we used the MC code developed in [24], with the
following changes:

• The code was originally designed to simulate scintillation pulses, modeled as double
exponential pulses. We also implemented rectangular, triangular, and exponential
light pulses to study the effect of the pulse shape on the nonlinear responses of SiPMs.

• We provided a new option to utilize either the SiPM electrical model developed in [24]
or the simplified model described in Section 2.1.

• In the original code, the probability that a seed triggers an avalanche is modeled
as Ptrig(U) = U/Uop (default option) or using PDE data from an external file. We
modified the default option so that Ptrig(U) is modeled as in Equation (9), where
the overvoltage dependence of the PDE was assumed to be given by Equation (7).
Therefore, we introduced the new input parameters Uch and U0.

• In the original code, delayed crosstalk was not included, and both prompt crosstalk
and afterpulsing were treated in a simplified way. In particular, the mean number of
seeds λ′ produced by an avalanche in a recovery pixel was mistakenly assumed to
decrease quadratically with the avalanche multiplication, leading to a slight underes-
timation of the correlated noise when nonlinearity is significant. We addressed this
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error so that λ′ is given by Equation (13). We also improved some computational
details in the treatment of correlated noise.

• The time distribution of afterpulsing was modeled as a sum of exponential functions
in the original code. We provided a new option of using Equation (14) instead.

Our modified version of the code is available upon request.

3.1. Experimental Validation

In [24], simulation results were compared with experimental data from [18]. In their
setup, several isotopes that emit gamma-ray photons at ten different energies between
27.3 and 1836 keV were used. The gamma-ray photons were incident on two LaBr3:5%Ce
scintillators (light yield of 70 ph/keV and decay time of 16 ns) optically coupled to their
respective S10362-33-050C SiPMs from Hamamatsu Photonics K.K. [29] (pixel size of 50µm
and Npix = 3600). The signal from each SiPM was fed into an amplifier with a shunt
resistor (Rs = 15 Ω), and the resulting output charge was measured. The SiPM parameters
needed in the simulations, excluding the specific parameters for the electrical model, which
were estimated as described in [24], are summarized in Table 1. The recovery time τrec
can be estimated from Equation (4), resulting in 15.3 ± 1.0 and 12.8 ± 1.0 ns, respectively.
Notice that the decay time of the scintillators is similar to τrec. To account for the trigger
probability Ptrig in recovering pixels, Equation (9), the overvoltage dependence of the PDE
was taken from [30]. Measurements of crosstalk did not differentiate between prompt and
delayed crosstalk; consequently, the overall crosstalk was treated as prompt crosstalk in
the simulations. The delay time distribution of afterpulsing was described using a single
exponential function with time constant τaft. It should be highlighted that the conversion
factor from the number of emitted photons to the number of seeds Nseed (i.e., the product
of the photon collection efficiency and the SiPM PDE at the nominal overvoltage Uop) was
not measured directly, but it was estimated for each detector to match the simulated and
experimental data at 27.3 keV. The resulting range of Nseed is from 300 to 21000 (i.e., x
ranges from 0.1 to 5.8). Both experimental and simulation data extracted from Figure 7
of [24] are reproduced in Figure 3, where we express the results in terms of the variable
y as a function of the number of scintillation photons. The error bars of the experimental
data represent the systematic uncertainty due to the gain measurement. The simulation
results are almost identical for both detectors and are illustrated as a single dashed line.

Table 1. Input parameters used in [24] to simulate the experiment described in [18].

Detector Uop (V) G (105) Rq (kΩ) λct λaft τaft f ε

Detector 1 1.26 ± 0.05 8.3 ± 0.5 145.3 ± 0.5 0.140 ± 0.05 0.124 ± 0.05 25 ± 8 0.157

Detector 2 1.39 ± 0.05 7.9 ± 0.5 140.4 ± 0.5 0.132 ± 0.05 0.132 ± 0.05 26 ± 8 0.172

We simulated the experimental case described above using our modified version of
the MC code. Our results are depicted as continuous lines in Figure 3. We employed
the same input parameters as in [24], including those for the electrical model and the
conversion factors f ε. The treatment of the correlated noise in recovering pixels differed
in our simulations but was found to have a minor effect. Additionally, our simulations
vary in the trigger probability of recovering pixels, since we assumed that the overvoltage
dependence of the PDE follows Equation (7), where the parameters Uch = 1.08 V and
U0 = 0.23 V were obtained from the PDE data at 408 nm provided by the manufacturers.
Our simulation results coincide with those from [24] at 27.3 keV, confirming the consistency
of the simulations in the linear regime. However, our results are closer to the experimental
data at larger energies. This is due to our different treatment of the trigger probability of
recovering pixels. In fact, the authors of the original MC code observed that their simulation
results matched experimental data well when using a different assumption of the variation
in the trigger probability with overvoltage [24]. The color bands represent the variation in
our simulation results when both the conversion factor f ε and the recovery time are varied
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consistently within the confidence interval of the gain. Results were obtained by averaging
over a large number of simulations to smooth out statistical fluctuations.

