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Abstract: Optical fiber sensors are extensively employed for their unique merits, such as small size,
being lightweight, and having strong robustness to electronic interference. The above-mentioned
sensors apply to more applications, especially the detection and monitoring of vital signs in medical
or clinical. However, it is inconvenient for daily long-term human vital sign monitoring with
conventional monitoring methods under the uncomfortable feelings generated since the skin and
devices come into direct contact. This study introduces a non-invasive surveillance system that
employs an optical fiber sensor and advanced deep-learning methodologies for precise vital sign
readings. This system integrates a monitor based on the MZI (Mach–Zehnder interferometer) with
LSTM networks, surpassing conventional approaches and providing potential uses in medical
diagnostics. This could be potentially utilized in non-invasive health surveillance, evaluation, and
intelligent health care.
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1. Introduction
1.1. Background

It is universally acknowledged that human vital signs are of paramount importance
in the realm of medical diagnosis. The ability to accurately and swiftly diagnose medical
conditions not only significantly enhances the rate of successful treatment but also sub-
stantially reduces the financial burden associated with healthcare. However, a majority of
healthcare institutions at present are heavily reliant on direct contact methods for testing,
such as punctures and radiographs.

This traditional approach to testing, however, is fraught with two conspicuous draw-
backs. Firstly, it is a resource-intensive and costly process. In most instances, patients can
only be monitored within the confines of a hospital setting due to the need for specialized
equipment and trained personnel. This not only limits the accessibility of such diagnostic
methods but also places a significant strain on healthcare resources.

Additionally, the necessity for an uninterrupted link between the monitoring device
and the individual being monitored may considerably limit their mobility and elevate their
level of unease. This could conceivably result in diminished adherence from patients and
adversely affect the precision of the diagnostic outcomes.

In recent years, a plethora of non-invasive monitoring techniques have emerged,
many of which utilize laser sensing. While these methods have significantly improved
patient comfort, they often compromise on accuracy, a critical factor in medical diagnosis.
One of the primary objectives of our research is to optimize the accuracy of non-invasive
monitoring techniques without sacrificing patient comfort.

Previously, a group headed by I. Smith assessed the repeatability of respiratory rate
measurements utilizing the Bland–Altman technique [1]. Simultaneously, a team under
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R. Favilla introduced an innovative approach for tracking human heart rate [2]. These
groundbreaking investigations have laid the foundation for the evolution of non-invasive
physiological parameter monitoring, offering fresh perspectives and opportunities for
subsequent studies.

Motivated by these pioneering research efforts, our group has developed a system
that operates without direct contact, utilizing a micro-bend fiber optic sensor. This novel
strategy aids in reducing the cost of the system and markedly improves the effectiveness of
signal detection.

Compared to most conventional methods, our approach offers a substantial improve-
ment in terms of production cost and process. By eliminating the need for direct contact,
our system also significantly reduces patient discomfort and allows for greater mobility
during testing.

In conclusion, our research aims to revolutionize the field of medical diagnosis by
developing a cost-effective, efficient, and non-invasive monitoring system. By building on
the work of previous researchers and incorporating innovative technologies, we hope to
significantly improve the accuracy and comfort of medical testing, ultimately leading to
better patient outcomes and a more sustainable healthcare system.

1.2. Progress of Research at the Current Stage

The integration of deep learning and fiber optic sensor technology to create a non-
invasive vital sign signal monitoring model is an emerging field of research. This innovative
approach aims to enhance the accuracy and efficiency of vital sign signal monitoring,
thereby revolutionizing the healthcare industry.

Deep learning, a subset of artificial intelligence, is a technique that enables automatic
recognition and understanding of patterns within large datasets [3]. It achieves this by
learning from vast amounts of data, thereby improving its predictive accuracy over time.
In the context of non-invasive vital sign signal monitoring, deep learning models can be
utilized to automatically identify and analyze vital sign signals such as heart rate, blood
pressure, and oxygen saturation. This automated process not only improves the efficiency
of monitoring but also reduces the likelihood of human error, thereby enhancing the overall
accuracy of the monitoring process.

Fiber optic sensors, on the other hand, are a novel sensor technology that detects
physical parameters by measuring changes in light propagation through optical fibers [4].
These sensors can be used for contactless measurement of vital sign signals in non-invasive
monitoring, thereby significantly improving patient comfort and satisfaction [5]. The use of
fiber optic sensors eliminates the need for direct contact with the patient, thereby reducing
discomfort and allowing for greater patient mobility during monitoring.

Present studies in this domain mainly concentrate on improving the precision and
instantaneous functionality of models based on deep learning for monitoring vital signs
non-invasively through the use of fiber optic sensors. Researchers are also striving to
minimize the impact of environmental noise on the monitoring process, thereby improving
the reliability of the results.

In addition, there is a growing interest in exploring the application of these models
in various scenarios such as telemedicine and home healthcare. The ability to accurately
monitor vital signs remotely could significantly enhance the accessibility and convenience
of healthcare services, particularly for patients with mobility issues or those living in
remote areas.

Despite the significant potential of deep learning-based non-invasive vital sign signal
monitoring models for fiber optic sensors, the field still faces numerous challenges. These
include improving the accuracy and reliability of the models, addressing data privacy and
security concerns, and ensuring the models are robust enough to handle the variability and
complexity of real-world data.

