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Abstract: This paper addresses the problem of fault detection in DC microgrids in the presence of
denial-of-service (DoS) attacks. To deal with the nonlinear term in DC microgrids, a Takagi-Sugeno
(T-S) model is employed. In contrast to the conventional approach of utilizing current sampling
data in the traditional event-triggered mechanism (ETM), a novel integrated ETM employs historical
information from measured data. This innovative strategy mitigates the generation of additional
triggering packets resulting from random perturbations, thus reducing redundant transmission data.
Under the assumption of faults occurring within a finite-frequency domain, a resilient event-based
H−/H∞ fault detection filter (FDF) is designed to withstand DoS attacks. The exponential stability
conditions are derived in the form of linear matrix inequalities to ensure the performance of fault
detected systems. Finally, the simulation results are presented, demonstrating that the designed
FDF effectively detects finite-frequency faults in time even under DoS attacks. Furthermore, the
FDF exhibits superior fault detection sensitivity compared to the conventional H∞ method, thus
confirming the efficacy of the proposed approach. Additionally, it is observed that a trade-off exists
between fault detection performance and the data releasing rate (DRR).

Keywords: DC microgrids; T-S fuzzy model; fault detection; DoS attacks; integrated event-triggered
mechanism

1. Introduction

With the development of renewable energy, DC microgrids have attracted increas-
ing attention due to the advantage of enabling customers to maintain electrical service
independently of the main grid [1]. Renewable energy sources are effectively utilized in
a DC microgrid through some structural devices, such as solar panels, wind turbines, and
batteries for energy storage. Such microgrids, therefore, can offer flexibility to operate
autonomously or in tandem with the main electrical grid, facilitating localized power
generation and distribution. Compared with traditional AC microgrids, DC microgrids
have many distinct merits, such as enhanced efficiency, seamless integration, and improved
compatibility with consumer electronics [2,3].

It is well known that constant power loads (CPLs) play a significant role in DC
microgrids because of the adverse effects on the nonlinearity degree and stability of the
overall system [4,5]. The nonlinear dynamics and negative incremental impedance of CPLs
may contribute to the deterioration of system performance and even system paralysis. To
address this, scholars have explored various methods, among which the T-S fuzzy method
can effectively approximate nonlinearities by a convex sum of local linear systems [6,7],
facilitating quantities of interesting research on CPLs of DC microgrids [8,9]. Regional
nonlinear methods are also used for system stability analysis [10,11]. In addition, as the
environment changes or the fault occurs, the system sometimes enters different modes as
in [12]; therefore, a fuzzy switching model is required to describe this behavior [13,14].

Owing to the low impedance characteristic of DC microgrid systems, the capacitive
filters linked with the converters swiftly discharge during a fault occurrence, leading to
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significant current surges within a short duration. If the fault cannot be solved promptly
and is not isolated from the microgrid systems, it may contribute to system instability or
even damage to the converter. Consequently, a fault detection filter (FDF) is designed to
capture changes in the system behavior by using measured outputs [15,16]. Note that
faults often occur within specific limited frequency bands in practical applications [17], and
to the best of the authors’ knowledge, little attention has been paid to the fault detection
problem for DC microgrids in the finite-frequency domain, which motivates this research.

The dispersed components in DC microgrids typically interact via a communication
network [18]. Even though the introduction of a communication network brings low cost
and high reliability, network resources are limited. Therefore, developing a suitable data
communication scheme is necessary to improve resource utilization without compromising
the system performance of DC microgrids. The event-triggered mechanism (ETM) has
been widely employed in the study of DC microgrids. Under an ETM, only the measure-
ments meeting a certain triggering condition can be released, thus reducing the amount
of transmission data. Applying such a communication scheme, the distributed secondary
control problem of DC microgrids with a single bus was solved in [19]. In [20], a distributed
self-triggered algorithm was developed for islanded microgrids, which greatly reduced
the computation costs. A memory-based ETM that included historical discrete sampling
data was investigated for intelligent vehicle transportation systems in [21]. Event-triggered
data-driven control was proposed for unknown interconnected systems in [22].

The openness and sharing of communication networks results in potential challenges,
such as data packet loss, network-introduced time delay, and malicious cyber-attacks.
Cyber attacks, such as deception attacks and DoS attacks, can compromise the electric
quality of microgrid systems or even lead to system collapse. DoS attackers launch an attack
by occupying the bandwidth of the communication network, thus interrupting signal
transmission. In this case, it leads to system stability or even paralysis. Consequently,
a large amount of research has been conducted on mitigating the impacts of DoS attacks.
For instance, event-based control strategies were developed for DC microgrids in the
presence of intermittent DoS attacks, as demonstrated in [23]. Studies in [24] explored the
consensus control of multi-agent systems against DoS attacks with specific constraints on
frequency and duration. The authors in [25] further investigated control systems under DoS
attacks, specifically focusing on scenarios where the end of DoS attacks does not coincide
with sampling times. Resilient control strategies were developed for nonlinear multi-agent
systems to mitigate the affect of DoS attacks in [26].