0 20,000 40,000 60,000 80,000 100,000 120,000
Number of scintillation photons

0.0

0.5

1.0

1.5

2.0

y

Det. 1: our simulation
Det. 2: our simulation
Original MC code
Det. 1: experimental data
Det. 2: experimental data

Figure 3. Comparison of simulation results with experimental data for two Hamamatsu S10362-
33-050C SiPMs coupled to LaBr3:5%Ce scintillators from [18]. Simulation results obtained with
the original MC code from [24] are represented by the dashed line. The results obtained with our
modified version of the code are represented by the continuous lines, where the color bands illustrate
the variation in our simulations when the input parameters are varied within their uncertainties. The
SiPM response is expressed in terms of the variable y, defined by Equation (10), while the response
was expressed in terms of the variable χ = ⟨Q⟩

⟨Q1⟩Nseed
=

y
x in Figure 7 of [24].

In addition, we simulated a similar experiment described in [14]. In this setup, gamma-
ray photons with energies from 300 to 2100 keV were incident on a LYSO(Ce) scintillator
from Epic Crystal [31] (light yield of 29 ph/keV and decay time of 42 ns) coupled to a
Hamamatsu S13360-1350CS SiPM (pixel size of 50µm and Npix = 667). This SiPM is
distinguished by its low correlated noise (<5% at Uop = 3 V) and an expanded operational
overvoltage range. Measurements were carried out at Uop values from 1 to 11 V. In the
simulations, we utilized the simplified electrical model described in Section 2.1 since, for
this SiPM with a relatively small number of pixels, the influence of the input impedance of
the readout circuit and the parasitic capacitance of the SiPM’s circuit elements were found
to be negligible. The recovery time (τrec = 29 ns) and the prompt crosstalk probability Pct
at Uop values up to 7 V were taken from [11]. No direct measurements of Pct are available
at higher Uop values because correlated noise increases dramatically. Therefore, Pct values
at Uop = 9 and 11 V were adjusted so that the simulation results fit the experimental
data. For simplicity, we neglected delayed crosstalk and assumed Paft = Pct for all Uop
values. The time distribution of afterpulsing was modeled according to Equation (14)
with τbulk = 8.5 ns, as reported in [11]. To model Ptrig in recovering pixels, we used
Uch = 2.68 V and U0 = 0 V, as reported in [14]. Similar to the previous case, we determined
the conversion factor f ε to match the simulated and experimental data for each Uop value.
To do this, ε was forced to vary with Uop according to Equation (7), with the above values
of Uch and U0. The resulting conversion factors were consistent with those obtained in [14].
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For instance, we obtained f ε = 0.081 at Uop = 11 V; hence, the largest gamma-ray energy
of 2100 keV corresponds to Nseed = 4900 (i.e., x = 7.4).

A comparison between simulated and experimental data is shown in Figure 4, where
the error bars of experimental data (only shown for Uop = 1 and 11 V) correspond to an
estimated systematic uncertainty of 10% due to the gain measurement. The simulation
results exhibit the correct nonlinear behavior and dependence on Uop. The relatively larger
gap between the curves for Uop = 1 V and Uop = 3 V is due to a more pronounced increase
in the PDE with Uop for Uop ≲ Uch. The gap between the curves for Uop = 9 V and
Uop = 11 V is due to a large increase in the correlated noise, where the estimated Pct values
are as high as 24% and 85%, respectively. Discrepancies with respect to the experimental
data were smaller than 10% and are likely attributable to errors in the parameters τrec and
Uch. As discussed in [14], Uch was obtained from PDE data at 450 nm, not for the specific
emission spectrum of the LYSO(Ce) scintillator.

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000
Number of scintillation photons

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

y

1V

3V

5V 7V

9V

11V

Simulated data
Fit
Experimental data

Figure 4. Comparison of simulation results with experimental data for a Hamamatsu S13360-1350CS
SiPM coupled to a LYSO(Ce) scintillator, taken from [14]. Fits of model (22) to experimental data are
also shown as dashed lines.