Furthermore, the successful implementation of these models in a clinical setting
requires the development of appropriate regulatory frameworks and guidelines to ensure
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patient safety and data integrity. It also necessitates the training of healthcare professionals
to effectively use and interpret the results generated by these models.

Building on our previous research, we have further streamlined the physical structure
of the system. This simplification process involved a careful analysis of the system’s
components and their functions. We identified areas where the system could be made
more efficient without compromising its performance. This resulted in a more compact
that is easier to maintain and operate. Moreover, we have enhanced the data preprocessing
operation from its original form. We recognized that the initial process was prone to
generating unnecessary errors that could compromise the accuracy of our results. To
address this, we implemented more rigorous data validation techniques and error-checking
protocols. These improvements have significantly reduced the occurrence of unnecessary
errors, leading to more reliable and accurate data processing.

In conclusion, the integration of deep learning and fiber optic sensor technology in
non-invasive vital sign signal monitoring represents a promising avenue for future research.
While the field still faces numerous challenges, the potential benefits in terms of improved
accuracy, efficiency, and patient comfort make it a worthwhile endeavor. With continued
research and development, this innovative approach could significantly transform the
landscape of healthcare monitoring and diagnosis.

In comparison to similar studies at this stage, we employ the DEMA model, a technique
that accurately predicts trends, especially in volatile data. This is paired with non-invasive
contact detection, a method that collects crucial data without causing discomfort to patients.
The combination of these two techniques enhances efficiency and accuracy, leading to more
precise detection results. Consequently, this results in a significant reduction in misdiagno-
sis rates in the medical field, as the accurate diagnosis is crucial for effective treatment.

2. Methodology
2.1. RNN and LSTM in Time-Series Data

For the past few years, RNNs have emerged as a mighty tool in time-series data
processing, achieving remarkable results that have significantly advanced the field. RNNs,
a category of artificial neural networks specifically engineered to identify patterns in se-
quential data like text, genomes, handwriting, or spoken language, have demonstrated
significant effectiveness in handling such data types [6]. Unlike traditional methods such as
Fast Fourier Transform (FFT) and Wavelet Transform (WT), which necessitate handcrafted
feature extraction and may frequently overlook complex patterns within the data, deep
learning techniques such as RNNs have the capability to autonomously extract valuable
features from unprocessed signals [7]. This is a significant advantage as it eliminates the
need for manual feature engineering, which is often time consuming and requires expert
knowledge. Moreover, RNNs are capable of reflecting internal data properties, which
means they can capture the inherent characteristics and structures within the data [8]. The
significance is especially pronounced in time-series data, wherein the temporal dynamics
and dependencies exert a pivotal influence. By capturing these dynamics, RNNs can
provide a more accurate and nuanced understanding of the data. Furthermore, the use of
RNNs can significantly improve algorithm efficiency. Traditional algorithms often struggle
with large-scale data and high-dimensional inputs, but RNNs, with their deep learning ca-
pabilities, can handle such complex data with relative ease. They can process large amounts
of data in a relatively short time, making them highly efficient and scalable. In conclusion,
the advent of RNNs has had a profound impact on time-series data processing [9]. The
capacity to extract features from unprocessed signals, mirror intrinsic data characteristics,
and augment algorithmic efficiency has amplified the precision and effectiveness of data
processing and inaugurated novel avenues for examining and elucidating time-series data.

LSTM represents a sophisticated modification of RNNs, explicitly designed to tackle
the challenge of long-term dependencies in sequential data manipulation. Unlike traditional
RNNs, LSTM integrates gate functions and memory components, thus augmenting its
ability to apprehend and preserve long-term dependencies. The refinement of model
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parameters in LSTM is accomplished via the backpropagation algorithm, which is oriented
towards the reduction in prediction discrepancies. The LSTM architecture is frequently
executed using a specialized component in neural networks called the LSTM cell, which
comprises a memory unit and three regulatory units: the input gate, forget gate, and output
gate, as shown in Figure 1. These regulatory units empower the LSTM to manage the
information’s flow and retention, considering both the present input and the antecedent
hidden state [3,4]. This distinctive configuration permits the LSTM to adeptly manage
long-range dependencies and circumvent problems such as vanishing and exploding
gradients, which are prevalent in conventional RNNs. In the realm of time-series data
processing, particularly for tasks necessitating extended contextual information, LSTM has
demonstrated its superior capabilities. This includes fields like natural language processing
and speech recognition, where LSTM’s ability to consider long-term dependencies proves
particularly beneficial [10]. The equations for the forward progression of an LSTM cell
equipped with a forget gate, with the variables included, are as follows:

ft = σg(W f xt + U f ht−1 + b f ) (1)

it = σg(Wixt + Uiht−1 + bi) (2)

ot = σg(Woxt + Uoht−1 + bo) (3)

c̃t = σc(Wcxt + Ucht−1 + bc) (4)

ct = ft ⊙ ct−1 + it ⊙ c̃t (5)

ht = ot ⊙ σh(ct) (6)

Figure 1. Hidden layer of LSTM.

The initial values are denoted by c0 = 0 and h0 = 0 the operator ⊙ signifies the
Hadamard product (also known as element-wise product).