This paper focuses on finite-frequency fault detection for event-triggered DC micro-
grids using T-S fuzzy rules, considering DoS attacks. The main contributions of this work
are outlined below:

(1) A novel integrated ETM is proposed for DC microgrids, under which historical state
information is utilized to design the triggering condition. This ETM generates fewer
events compared to the traditional event-triggered mechanism (traditional ETM),
while ensuring the performance of fault detection for DC microgrids.

(2) An integrated event-triggered fault detection filter (FDF) is designed for DC microgrids
under DoS attacks. In contrast to existing fault detection methods for DC microgrids,
the frequency band of fault occurrence is considered in the proposed FDF, which
reduces the constructiveness of the filter design.

The remainder of this paper is organized as follows: Section 2 gives the problem
formulation. Section 3 presents the H−/H∞ FDF design method, along with sufficient con-
ditions. In Section 4, convincing simulation results are presented. Our work is concluded
in Section 5.

2. Problem Formulation
2.1. System Modeling

Figure 1 shows the typical circuit diagram of a DC microgrid, which consists of
multiple subsystems with N CPLs and one energy storage system (ESS) connected with the
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direct current source Vdc. For convenience, all the relevant physical variables in this paper
are denoted similarly to [23,27]. Define xk(t) = [iL,k vC,k]

T , where iL,k denotes the current
of the inductor, and vC,k is the voltage of the capacitor. Then, one can obtain the following
state function of the kth CPL:

ẋk(t) = Akxk(t) + gkνk(xk(t)) +Aksxs(t), k ∈ {1, 2, · · · , N}, (1)

where

Ak =

[
− rL,k

Lk
− 1

Lk
1

Ck
0

]
, gk =

[
0

− Pk
Ck

]
, Aks =

[
0 1

Lk
0 0

]
, νk(xk(t)) =

1
vC,k

.

Figure 1. Circuit diagram of DC microgrids.

Assume that all the CPLs are ideal, i.e., the power Pk remains unchanged, and the DC
microgrid has been stabilized by the energy storage current ies(t). Then, we can obtain

ẋs(t) = Asxs(t) + bsVdc + besies(t) +
N

∑
k=1

ιxk(t), (2)

where

As =

[
− rs

Ls
− 1

Ls
1

Cs
0

]
, ι =

[
0 0

− 1
Cs

0

]
, bs =

[ 1
Ls
0

]
, bes =

[
0

− 1
Cs

]
.

Using the method of shifting the equilibrium point as in [5], the DC microgrid with N
CPLs and one ESS can be formulated as

˙̃x(t) = Ax̃(t) +DH(x̃(t)) + Bes ĩes(t), (3)
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where ĩes(t) is designed by ĩes = K̃x̃(t) with a preset control gain K̃, and

x̃(t) = col{x̃1(t), x̃2(t) · · · x̃N(t), x̃s(t)} = x(t)− xe,

H(x̃) = col{ν1(x̃1(t)), ν2(x̃2(t)), · · · , νN(x̃N(t))}, Bes = col{0, · · · , 0, bes},

A =


A1 0 · · · 0 A1s
0 A2 · · · 0 A2s
...

...
. . .

...
...

0 0 · · · AN ANs
ι ι · · · ι As

, D =


g1 0 · · · 0
0 g2 · · · 0
...

...
. . .

...
0 0 · · · gN
0 0 · · · 0

,

wherein νk(x̃k(t)) = ṽC,k/vc0,k(ṽC,k + vc0,k); xe and vc0,k denote the equilibrium point of
DC microgrids and vc,k, respectively.

As demonstrated in [28], the multiple CPLs in a DC microgrid can be transformed into
only one equivalent CPL. Therefore, only one CPL is considered in this study.