3.2. Photon Rate

Nonlinearity essentially depends on the balance between the rate of photons per pixel
and the pixel recovery time τrec. If the photon rate is high enough so that photons may
arrive at a pixel while it is recovering from a previous avalanche, they will have a reduced
probability of triggering an avalanche, and if they do, the avalanche multiplication will
be smaller. Even though the number of photons per pixel is large, if the PDE is low or the
light pulse is long enough for the average time between consecutive seeds generated in
the same pixel to exceed the pixel recovery time, the nonlinearity will be weak. Actually,
the relevant parameters are the number of seeds per pixel x, Equation (11), and the ratio
between the pulse width and τrec.

We simulated exponential light pulses with different decay times, τd, incident in a
SiPM with Npix = 100. We used the simplified electrical model while assuming τrec = 29 ns.
The trigger probability Ptrig was modeled with Uch = 2.68 V and U0 = 0 V, as in the
simulation case of Figure 4. The operation overvoltage Uop was varied over a wide range
from 0.01 Uch to 100 Uch. Since the response expressed, in terms of the variables x and y,
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is independent of both the gain and the absolute value of the PDE, we set G = ε = 1 for
all Uop values. Correlated noise was ignored for these simulation tests. The results of y
versus x are shown as continuous lines in the upper plot of Figure 5. The lower plot shows
the nonlinearity, defined as 1 − y/x. For τd/τrec = 100, nonlinearity is smaller than 5%
up to x = 11. The smaller τd/τrec, the smaller the x value at which a nonlinearity of 5%
is reached. We observed that y exhibits a logarithmic-like behavior with x. In the limit
τd ≪ τrec, the results tend toward Equation (12), where nonlinearity reaches 5% at an x
value as small as 0.1. The results were checked to not depend on the particular values of τd
and τrec for a fixed τd/τrec ratio.
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Figure 5. Simulation results for different values of τd/τrec, Uop/Uch, and U0/Uop for exponential
light pulses. The SiPM response (upper plot) is expressed in terms of the variables y and x defined by
Equations (10) and (11), respectively. In the lower plot, the nonlinearity parameter 1 − y/x is shown.

3.3. Operation Overvoltage

As explained in Section 2.2, the trigger probability Ptrig in a recovering pixel is assumed
to be given by Equation (9), where U recovers to Uop with the time elapsed from the last
avalanche as given by Equations (1) and (2). In the limit Uop ≫ Uch, the trigger probability
tends to be a Heaviside step function of time, that is, it recovers to unity almost instantaneously
after each avalanche. Therefore, in this limit, nonlinearity is only due to the incomplete
recovery of the charge multiplication in subsequent avalanches, given by Equation (6). In
the opposite limit Uop ≪ Uch (assuming U0 = 0 V), both the trigger probability and the
charge multiplication are proportional to U. In this situation, nonlinearity would be stronger,
although operating a SiPM at such low overvoltage is unusual because the PDE is too low.

If U0 = 0 V, the difference in the recovery of the trigger probability and the charge
multiplication can be parameterized using the ratio Uop/Uch. This is illustrated by solid
lines in Figure 5. The impact of Uop/Uch on the nonlinearity is not as high as that of τd/τrec,
but it cannot be ignored. Again, the results were checked to not depend on Uop or Uch for a
fixed Uop/Uch ratio. Remarkably, it can be observed that increasing Uop/Uch has an effect
equivalent to a slight increase in τd/τrec. This proves that nonlinear effects are essentially
due to the balance between the photon rate and the pixel recovery, with the shape of the
curve y vs. x remaining independent of the specific details of the recovery process.
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If U0 is significant, Ptrig = 0 in the first stage of the pixel recovery while U ≤ U0,
causing the nonlinearity to be stronger. The simulation results for Uop/Uch = 0.01 and
U0/Uop = 0.5 are shown as dashed lines in Figure 5 to illustrate this effect.

3.4. Correlated Noise

Correlated noise can be understood as a process causing the mean output charge to
increase for the same number of incident photons. Therefore, its main effect is that the
effective gain of the SiPM in the linear region is greater than the nominal gain G, meaning
that the response is increased by an extra gain factor that we refer to as 1 + c, that is,

ylin = (1 + c)x . (18)

Notice that correlated noise is stochastic, so this gain factor is associated with an excess
noise factor (ENF).