The subscript t is used to index the time step.
W ∈ R(h×d), U ∈ R(h×h) and b ∈ Rh are the weight matrices and bias vector parame-

ters that need to be optimized during the training process.
The superscripts are used to denote the number of input features and the number of

hidden units, respectively [11].
ft ∈ (0, 1)h is the activation vector of the forget gate.
xt ∈ Rd represents the input vector that is fed into the LSTM unit.
it ∈ (0, 1)h is the activation vector of the input/update gate.
ot ∈ (0, 1)h is output gate’s activation vector.
c̃t ∈ (−1, 1)h is the activation vector for cell input.
ct ∈ Rh is the vector for cell state.
ht ∈ (−1, 1)h is hidden state vector also known as output vector of the LSTM unit.
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2.2. EMD and LSTM Integration in Signal Processing

EMD stands as an advanced method in signal processing that breaks down non-
stationary signals into multiple Intrinsic Mode Functions (IMFs), shedding light on the
signal’s local characteristics [5,12]. The defining feature of the EMD method is its flexi-
bility, allowing it to produce suitable IMFs based on the unique attributes of the signal.
This flexibility makes EMD particularly beneficial for analyzing signals characterized by
non-linearity and non-stationarity, such as various physiological signals like heart and
respiratory rates. Nonetheless, the EMD method is not without its flaws, with mode mixing
being a significant issue. Mode mixing occurs when oscillation modes of similar types are
present at different amplitude levels, or when several distinct sub-modes are found within
a single mode.

In comparison, while both LSTM and EMD have their unique strengths in handling
specific types of data and tasks, they also have their respective limitations. LSTM excels in
processing time-series data and managing long-term dependencies, but it requires careful
tuning of parameters and can be computationally intensive. On the other hand, EMD is
adept at decomposing non-stationary signals to reveal local characteristics, but it suffers
from the issue of mode mixing. Therefore, the choice between LSTM and EMD would
depend on the specific requirements and constraints of the task in question.

The integration of EMD and LSTM presents a novel approach to signal processing and
sequential data analysis. This amalgamation leverages the strengths of both techniques,
thereby enhancing the overall performance and efficiency of the system. Given its capability
to break down non-stationary signals into IMFs, EMD efficiently uncovers the local features
of the signal. This disintegration procedure can function as an initial processing stage,
transmuting the raw signal into a collection of IMFs that encapsulate the fundamental
characteristics of the signal [13]. These IMFs can then be used as inputs to the LSTM model.
On the other side, LSTM excels in processing time-series data and managing long-term
dependencies. By feeding the IMFs generated by EMD into LSTM, the model has the ability
to learn and capture the temporal dynamics, and dependencies from these IMFs. This can
potentially lead to more accurate and robust predictions, as the model can now consider
both the local features of the signal (captured by EMD) and the temporal dependencies
among these features (captured by LSTM) [14].

The integration of EMD and LSTM is particularly significant in applications where
both local features and temporal dependencies are crucial. For instance, in physiological
signal analysis, the local features of the signal (such as the amplitude and frequency of
heartbeats or breaths) and the temporal dependencies among these features (such as the
regularity and rhythm of heartbeats or breaths) are both important for accurate diagnosis
and prediction. By combining EMD and LSTM, we can potentially achieve more accurate
and robust analysis and prediction in these applications.

2.3. Design of Optical Fiber Monitoring

In this study, we introduce an innovative optical fiber sensor designed to function
as a non-invasive system for the monitoring of vital signs, as shown in Figures 2 and 3.
This monitoring system comprises several pivotal elements, encompassing a BCG monitor
functioning based on an MZI, a PID controller, and a phase modulator.
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Figure 2. The proposed optical fiber sensor system [15].

The BCG monitor, serving as the central component of the surveillance system, is built
upon the principles of the MZI. The MZI is an apparatus to ascertain the relative phase
shift alterations between two collimated beams originating from coherent light sources. In
this scenario, it is deployed to oversee the mechanical functioning of the heart, as depicted
by the BCG.