Inspired by [27], assume the nonlinear term ν1/ṽC,1 is bounded by Vmin ≤ ν1/ṽC,1 ≤ Vmax
for a given local region R1,x̃ = {x̃| − w1,1 ≤ ĩL,1 ≤ w1,1,−w2,1 ≤ ṽc,1 ≤ w2,1}, where

Vmin =
1

vc0,1(w̃2,1 + vc0,1)
, Vmax =

1
vc0,1(−w̃2,1 + vc0,1)

. (4)

Applying the sector nonlinearity approach, ν1/ṽC,1 is expressed by{
ν1

ṽC,1
= M1Vmin +M2Vmax

M1 +M2 = 1
, (5)

where M1 and M2 are normalized membership functions.
Choose ν1/ṽC,1 as the premise variable θ(t), and define the membership functions as

φi(θ(t))(i ∈ {1, 2}). By solving (5), we have φ1(θ(t)) =
Vmax ṽC,1−ν1

(Vmax−Vmin)ṽC,1

φ2(θ(t)) =
ν1−Vmin ṽC,1

(Vmax−Vmin)ṽC,1

. (6)

Taking the external disturbance ρ(t) ∈ L2[0,+∞) and actuator fault f (t) into account,
the ith fuzzy rule is given by:

Rule i: If θ1(t) is Fi1, · · · , θr(t) is Fir, then{
˙̃x(t) = Āi x̃(t) +B1iρ(t) +B2i f (t)
y(t) = Ci x̃(t)

, (7)

where Āi = Ā0i + BesK̃i which is Hurwitz; y(t) denotes the measurable system output;
K̃i,B1i,B2i, and Ci are all known real constant matrices with appropriate dimensions and

Ā01 =


− rL,1

L1
− 1

L1
0 1

L1
1

C1

P1
C1
Vmin 0 0

0 0 − rs
Ls

− 1
Ls

− 1
Cs

0 1
Cs

0

, Ā02 =


− rL,1

L1
− 1

L1
0 1

L1
1

C1

P1
C1
Vmax 0 0

0 0 − rs
Ls

− 1
Ls

− 1
Cs

0 1
Cs

0

.

Applying the same technique in [25], the T-S fuzzy system can be expressed by:
˙̃x(t) =

2
∑

i=1
φi(θ(t))[Āi x̃(t) +B1iρ(t) +B2i f (t)]

y(t) =
2
∑

i=1
φi(θ(t))Ci x̃(t)

. (8)
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Moreover, according to [29], the finite-frequency fault f (t) can be described as:

ϖ := {ω ∈| τ(ω − ω1)(ω − ω2) ≤ 0}, (9)

where ω is the frequency of f (t), which can be categorized into the following cases:

(1) τ = 1, −ω1 = ω2, f (t) occurs in the low-frequency band.
(2) τ = 1, 0 ≤ ω2 − ω1 < 2π, f (t) occurs in the middle-frequency band.
(3) τ = −1, −ω1 = ω2, f (t) occurs in the high-frequency band.

Remark 1. Unlike general fault detection approaches of DC microgrids, the fault occurrence in the
finite-frequency domain is considered in this paper, reducing conservativeness in the filter design.

Before designing the fuzzy FDF for DC microgrids, a new premise variable θ̂(t) is
needed since the premise variable between the system and the FDF is actually asynchronous,
which is assumed to satisfy φ̂j − k j φj ≥ 0(0 < κj ≤ 1) [30]. For brevity, φi(θ(t)) and φj(θ̂(t))
are denoted by φi and φ̂j, respectively. Then, similarly to (8), the FDF is represented by

˙̂x(t) =
2
∑

j=1
φ̂j[A f j x̂(t) +B f jy f (t)]

r(t) =
2
∑

j=1
φ̂j[C f j x̂(t) +D f jy f (t)]

, (10)

where x̂(t) is the filter state vector; y f (t) is the filter input; r(t) is the generated resid-
ual signal; A f j, B f j, C f j and D f j are the filter gain matrices with proper dimensions to
be designed.

2.2. DoS Attacks and the ETM Design

In this study, a general model of DoS attacks with a fixed period T is considered [31]:

Sdos =

{
1, t ∈ [nT, nT + Toff(n))
0, t ∈ [nT + Toff(n), nT + T),

(11)

where Toff(n) is lower-bounded by Tmin
off due to power constraints. The whole attack period

includes a sleeping period [nT, nT+Toff(n)) and an active period [nT+Toff(n), nT+T). By
defining kn = sup{k ∈ N|nT + Toff(n) ≥ tk,n}, ln = sup{l ∈ N|nT + Toff(n) ≥ tk,n + lh},
and considering the historical information, the integrated ETM can be obtained:

[ȳm(tk,n + lh)− ȳm(tk,n)]
TΩ[ȳm(tk,n + lh)− ȳm(tk,n)]

> εȳT
m(tk,n + lh)Ωȳm(tk,n + lh), k ∈ {0, 1, · · · , kn}, l ∈ {1, 2, · · · , ln}, (12)

where tk,n denotes the real transmitted instant, and ȳm(tk,n) denotes the output of the event
generator averaged by the integral, which is defined as