Both crosstalk components have a larger contribution to this gain factor than afterpuls-
ing for the same probability. This is because the mean multiplication charge of avalanches
due to afterpulsing is smaller, as they are usually produced while the pixel is still recov-
ering. As an example, we obtained c through simulation for a SiPM with Npix = 100,
τrec = τbulk = 10 ns, and U0 = 0 and setting Uop/Uch = 1. For a crosstalk probability of
10% (irrespective of whether it is prompt or delayed crosstalk) leads to c = 0.100, whereas
c = 0.065 is obtained for the same probability of afterpulsing. In the case of crosstalk, c is
similar to the mean number of crosstalk seeds λct = 0.105, given by Equation (16), but they
are not identical for several reasons. Firstly, several crosstalk seeds can be generated in
the same neighboring pixel, generally resulting in one only avalanche (always for prompt
crosstalk). Secondly, fewer crosstalk seeds are generated when the primary pixel is at a
border of the SiPM, as it has fewer neighboring pixels. This border effect is less impor-
tant when the number of pixels is large (e.g., c = 0.111 is obtained for Npix = 3600 and
Pct = 10%). Lastly, cascades of secondary avalanches due to any component of correlated
noise contribute to increasing c, with this effect being relevant when the probability of
correlated noise is high, as discussed in [14].

Analytical expressions of c and the associated ENF for prompt crosstalk in the linear
region are available in [12,13]. In particular, our MC treatment of prompt crosstalk is
equivalent to the four-nearest neighbor model reported in [12], with the difference being
that the simulations properly account for both the above-mentioned border effects and
cascade processes at any order. However, when delayed crosstalk and afterpulsing are
significant, an accurate calculation of c should be performed through simulation due to the
greater complexity of these processes.

At a high photon rate, where nonlinearity is significant, the incomplete recovery of
pixels reduces the gain factor due to correlated noise. Prompt crosstalk was found to be
more suppressed than delayed crosstalk and afterpulsing for the same probability. This
is because seeds due to prompt crosstalk are produced at the same time as seeds due to
photons. In contrast, seeds due to delayed crosstalk and afterpulsing can be produced
when the photon rate is lower and the recovery of pixels is more advanced. These effects
are more noticeable when studying the shape of the output signal rather than the integrated
charge. In Figure 6, averaged simulated signals for exponential pulses with τd = 5 ns and a
probability of correlated noise of 20% (assuming a sole noise component in each case) are
compared with those obtained in the absence of correlated noise. We used the simplified
electrical model with Npix = 100, Uop/Uch = 1, U0 = 0 V, and τrec = τbulk = 10 ns. Prompt
crosstalk gives rise to an almost constant scale factor to the signal at x = 0.5, but the effect
is much lower at x = 5 as a consequence of nonlinearity. Both afterpulsing and delayed
crosstalk produce a lengthening of the output current pulse, which can be significant if
τbulk is large. This lengthening, along with the distortion due to nonlinearity, makes the
output signal pulse to be flatter than the incident light pulse.
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Figure 6. Averaged SiPM signals simulated for different situations of correlated noise (i.e., no noise,
20% of prompt crosstalk, 20% of afterpulsing, or 20% of delayed crosstalk) and different numbers of
seeds per pixel (i.e., x = 0.5 and 5).

3.5. Pulse Shape

We also studied the influence of the shape of the incident light pulse on nonlinearity by
comparing the SiPM response for exponential, rectangular, triangular, and double-exponential
pulses. For a direct comparison, pulses should have the same mean photon rate Nph/τ for a
given number Nph of photons per pulse. The characteristic pulse width τ is

1
τ
=

∫ ∞

0
p2(t)dt , (19)

where p(t) is the probability density distribution (PDF) of the photon arrival time. Both the
PDF and mean photon rate for the four pulse shapes are shown in Table 2.

Table 2. Characteristics of different pulse shapes.

Shape Probability Density Function Mean Photon Rate

Exponential 1
τd

e−t/τd (t ≥ 0) Nph
2τd

Rectangular 1
τw

(0 ≤ t ≤ τw) Nph
τw

Double exp. 1
τ2−τ1

(
e−t/τ2 − e−t/τ1

)
(t ≥ 0) Nph

2(τ1+τ2)

Triangular
2

τr+τf

t
τr

(0 ≤ t ≤ τr) 4Nph

3(τr+τf)2
τr+τf

(
1 − t

τf

)
(τr < t ≤ τr + τf)