The monitoring system also integrates a phase shifter, a distributed feedback (DFB)
laser, and a low-speed photodetector (PD). The phase shifter is an apparatus that modifies
the phase of a light wave traversing the optical fiber, while the DFB laser is employed
to produce the coherent light source requisite for the MZI. Conversely, the PD is tasked
with transforming the BCG signal into an electrical signal amenable to further processing.
The envisioned system for monitoring, integrated into a cushion, is built around a Mach-
Zehnder Interferometer (MZI)-based Ballistocardiogram (BCG) monitor, a phase shifter, and
a proportional-integral-derivative (PID) controller. Structurally, the cushion is composed
of four layers: the top material layer, a pressure detection layer, a sponge layer, and the
bottom material layer, arranged from top to bottom. The MZI in the optical fiber features
two 3dB couplers that serve both as optical splitters and couplers, creating interference.
Both the MZI and the phase shifter are mounted on a plastic base, which is then encased in
a cushion design, facilitating non-invasive BCG monitoring. The MZI’s arms, the sensing
and reference arms, are aligned in parallel. Positioned outside the detection zone, the
phase shifter, controlled by a PID controller, ensures the interferometer system remains
in quadrature. The interferometer’s arms are approximately 40 cm in length with a 5 mm
difference between them, shaped into a semicircle side by side without overlapping, and
encased on a plastic base within the cushion. Signal fading, a shift in the bias point leading
to sensitivity alterations and potential BCG signal distortion, is a noted challenge. To tackle
this challenge, a variety of phase modulation strategies are utilized, encompassing both
active and passive homodyne techniques. Our technique adopts the active homodyne
method, incorporating a compact moving-coil transducer to act as the phase shifter and
preserve system quadrature, which allows for its effortless incorporation into the intelligent
cushion design. The moving-coil transducer, serving as the phase shifter in our BCG
detection system, has dimensions of 18 (Length) × 12 (Width) × 3 (Height) mm. This
facilitates its straightforward integration into the cushion-based BCG monitoring device,
offering an advantage over the more cumbersome piezoelectric transducer-based (PZT)
phase modulation techniques. Additionally, this approach avoids extra bending loss since
the optical fiber is directly connected to the transducer instead of being wound around
it. As illustrated in Figure 4, the specific area designated for capturing BCG signals
from individuals in a seated position is highlighted by a yellow dashed rectangle. The
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configuration employs a DFB laser as the illumination source and a slow photodetector
(PD) to transform variations in the optical signal related to BCG into electrical signals.
The output from the PD is divided into two pathways: Channel 1 (CH1) conveys the raw
data, whereas Channel 2 (CH2) directs the data through a low-pass filter (LPF), which then
inputs into the PID controller. This controller compensates for phase fluctuations, ensuring
the system remains at the quadrature point through adjustments made by the phase shifter.

Figure 3. The overall process of human vital sign signal monitoring.

Figure 4. Raw signal acquired by the proposed optical fiber sensor.

The MZI is assembled with 2 3 dB couplers that serve both as an optical splitter and
coupler, and it is affixed to a plastic base. This setup allows for its encapsulation as a smart
cushion, enhancing its versatility and user-friendliness. The MZI along with the phase
shifter are strategically placed outside the detection zone and are aligned in parallel to
guarantee peak performance. This careful positioning prevents potential interference and
promotes efficient light signal transfer, thereby guaranteeing the device’s peak performance.

The electrical signal produced by the PD is partitioned into two channels, CH1 and
CH2. CH1 encompasses the unprocessed data, whereas CH2 incorporates the data that
have undergone processing via a low-pass filter (LPF) [15]. The LPF serves to eliminate
high-frequency noise from the signal, thereby improving the accuracy of the data. This
processed data are then used as the input of the PID controller, a feedback mechanism of
the control loop extensively utilized in industrial control frameworks. The PID controller
adjusts the control inputs to the system based on the error between the desired and actual
output, thereby ensuring the stability and accuracy of the monitoring system.
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2.4. EMD Algorithm

The EMD algorithm was introduced by Huang and colleagues in the 1990s and is
a data decomposition method that breaks down non-stationary signals into IMFs [16].
These IMFs are more straightforward oscillatory functions that shed light on the signal’s
composition and dynamics. The breakdown procedure adheres to a pair of criteria: (1) the
aggregate count of extrema and zero-crossings should be identical or have a discrepancy of
no more than one, which guarantees a harmonious oscillatory nature, and (2) the average
value of the upper and lower envelopes, which are determined by the local peaks and
troughs, ought to be null, signifying symmetry around the horizontal axis. Adherence to
these conditions is vital as it ensures each IMF has a mean value of zero, which is essential
for accurately determining the signal’s instantaneous frequency [11].

The EMD decomposition is realized as follows:
(1) The extreme points of the original time series data xt are fitted using cubic spline

interpolation to obtain the upper and lower envelopes ut and dt.
(2) Compute the average sequence of the superior and inferior envelopes m1(t):

m1(t) =
ut + dt

2
(7)

(3) The raw time series data xt is differenced from the envelope mean sequence m1(t)
to obtain the intermediate time series h1(t):

h1(t) = xt − m1(t) (8)

(4) Determine whether h1(t) satisfies the IMF condition, if so, h1(t) is the IMF part
from the original data. If not, iterate Steps (1)–(4) until the new provisional time series
h1k(t) satisfies the IMF condition and the standard deviation SD is less than the set value.
After that, h1k(t) is used as the first IMF component of the original data, denoted as c1(t):

c1(t) = h1k(t) (9)

SD =
T

∑
t=0

|h1(k−1)(t)− h1k(t)|2

h2
1(k−1)(t)

(10)

(5) The original timing data xt is compared with c1(t) to obtain the remaining sequence r1(t):

r1(t) = xt − c1(t) (11)

(6) Iterate r1(t) by the original data and iterate Steps (1)–(5) until the remaining
sequence rn(t) is a unidirectional function or a fixed value, procure the corresponding IMF
elements c1(t), c2(t), . . . , cn(t), and end the decomposition [17].