ȳm(tk,n) =
1
T

∫ tk,n

tk,n−T
y(s)ds. (13)

Adopting Simpson’s rule in [32], one has

1
T

∫ tk,n

tk,n−T
y(s)ds ≈ 1

6
y(tk,n) +

2
3

y(tk,n −
T
2
) +

1
6

y(tk,n − T ), (14)

where T is a preset integral period.
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Combining (12) and (13) yields the actual input of the FDF with the proposed inte-
grated ETM:

y f (t) =

{
ȳm(tk,n), t ∈ Hk,n ∩L1,n

0, t ∈ L2,n,
(15)

whereHk,n = [tk,n, tk+1,n); L1,n and L2,n stand for [nT, nT+Toff(n)) and [nT+Toff(n), nT+T),
respectively.

Remark 2. In (13), when the integral period T sets to be zero, the proposed integrated ETM
becomes a normal traditional ETM, as in [33,34].

2.3. T-S Fuzzy Switched Residual System

For technical convenience, define the following continuous intervals:
F0

n = [tk,n, tk,n + h),
Fl

n = [tk,n + lh, tk,n + lh + h),
Fln

n = [tk,n + lnh, nT + Toff(n)).

Then, for t ∈ L1,n, the following definition is presented:

ηk,n(t) =


t − tk,n, t ∈ F0

n

t − tk,n − lh, t ∈ Fl
n

t − tk,n − lnh, t ∈ Fln
n

ek,n =


0, t ∈ F0

n

y(tk,n)− y(tk,n + lh), t ∈ Fl
n

y(tk,n)− y(tk,n + lnh), t ∈ Fln
n .

For t ∈ L2,n, DoS attacks are active; in this case, ηk,n(t) = ek,n = 0.
Define ηk,n(t) = ϵ, and τg,n = (g − 1)Toff(n) + nT (g = 1, 2) for brevity. Based on the

above discussion, denote ψ(t) = col{x̃(t), x̂(t)}, ϑ(t) = col{ρ(t), f (t)}, and
re(t) = r(t)− f (t); then, one can derive the following switched augmented system: for
t ∈ [τg,n, τ3−g,n+g−1),

ψ̇(t) =
2
∑

i=1

2
∑

i=1
φi φ̂j[A1,ijψ(t) +A

g
2,ijψ(t − ϵ) + βϑ(t) + Eg

1,jek,n(t)

+A
g
3,ijψ(t − ϵ − T

2 ) +A
g
4,ijψ(t − ϵ − T )]

re(t) =
2
∑

i=1

2
∑

i=1
φi φ̂j[C1,jψ(t) + Cg

2,ijψ(t − ϵ) + H̄ϑ(t) + Eg
2,jek,n(t)

+ Cg
3,ijψ(t − ϵ − T

2 ) + Cg
4,ijψ(t − ϵ − T )]

, (16)

where

A1,ij =

[
Āi 0
0 A f j

]
, A1

d+1,ij =

[
0 0

ndB f jCi 0

]
(d = 1, 2, 3), B̄ = [B1 B2],

βi =

[
B̄i
0

]
, E1

1,j =

[
0

B f j

]
, C1,j = [0 C f ], C1

l+1,ij = [nlD f jCi 0]

E1
2,j = D f j, H̄ =

[
0 −I

]
, A2

l+1,ij = C2
l+1,ij = E1,2 = E2,2 = 0

n1 =
1
6

, n2 =
2
3

, n3 =
1
6

.



Sensors 2024, 24, 2677 7 of 17

In order to detect the occurrence of actuator faults, the following evaluation function
χ(t) is constructed:

χ(t) =

√∫ t

0
rT(s)r(s)ds, (17)

with the threshold χth chosen as

χth = sup
ρ(t)∈L2, f (t)=0

χ(t), (18)

and the fault is detected by {
χ(t) > χth ⇒ faulty
χ(t) ≤ χth ⇒ fault free.

(19)

In this article, the main purpose of this paper is to design an H−/H∞ FDF such that

1. When ϑ(t) ≡ 0, the system (16) achieves exponential stability.
2. Under zero initial conditions, when ρ(t) ≡ 0, f (t) ̸= 0, the H− fault sensitivity

condition ∫ ∞

0
rT

e (t)re(t)dt ≥ β2
∫ ∞

0
f T(t) f (t)dt (20)

holds for all solutions of (16) satisfying∫ ∞

0
τ(ω1ψ(t) + jψ̇(t))(ω2ψ(t) + jψ̇(t))∗dt ≤ 0, (21)

where the asterisk ∗ denotes the conjugate transpose.
3. Under zero initial conditions, when f (t) ≡ 0, ρ(t) ̸= 0, the system (16) is H∞ bounded by∫ ∞

0
rT

e (t)re(t)dt ≤ γ2
∫ ∞

0
ρT(t)ρ(t)dt. (22)

In what follows, some crucial lemmas are presented to help obtain the main results.