Simulation results for different pulses with the same mean photon rate Nph/τ, setting
τ = 60 ns, are shown as solid lines in Figure 7. We included exponential pulses of decay
time τd = 30 ns, rectangular pulses of width τw = 60 ns, rising triangular pulses with
τr = 80 ns and τf = 0, falling triangular pulses with τr = 0 and τf = 80 ns, and double-
exponential pulses with τ1 = 10 ns and τ2 = 20 ns. The PDF for these pulses is shown in
the inset of the figure for a better comparison. For these simulations, we used the simplified
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electrical model, with Npix = 100, τrec = 30 ns, Uop/Uch = 1, U0 = 0 V, and neglected
correlated noise. The results are similar for all the pulse shapes, but nonlinearity is stronger
for triangular and rectangular pulses, which have a finite duration. Although the mean
photon rate is the same for all pulses, nonlinearity also depends on the remaining moments
of the distribution. We observed that the smaller the variance of the photon rate (e.g., σ2 = 0
for rectangular pulses), the higher the nonlinearity. Interestingly, nonlinearity is slightly
stronger for falling triangular pulses (positive skewness) than for rising triangular pulses
(negative skewness), as a consequence of the asymmetry introduced by the pixel recovery.

0 2 4 6 8 10
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Exponential d=30 ns
Double exponential
 r=10 ns, d=20 ns
Triangular 
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r = 0 ns, f=80 ns

Rectangular w=60 ns
Rs = 15
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Time ns
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Figure 7. Simulated SiPM responses for light pulses of different shapes but the same mean photon rate.
The inset plot shows the probability density functions of the light pulses used in the simulations. The
continuous lines represent the results utilizing the simplified electrical model described in Section 2.1.
The dashed lines represent the results incorporating the detailed electrical model described in [24],
assuming an input impedance of the readout electronics of Rs = 15 Ω.

Further results for a larger x range from 0 to 1000 and different τ/τrec ratios are shown
as red solid lines in Figure 8. The results for both pure exponential pulses with τd = τ/2
and rectangular pulses with τw = τ are shown in the left-hand plot and the right-hand plot,
respectively. Again, we used the simplified electrical model, with Npix = 100, Uop/Uch = 1,
U0 = 0 V, and neglected correlated noise. Notice that the SiPM response saturates at a
certain level when increasing x for rectangular pulses. We checked that the same behavior is
shown for triangular pulses. On the other hand, the response is found to have a logarithmic
growth with x for exponential-like pulses (including double-exponential ones), except in
the limit τ ≪ τrec. This is due to the fact that, for exponential-like pulses, a few photons may
arrive after long periods of times, producing charge avalanches in fairly recovered pixels.
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Figure 8. Simulation data for both exponential pulses with different τd/τrec ratios (left-hand plot)
and rectangular pulses with different τw/τrec ratios (right-hand plot). Correlated noise was ignored.
Fits of the model (20) from [14] and either model (22) or (23) proposed in this work for the two types
of pulses are also shown. The results are depicted for a large range of x, but the model (20) was fitted
in a limited range where nonlinearity is still moderate. The models (22) and (23) outperform the
model (20) for both types of pulses.

3.6. Electrical Model

In the simulation cases discussed in Sections 3.2–3.5, we utilized the simplified elec-
trical model described in Section 2.1. Under these simplifications, results expressed in
terms of the variables x and y are independent of the number of pixels Npix, except for
the above-mentioned small border effects on crosstalk. However, when Npix is increased,
the sum output current is higher for the same x value and gain. As a consequence, the
voltage drop across the readout-circuit resistance Rs cannot be ignored anymore, and the
overvoltage at the pixels is reduced, as discussed in [10,24]. The parasitic capacitance due
to the unfired pixels connected in parallel to the fired pixels may also be relevant for large
Npix values, increasing the recovery time, and hence contributing to nonlinearity as well.

Simulation results incorporating the detailed electrical model developed in [24] are
depicted as dashed lines in Figure 7. We assumed Npix = 3600, a readout-circuit resistance
Rs = 15 Ω, and the same parameters for this electrical model as in the simulations shown
in Figure 3. Nonlinearity becomes significantly more pronounced when the readout-circuit
resistance is considered. For instance, the response at x = 10 is reduced by approximately
10 to 15 percent for all pulse shapes. However, the resulting curves maintain a shape
very similar to those obtained using the simplified electrical model (continuous lines).
This suggests that the SiPM response may be effectively described by a universal function
depending on a few parameters, as described below. When considering a small number
of pixels (Npix = 100), the simulation results remained nearly independent of whether the
detailed electrical model or the simplified one was employed.