The original timing data are decomposed by EMD to obtain n IMF elements c1(t),
c2(t), . . . , cn(t), and the residue sequence rn(t):

x(t) =
n

∑
i=1

c1(t) + rn(t) (12)

2.5. EEMD Algorithm

In the process of employing EMD for signal decomposition, a phenomenon known
as modal aliasing is encountered. This pertains to the phenomenon where signals with
multiple time-scale attributes are encapsulated within a single IMF component, or the
scattering of the time-scale characteristics of one IMF component into additional IMF
components. During the EMD decomposition process, each IMF component is susceptible
to modal aliasing, which is subsequently transferred to the following IMF components
as the decomposition progresses, leading to signal distortion. The root cause of this
modal aliasing issue can be traced back to the frequent shifts and alterations of the local
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extreme value points during the EMD decomposition process. In real-world scenarios,
the data collected are invariably tainted with noise, making the noise-infected signal
more susceptible to modal aliasing. To address the issue of mode mixing associated with
EMD, Handrin and his team proposed a refined EMD approach based on noise-assisted
analysis, known as Ensemble Empirical Mode Decomposition (EEMD). This technique
entails the decomposition of signals post the addition of white noise through EMD [18]. The
fundamental concept behind EEMD is to perform several empirical mode decompositions
with the inclusion of Gaussian white noise, capitalizing on the statistical characteristic of
the noise’s frequency-uniform distribution. By adding different instances of white noise
with the same amplitude to modify the characteristics of the signal’s extremities, the IMFs
obtained from various EMD processes are averaged. This averaging process aims to cancel
out the effect of the added white noise, effectively reducing the likelihood of mode mixing.
The EEMD algorithm emerges as an effective tool for analyzing and processing non-linear
and non-stationary signals, offering a solution to the mode mixing challenge in signal
decomposition. However, it is not without its drawbacks, including (1) the presence of
residual white noise during decomposition, and (2) the reliance on experiential judgment
for selecting effective IMFs [19,20].

The EMD decomposition is realized as follows: add the noise ωn(t), n = 1, 2, . . . , N to
the original timing data X(t) to obtain the timing data Xn(t) to be decomposed:

Xn(t) = X(t) + ωn(t) (13)

Xn(t) is decomposed by EMD to obtain the corresponding IMF component ci, nt, i =
1, 2, . . . , m. rm,n(t) as the remaining sequence:

Xn(t) =
m

∑
i=1

c1,n(t) + rm,n(t) (14)

Iterate the above two steps, incorporating fresh white noise at each instance, for obtaining
the set of N IMF components and the remaining sequences [21]. The last step is obtained by
averaging the above N sets of IMF elements as well as the set of remaining sequences:

cn(t) =
1
n

N

∑
i=1

cin(t) (15)

rm(t) =
1
N

N

∑
n=1

rm,n(t) (16)

2.6. DEMA Algorithm

The computational procedure required to attain the intended signal decomposition
outcomes utilizing the EEMD algorithm can be time consuming. Furthermore, in instances
where the data are supplemented with inadequate white noise, the signal reconstructed
through EEMD decomposition will likely retain residual auxiliary signals. To address
the mode mixing problem found in the EMD algorithm, the EEMD and Complete EEMD
decomposition techniques reduce the mode mixing in EMD decomposition by adding both
positive and negative Gaussian white noise to the set of signals being decomposed. However,
these techniques often result in some remaining white noise within the extracted IMFs, which
can affect further signal analysis and processing. To overcome these drawbacks, Torres et
al. proposed a more sophisticated algorithm: the DEMA. By incorporating a noise-assisted
mechanism and an adaptive noise standard deviation, the DEMA algorithm improves
the resilience and precision of EMD when dealing with non-stationary signals [22,23]. Its
use has been widely recognized in the fields of signal processing and vibration analysis,
demonstrating enhanced performance over the conventional EMD in certain cases.
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3. Experiment and Discussion
3.1. Data Resources and Processing

Initially, an adaptive heart rate calculation approach based on Bayesian probability is
used to collect ECG data from the heartbeat interval sequence [15]. Each sequence of five-
minute heartbeat intervals is termed a sample. For classification, a proposed machine learn-
ing model is applied following preprocessing, feature extraction, and feature dimensionality
reduction. The categorization’s outcomes serve to validate the algorithm’s viability.

The adaptive heart rate is determined using Bayesian probability to determine the
order of heartbeat intervals. Ectopic beats can cause errors in the time and frequency
domain analysis of HRV, which is why the interval sequence needs to be preprocessed.
Upper and lower bounds are specifically defined to detect and rectify data that are more
than 1.3 times the average value of the R-R interval and falls below 0.7 times the average
value of the R-R interval [24]. The outlier’s adjustment value is determined by the correction
technique by squaring the median value of the thirty data points surrounding it. Once
the data are processed, the interval values are maintained within the standard threshold
range [25].

After the heartbeat interval sequence has been preprocessed, data points that fall
within a five-minute window are considered a sample, and the characteristics of the sample
data in the frequency and temporal domains are retrieved. To reduce the total forward
and backward prediction error power, the order of the autoregressive (AR) model is set at
16 using mathematical statistics techniques [26]. To estimate the power spectrum and get
the AR coefficient, Levenson Durbin recursion is used. The next step is to apply principal
component analysis to reduce the dimensionality of the feature matrix [27]. This allows for
the extraction of features from the samples and increases operational efficiency by using
fewer feature vectors to represent the original data.

The process of data processing by the DEMA model typically involves the following
steps: (1) Data Preparation: the first step is to prepare the input data, which may involve
tasks such as data cleaning, normalization, and feature engineering to ensure that the data
are suitable for training and prediction by the DEMA model. (2) Forward Propagation:
the input data are passed through the DEMA’s layers, where they undergo weighted
summation and activation function processing, propagating through each layer until they
reach the output layer. At each layer, the DEMA model computes and outputs a new
set of features. (3) Loss Computation: the predicted output from the output layer is
compared with the actual labels, and a loss function is calculated to measure the difference
between the predicted values and the actual values. (4) Backward Propagation: using the
backpropagation algorithm, the neural network adjusts the weights and biases of each layer
based on the gradient of the loss function, aiming to minimize the loss. This process uses
gradient descent to update the model parameters, allowing the DEMA model to better fit
the data. (5) Iterative Training: the above steps are repeated multiple times until the model
converges or reaches a predefined stopping condition. During training, a validation set
can be used to monitor the DEMA’s performance and make hyperparameter adjustments.
(6) Model Evaluation: once training is complete, the DEMA’s performance is evaluated
using test data, including metrics such as RMSE, MAE, and R².

3.2. Experimental Preparation and Results

In our study, to assess the proposed model’s performance and compare it with alterna-
tive models, we collected 3 hours of ballistocardiography (BCG) data from 20 participants,
dividing this data into an 80% training set and a 20% test set. The model’s implementation
was carried out using the PyTorch framework and Python programming language, with
the ADAM optimizer, a batch size of 1, and a learning rate of 0.0001. Additionally, we
employed 10-fold cross-validation to further divide the dataset for training, validation, and
testing purposes. This method allowed for continuous refinement of the model through
repeated tuning and training, leading to a consistent decrease in the error rate and thus
improved accuracy. The validation subset played a crucial role in fine-tuning the model’s
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parameters, enhancing its ability to generalize and make accurate predictions on new data.
To prevent overfitting, a dropout strategy was also implemented, ensuring the model’s
robustness and reliability.

Regarding the analysis of BCG signals, the precise gathering and interpretation of
HRV signals are imperative for assessing the cardiorespiratory condition. HRV analysis
quantifies the fluctuations in time intervals between successive heartbeats and examines
a range of indicators, encompassing both time-domain and frequency-domain measures.
These indicators offer valuable perspectives on the equilibrium of the autonomic nervous
system (ANS), levels of stress, recuperation rates, and potential indicators for various
medical conditions, establishing HRV as a non-invasive and potent instrument for gauging
ANS function and overall well-being.

Heart rate (HR) and respiratory rate (RR) were chosen as our study’s primary indica-
tors for evaluation. To quantify the accuracy and performance of the assessments, the study
utilized root mean square error (RMSE), mean absolute error (MAE), and the coefficient
of determination (R²) as the evaluation metrics. RMSE represents the square root of the
average of the squared differences between the predicted and actual values, serving as an
index of the variations between observed and true values. MAE calculates the average of
the absolute differences between predictions and actual values, providing a measure of the
average magnitude of errors in the predictions. R², also known as the coefficient of deter-
mination, quantifies the fit quality of the regression model by indicating the proportion
of variance in the dependent variable that is predictable from the independent variables
in the model. We refer to the support vector regression (SVR), backpropagation (BP), and
long short-term memory (LSTM) models, and counted the data derived from 10 volunteers
through four different models. In Table 1, when the Dynamic Exponential Moving Average
(DEMA) model performs best, the data of the individuals involved are emphasized. By
statistically analyzing the data, we can clearly observe that the DEMA model still performs
excellently even under different metrics.

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)2 (17)

MAE =
1
n

n

∑
i=1

|ŷi − yi| (18)

R2 = 1 − ∑i(ŷi − yi)
2

∑i(yi − yi)2 (19)

In our research, we utilized SVR, ELM, BPNN, and RNNs as benchmark models for
evaluating our proposed model, as shown in Table 2. The models were first subjected
to four preliminary successive experiments to establish a base benchmark. Subsequent
experiments were carried out using EMD as shown in Figure 5, EEMD as shown in Figure
6, and DEMA as shown in Figure 7, with the outcomes visually depicted in the associated
figure. Analysis of these results revealed that the benchmark models suffered from under-
fitting in comparison to the actual data. This underperformance was linked to inadequate
feature extraction, leading to discrepancies in curve trends and notably elevated HRV
measurements. On the other hand, EEMD showed improved alignment with the actual
data curves but still presented elevated HRV figures, suggesting insufficient extraction of
trends. For better visual representation, DEMA is referred to as EBLA in Figure 8. Further
scrutiny revealed that DEMA’s performance, in terms of both curve alignment and HRV
metrics, was significantly superior to that of the other models. This suggests that DEMA
was more effective in capturing the underlying trends and patterns in the data.
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Table 1. Summary of the proposed model.

Layer (Type) Output Shape

Conv1 (None, 6, 1, 56, 32)
LeakyRelu1 (None, 6, 1, 56, 32)

Maxpooling1 (None, 6, 1, 28, 32)
Dropout1 (None, 6, 1, 28, 32)

Conv2 (None, 6, 1, 28, 64)
LeakyRelu2 (None, 6, 1, 28, 64)

Maxpooling2 (None, 6, 1, 14, 64)
Dropout2 (None, 6, 1, 14, 64)

Fullyconnect1 (None, 6, 512)
LeakyRelu3 (None, 6, 512)

LSTM1 (None, 6, 512)
LSTM2 (None, 222)

Fullyconnect2 (None, 222)
Softmax (None, 222)

Table 2. Experimental results based on different methods.