4. Analytical Model

In [14], a statistical model including the main factors affecting the nonlinearity (i.e., photon
rate, overvoltage, correlated noise, and pulse shape) was developed. From this model, the
following simple expression was derived for the responses of SiPMs at moderate nonlinearity:

y =
1

1 − γ
{1 − exp[−(1 − γ)(1 + c) x]} , (20)
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where 1 + c is the gain factor due to correlated noise explained in Section 3.4, and the
dimensionless parameter γ is given by

γ = 2
∫ ∞

0

∫ ∞

0
p(t) p(t + ts) Ptrig(U(ts))

U(ts)

Uop
dts dt (21)

Here, t is the arrival time of a first seed in a pixel, ts is the time of a second seed in the
same pixel with respect to the first one, and p(t) stands for the PDF of the output signal
pulse, including the lengthening caused through afterpulsing and delayed crosstalk (see
Figure 6). The parameter γ is defined such that γ⟨Q1⟩ is the mean charge due to a seed
generated in a recovering pixel.

The model behaves correctly in the limit situations of very short and long pulses relative to
τrec, where the SiPM response is known a priori. For very short pulses, γ ∼ 0, and model (20)
reduces to Equation (12) in the absence of correlated noise. For very long pulses, γ ∼ 1, and
model (20) reduces to Equation (18). In a general case, model (20) behaves as Equation (18) at
small x values and saturates at 1/(1−γ) at large x values. Both c and γ can be obtained by fitting
model (20) to experimental data, rather than calculating them from more basic parameters that
may not be well known. Indeed, neither the number of seeds per pixel x is generally ascertainable
in practical situations, because it would require knowing both the number of incident photons
and the absolute value of the PDE of the particular SiPM. Therefore, for the application of the
model, the product of (1+ c) and the conversion factor from the light pulse intensity to x can be
used as a fitting parameter.

In Figure 8, fits of the model (20) to simulated data for pure exponential pulses and
rectangular pulses are shown as blue dotted lines in the left-hand plot and right-hand
plot, respectively. We fixed c = 0, because correlated noise was ignored in the simulations.
Although results are shown up to x = 1000, these fits were performed in a limited range of
x, depending on τ/τrec, where nonlinearity is weak. Notice that γ accounts for interactions
between only two seeds in the same pixel; hence, this model is expected to be valid only for
x ≲ 2. Indeed, the exponential saturation predicted by the model is actually not observed
in the simulated data, especially for exponential-like pulses.

We extended the model (20) to arbitrary x values based on our analysis of simulation
results. In addition to addressing the limit situations for very short and very long pulses,
the new model should be capable of reproducing either the logarithmic behavior for
exponential-like pulses or the smooth saturation observed in simulated data for finite
pulses. The model should also include the suppression of correlated noise with increasing
x, as described in Section 3.4. Given these conditions, we propose the following ansatz for
exponential-like pulses:

y =
[
1 + c e−dx + ae ln (1 + be x)

](
1 − e−x) , (22)

and the following for finite pulses:

y =

[
1 + c e−dx +

af x
1 + bf x

](
1 − e−x) , (23)

where we used the indexes “e” and “f” to distinguish between the two categories of pulses.
The meanings of the different terms in the above expressions are as follows:

• The factor 1 − e−x in both models is identified with the mean fraction of fired pixels
per pulse in the absence of crosstalk, Equation (12).

• The term 1 + c e−dx within the brackets is the mean contribution of the first photon
detected in a fired pixel, including the correlated noise that it induces in this pixel
and the neighboring ones. This term tends to 1 + c in the linear region (i.e., x → 0),
where c has the same meaning as in model (20). The parameter d accounts for the
suppression rate of correlated noise with increasing x.
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• A term, either ae ln (1 + be x) or af x
1+bf x , accounts for all the remaining avalanches

produced during the pixel recovery. This term is small when the pulse width is short
relative to τrec.

We can interpret the meaning of the pair of parameters (ae, be) or (af, bf) by separately
analyzing the regimes of low and high nonlinearity. On the one hand, the models (20), (22), and
(23) are mutually equivalent when considering small x values. In this regime, the relationships
among the models, given by comparing the first two terms of their Taylor series at x = 0 in the
absence of correlated noise, can be expressed as follows:

aebe ≈ af ≈
γ

2
. (24)

On the other hand, the asymptotic behavior of models (22) and (23) as x → ∞ is quite
different, where

lim
x→∞

ae ln (1 + be x) = ae ln (x) , (25)

lim
x→∞

af x
1 + bf x

=
af
bf

. (26)

Fits of the models (22) and (23) to simulated data are shown as black dashed lines in
Figure 8. We set c = d = 0, because correlated noise was ignored in the simulations. Both
models fit adequately to simulated data in the entire x range from 0 to 1000, with residuals
being generally less than 5%, although it depended on both the ratio of the pulse width to τrec
and the selected fitting range. For instance, the maximum residual for exponential pulses with
τd/τrec = 1 is 10% when fitting Equation (22) in the entire range, but the maximum residual
is as low as 3.4% when the fit is limited to x values smaller than 10, where nonlinearity reaches
70% (see Figure 5). In this reduced x range, both models (22) and (23) provide very similar
results. The fit is poorer for τd/τrec = 100, where nonlinearity is only noticeable at very large
x values. Similar residuals are obtained for double exponential pulses as well as when fitting
the model (23) for triangular pulses.

Fits to simulation results incorporating correlated noise are shown in the left-hand
plot of Figure 9. For these simulations, we used short exponential pulses with τd/τrec = 0.1
and assumed the simplified electrical model with Uop/Uch = 1, U0 = 0 V, and a proba-
bility of 20% of prompt crosstalk, delayed crosstalk, or afterpulsing. We plotted the ratio
y/(1 − e−x), which represents the mean contribution per fired pixel in order to visualize
the contributions from the two terms within the brackets in model (22). The isolated
contribution from the first term (i.e., the contribution from the first detected photon and
the correlated noise that it induces) is also depicted as a point–dash line in each case. When
fitting model (22) for x values smaller than 10, the residuals are below 1%. Notice that,
although c is larger for crosstalk than for afterpulsing for the same probability, crosstalk
is suppressed more rapidly as x increases. This results in a smaller response in the case
of crosstalk compared to afterpulsing at large x values. If crosstalk is low, the impact of
the suppression of the correlated noise on the SiPM response may be ignored, and the
parameter d can be set to 0.

Models (22) and (23) fit well to both simulated and experimental data for all the
variety of cases studied in this work (e.g., different Uop/Uch values and probabilities of
correlated noise). As an example, fits of model (22) to experimental data from [14] are
depicted as dotted lines in Figure 4. For these fits, we assumed the same conversion factors
f ε from the number of photons to the number of seeds as those used in the simulations.
While it is challenging to find input parameters for the simulation that precisely match
the experimental data, the fit of the model (22) is very good, with deviations within
experimental errors for all curves.
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Figure 9. (Left): Simulation results for short exponential pulses for a SiPM with 20% of prompt
crosstalk, 20% of delayed crosstalk, or 20% of afterpulsing. The point–dash lines represent the isolated
contribution from the first photon detected by a pixel, including the correlated noise that it induces.
Continuous lines represent the best fits of model (22). (Right): Experimental data from [32] for
a Hamamatsu S10362-33-050C illuminated by LED pulses of different widths. Fits to model (23)
are shown.

We also fitted model (23) to experimental data from [32] for three different SiPMs:
PM3350 from Ketek GmbH [33] (pixel size of 50 µm, Npix = 3600, and τrec ≈ 83 ns),
Hamamatsu S10362-33-050C (pixel size of 50 µm, Npix = 3600, and τrec ≈ 20 ns), and
Hamamatsu S10362-33-100C (pixel size of 100 µm, Npix = 900, and τrec ≈ 48 ns). The SiPMs
were illuminated by rectangular-shaped blue LED pulses with different widths from 12 to
73 ns. The SiPM response was characterized in terms of the ratio ⟨Q⟩

⟨Q1⟩
as a function of the

mean number of incident photons per pulse. In Figure 10, we reproduce the experimental
data for pulse widths of 35 and 73 ns as curves y versus x, where the variable x was
obtained from Equation (11), knowing the PDE. For the Hamamatsu S10362-33-100C SiPM,
we utilized the PDE value ε = 0.35 at Uop = 1.3 V, as reported in [32]. However, the authors
did not provide the PDE values for the other two SiPMs. In these cases, we determined
ε (1 + c) from the experimental data in the linear region, Equation (18). Subsequently, we
estimated ε and c separately to be consistent with the data available in the literature. In
particular, for the Hamamatsu S10362-33-050C SiPM, we obtained ε (1 + c) = 0.28 and
estimated ε = 0.17 and c = 0.65 at Uop = 1.65 V, which align with the data reported in [30].
Finally, the model (23) was fitted to the experimental curve y versus x, fixing the parameter
c. The fit residuals were generally smaller than 5% for all the curves, and they remained
low for other reasonable assumptions of ε and c. For instance, in assuming ε = 0.21 and
c = 0.33 for the Hamamatsu S10362-33-050C SiPM, the residuals were still smaller than
10%. Therefore, our model can provide an adequate description of the SiPM response
as a function of the light pulse intensity even when an accurate PDE value at the given
wavelength is not available.