HR RR

Metric Subject SVR BP LSTM DEMA SVR BP LSTM DEMA

#1 2.4928 2.1393 2.7355 2.7463 1.4045 1.2844 0.9645 0.6455
#2 6.1216 2.1342 0.9866 0.1213 2.1301 1.3203 1.7404 0.5321
#3 2.7937 1.5464 0.5027 0.4943 2.4852 1.4765 0.7035 0.5213
#4 3.2752 4.4643 3.6292 3.4753 0.5770 1.7979 0.6069 1.4153

RMSE #5 1.1852 2.7873 1.0835 0.8944 1.7928 1.9267 1.0789 1.0783
#6 5.0871 5.6618 5.9866 4.3185 0.7724 1.6106 0.7721 0.6306
#7 0.7704 1.2019 0.6527 0.4413 0.7689 1.3055 1.0115 1.9046
#8 3.6025 6.6618 6.1989 6.2372 0.2149 0.9005 0.1716 0.0178
#9 1.6989 2.4858 2.0137 1.0418 0.2701 0.4252 0.1776 0.1773

#10 0.8569 1.1270 0.9934 0.0981 1.4391 0.9743 1.4435 0.2236

#1 1.2679 3.2425 2.3323 2.3734 3.9909 3.8487 5.1445 4.5031
#2 5.0499 4.5413 4.7483 3.0294 4.5664 4.0096 5.6250 3.3313
#3 2.1315 2.0357 2.5423 1.2899 4.8342 4.9337 4.0027 3.2391
#4 2.6969 3.3541 2.7902 2.6000 4.2679 4.8385 4.3408 4.2623

MAE #5 5.9401 6.8456 5.8942 5.7944 6.6311 8.1211 6.8522 6.5737
#6 3.8128 2.8181 3.1676 2.0548 6.3954 7.0754 6.3953 6.3564
#7 6.5097 6.7780 6.6013 6.2018 7.5440 7.6954 7.1882 6.1065
#8 5.5451 6.8181 5.6584 5.5975 0.0662 0.8513 0.0361 0.0337
#9 3.3111 3.0900 3.6194 2.6336 0.1630 0.1175 0.0513 0.0483

#10 5.6370 4.9305 5.8267 5.0192 1.0615 1.2426 0.9195 0.0692

#1 0.9386 0.6920 0.9869 0.9687 0.9416 0.8213 0.6457 0.7991
#2 0.8549 0.8966 0.9764 0.9997 0.9607 0.9723 0.2129 0.9937
#3 0.8473 0.7607 0.9044 0.9964 0.8923 0.7685 0.9251 0.9952
#4 0.6923 0.7071 0.6553 0.6688 0.9646 0.7411 0.9975 0.8892
#5 0.9709 0.7379 0.9702 0.9833 0.9623 0.7254 0.9970 0.9991

R2 #6 0.8887 0.8395 0.8923 0.9074 0.7181 0.8160 0.8990 0.9007
#7 0.9246 0.8313 0.8561 0.9973 0.9524 0.7987 0.9677 0.9715
#8 0.9321 0.7395 0.9995 0.9997 0.6444 0.8160 0.9909 1.0000
#9 0.9069 0.8010 0.9967 0.9981 0.9658 0.7368 0.9989 0.9990

#10 0.8003 0.8245 0.9252 0.9174 0.8155 0.7646 0.7833 0.9946
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Figure 5. Signal modal decomposition diagram by EMD per second.

Figure 6. Signal modal decomposition diagram by EEMD per second.
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Figure 7. Signal modal decomposition diagram by DEMA per second.

Figure 8. HRV measurement results by all the models per second.

3.3. Summary

In our study, we chose four reference models for comparison with the model we
designed. These models include SVR, ELM, BPNN, and RNNs. These models were selected
due to their proven effectiveness in similar studies and their diverse methodologies, which
provide a comprehensive comparison of our designed model.

The initial four experiment phases were carried out one after the other, with each phase
utilizing one among the four benchmark models. This method enabled the independent
assessment of each model’s effectiveness, allowing for the identification of their respective
advantages and disadvantages. The results from these initial rounds of experiments
provided valuable insights that guided the subsequent stages of our study.

Following the initial rounds, we conducted further experiments using EMD, EEMD,
and DEMA. These methodologies were selected owing to their capacity to disintegrate a
signal into a limited number of intrinsic mode functions, which can be advantageous for
feature extraction.

The results of our experiments are illustrated in the accompanying figure. Upon
analysis, it becomes clear that the reference models did not deliver as high a performance as
expected. They demonstrated underperformance relative to the ground truth, a situation we
ascribe to inadequate feature extraction. Consequently, this led to trend lines in the curves
that strayed from the anticipated trajectory and markedly elevated HRV measurements.

In contrast, EEMD demonstrated a better fit to the ground truth curve. However, it
also produced substantially higher HRV values, which we believe is due to inadequate
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trend extraction. This suggests that while EEMD can capture the overall shape of the curve,
it struggles to capture the finer details accurately.