We observed that the effect of the suppression of correlated noise is noticeable in these
experimental data from [32]. To illustrate this, the curves y/(1 − e−x) versus x for the
Hamamatsu S10362-33-050C SiPM for both pulse widths are shown in the right-hand plot
of Figure 9. The fits of model (23) are depicted as dashed lines, showing a good agreement
(residuals smaller than 4%). Notice that the larger the pulse width, the more important
the term af x

1+bf x . Therefore, the parameter d can be set to 0 to fit the SiPM response for long
light pulses.
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Figure 10. Fits of model (23) to experimental data from [32] for three different SiPMs illuminated by
LED pulses of different widths.

5. Conclusions

In this work, we carried out a systematic study on the nonlinear responses of SiPMs
for light pulses, identifying and parameterizing the main factors affecting nonlinearity.
For this purpose, we used the MC code developed in [24], with some improvements in
the description of the correlated noise and the pixel recovery. Simulations were shown to
reproduce experimental data on the output charge for scintillation light pulses as a function
of both the pulse intensity and the SiPM operation overvoltage.

We characterized the SiPM response in terms of the variables y and x, defined, respec-
tively, as the effective number of full-charge avalanches per pixel, Equation (10), and the
expected number of avalanches per pixel for an ideal SiPM in the absence of nonlinearity
and correlated noise, Equation (11). We found that the shape of the curve y versus x is
quite universal.

Nonlinearity essentially depends on the balance between the photon rate and the pixel
recovery time τrec after a charge avalanche, which can be parameterized as the ratio of the
pulse width τ (e.g., the decay time for an exponential pulse) to τrec for a given x value. For
τ/τrec ≈ 1, nonlinearity reaches around 5% at x values as low as 0.2.

When a SiPM is operated at a high overvoltage Uop, such that the PDE is close to its
maximum value, the trigger probability of a pixel recovers faster than the pixel overvoltage,
reducing nonlinearity in a similar way as if τrec was made shorter. We parameterized it as
the ratio of the operation overvoltage to the characteristic parameter Uch of the PDE vs.
Uop curve assuming Equation (7), albeit other parameters should be used instead in case
the overvoltage dependence of the PDE is described using a different function (e.g., for red-
and NIR-sensitive SiPMs).

We also studied the SiPM response for different light pulse shapes, finding that nonlin-
earity is stronger for finite pulses (e.g., rectangular and triangular ones) than exponential-
like pulses with the same mean photon rate. The level of nonlinearity depends on the
particular pulse shape. In addition, we demonstrated that the SiPM response saturates
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when increasing the light pulse intensity for finite pulses, whereas it shows a logarithmic
growth for exponential-like ones.

The correlated noise increases the effective gain of the SiPM in the linear region, with a
minor influence on nonlinearity. In particular, prompt crosstalk was found to be suppressed
rapidly at increasing photon rates. However, afterpulsing and delayed crosstalk may still
be relevant for intense light pulses, because these noise components lead to a lengthening
of the output signal. We showed how the signal is distorted through nonlinearity and
correlated noise. The impact of the details of the electrical model on the simulation results
was also studied, and the results are in agreement with the findings shown in [24].

Based on these simulation results and the statistical model developed in [14], we
found the two simple expressions (22) and (23) that correctly reproduce the features of
the SiPM response for exponential-like and finite light pulses, respectively. Even though
these models have only four fitting parameters, they were shown to be valid even for light
pulses of very high intensity and for a wide range of situations. In the cases where the
impact of the suppression of correlated noise at an increasing photon rate is low (e.g., low
crosstalk and long light pulses), the number of fitting parameters can be reduced to three.
The models provide insights into the different contributions to nonlinearity.
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The following abbreviations are used in this manuscript:

SiPM Silicon photomultiplier
MC Monte Carlo
PMT Photomultiplier tube
PDE Photodetection efficiency
LYSO Lutetium–Yttrium Oxyorthosilicate
LED Light-emitting diode
LiDAR Light detection and ranging
ENF Excess noise factor
NIR Near infrared
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