In contrast to the earlier research by Wang and colleagues [24], (1) sensors that rely
on loss are prone to damage during operation and do not match the sensitivity levels
of optical fiber interferometer sensors. (2) The expense associated with grating-based
sensors is considerable, posing challenges for their practical deployment. (3) Sensors that
utilize electrical principles for dual sensing exhibit inadequate responsiveness to faint
vibrational signals and struggle to yield high-fidelity signals amidst complex settings. The
optical fiber sensor introduced in this investigation effectively mitigates ambient noise and
enhances the integrity of the acquired signal. The monitoring framework presented here
is straightforward, economical, and non-intrusive. The fast Fourier transform (FFT) and
wavelet transform (WT), employed in prior studies, are conventional techniques. These
established techniques depend on predetermined feature extraction methods to isolate
pertinent data, which invariably leads to some degree of information loss. In this paper, the
proposed DEMA model is more robust to noise and outliers in the input data compared
to traditional algorithms. It can also lead to more accurate and robust feature extraction
compared to traditional algorithms.

For clarity in our discussion, we have denoted DEMA as EBLA. Upon analysis, it is
evident that EBLA outperformed the other models in both curve trends and HRV values.
This suggests that EBLA is capable of more accurate feature and trend extraction, making it
a promising tool for future studies.

4. Conclusions and Future Works
4.1. Research Summary

In this research paper, we have introduced a groundbreaking non-contact monitoring
system that utilizes a micro-bend fiber sensor. This innovative system represents a signifi-
cant departure from traditional monitoring systems that rely on FFT and WT algorithms.
The newly developed model is specifically designed to significantly reduce errors, thereby
enhancing the overall efficiency and reliability of the system.

One of the primary challenges that this model addresses is the pattern mixing problem,
a common issue in pure EMD algorithms. By integrating LSTM with the DEMA model, we
have successfully mitigated this problem. The suggested model has shown considerable
enhancements across different performance indicators, such as accuracy, precision, and
recall. These improvements are not merely incremental but are substantial enough to
enhance the accuracy of medical diagnostic measurements significantly.

The implications of this model are far-reaching and transformative. It holds the
potential to revolutionize the way medical diagnostic measurements are conducted, making
them more accurate, reliable, and efficient. This could lead to a paradigm shift in healthcare
delivery, with non-contact monitoring becoming the norm rather than the exception.

Moreover, the enhanced accuracy and reliability of diagnostic measurements could
lead to better patient outcomes. By providing clinicians with more accurate data, this model
could facilitate more precise diagnoses, more effective treatment plans, and more proactive
healthcare management. This model could also improve healthcare delivery by making it
more efficient and cost-effective. By reducing errors and improving accuracy, this model
could minimize the need for repeat tests and unnecessary interventions, thereby saving
time and resources.

In conclusion, the novel non-contact monitoring system presented in this paper rep-
resents a significant advancement in the field of medical diagnostics. With its potential
to enhance accuracy, improve patient outcomes, and streamline healthcare delivery, this
model could pave the way for a new era of non-contact monitoring in healthcare.

4.2. Future Works

As we look towards the future, we have identified several ambitious goals that we aim
to achieve. Our immediate task is to broaden the application of our current achievement
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into wider domains. We are confident that the principles and techniques utilized in this
model can be extrapolated to other areas, thereby expanding its utility and impact. This
could include applications in remote patient monitoring, home healthcare, and even fitness
and wellness tracking. The potential to revolutionize these areas with our non-contact
monitoring system is immense and we are excited to explore these possibilities.

Designing simplified experiments or configurations for this system represents another
difficult but essential goal on our future research agenda. We aim to make the system
more accessible and user-friendly, increasing its adoption in various settings. This involves
refining the user interface, simplifying the setup process, and providing clear instructions
and support for users. By doing so, we hope to make our non-contact monitoring system a
practical tool for everyday use, whether in a clinical setting or at home [28].

Additionally, we are enthusiastic about pursuing detailed conversations and possible
collaborative efforts with other fields, including EEG and the study of human ergonomics.
We believe that such interdisciplinary collaborations can lead to innovative solutions and
breakthroughs. For instance, integrating EEG data could allow our system to monitor
neurological activity, providing valuable insights into cognitive health. Similarly, insights
from human ergonomics could help us design a more comfortable and user-friendly device,
thereby enhancing user experience and adherence.

In addition to these goals, we also aim to address potential challenges and limitations
of our system. This includes improving the accuracy and reliability of our system, ensuring
data privacy and security, and making our system robust enough to handle the variability
and complexity of real-world data. We also plan to conduct rigorous validation studies to
ensure the clinical relevance and effectiveness of our system.

Lastly, we are committed to fostering a culture of continuous learning and innovation.
We plan to stay abreast of the latest research and technological advancements in our
field and to incorporate these into our system wherever possible. We believe that this
commitment to innovation and excellence will enable us to continually improve our system
and to stay at the forefront of the field of non-contact monitoring systems.

In conclusion, we are excited about the future of our non-contact monitoring system.
We believe that with continued research and development, our system has the potential to
significantly transform the landscape of health monitoring and to bring about significant
benefits for users worldwide.
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