Lemma 1 ([35]). If there exist a matrix M =

[
R G
∗ R

]
≥ 0, R > 0, scalars 0 ≤ d(t) ≤ d, and a

vector function ẋ : [−d, 0] → Rn, the following inequality

−d
∫ t

t−d
ẋT(s)Rẋ(s)ds ≤ OT(t)ZO(t) (23)

holds with

OT(t) = [xT(t) xT(t − d(t)) xT(t − d)]

Z =

−R R− G G
∗ [G −R]s R−G
∗ ∗ −R

.

Lemma 2 ([36]). Suppose f (t) ∈ R is integrable, then∫ +∞

−∞
|| f (t)||2dt =

1
2π

∫ +∞

−∞
||F(jw)||2dw (24)

holds, where F(jw) is the Fourier transform of f (t).
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Lemma 3 ([36]). If X is a complex Hermitian matrix, X < 0 is equivalent to[
Re(X) Im(X)
−Im(X) Re(X)

]
< 0. (25)

3. Main Results

Theorem 1. For given positive constants T, Ω, Tmin
off , h < Tmin

off , π, ε, γ, α, β, ki (i = 1, 2), and
µg > 1 (g = 1, 2), the switched system (16) is exponentially stable with an H∞ attenuation level γ
and an H− index β, if positive symmetric matrices QH

f , Pg, Qgm, Rgm, Ggm (m = 0, 1, 2), and

matrices Mgr
i (r = 1, 2), A f j, B f j, C f j, D f j (j = 1, 2) with proper dimensions exist, such that the

following inequalities hold:

Πgr
ij < 0, kiΠ

gr
ij + k jΠ

gr
ji +Mgr

i +Mgr
j < 0 (i < j), (26)[

Rgm Ggm
∗ Rgm

]
> 0, (27)

Pg ≤ µ3−gP3−g

Qgm ≤ µ3−gQ(3−g)m

Rgm ≤ µ3−gR(3−g)m

, αT − In(µ1µ2) > 0, (28)

where

Ψgr
ij =

Φgr
ij ∆g

ij ΞgT

ij
∗ −Rg 0
∗ ∗ −I

, Πgr
ij = Ψgr

ij −Mgr
i ,

Φ1r
ij =


Γ1r

11ij Γ1r
12ij Γ1r

13 Γ1r
14i Γ1r

15j
∗ Γ1r

22i Γ1r
23 0 0

∗ ∗ Γ1r
33 0 0

∗ ∗ ∗ Γ1r
44 0

∗ ∗ ∗ ∗ −Ω

, Φ2r
ij =


Γ2r

11ij Γ2r
12ij Γ2r

13 Γ2r
14i

∗ Γ2r
22 Γ2r

23 0
∗ ∗ Γ2r

33 0
∗ ∗ ∗ Γ2r

44

,

Λ1
ij = [A1,ij Âij 0 β1 E1

1,j], Λ2
ij = [A1,ij 0 0 β2],

Ξ1
ij = [C1,j Ĉij 0 H̄ E1

2,j], Ξ2
ij = [C1,j 0 0 H̄],

∆g
ij = [h0ΛgT

ij H
TRg0 h1ΛgT

ij H
TRg1 h2ΛgT

ij H
TRg2], Γg1

11ij = Γg2
11ij − w1w2QH

f ,

Γgr
12ij = [ngr

0,ij ngr
1,ij ngr

2,ij], Γg2
11ij = αPg + [PgAg,ij]s +

2

∑
i=0

[QH
gm − e−αhmRH

gm],

Γgr
13 = [e−αh0GH

g0 e−αh1GH
g1 e−αh2GH

g2], Γg1
14i = [Pg − jw0QH

f ]βi, Γg2
14i = Pgβi,

Γ11
15j = [P1 − jw0QH

f ]E
1
1,j, Γ12

15j = P1E1
1,j, Γ2r

22 = diag{J 2
0 ,J 2

1 ,J 2
2 }

Γ1r
22i =

J
1
0,i εn2

1C̄T
i ΩC̄i εn2

2C̄T
i ΩC̄i

∗ J 1
1,i εn2

3C̄T
i ΩC̄i

∗ ∗ J 1
2i

, Γgr
23 = diag{dg0, dg1, dg2},

Γgr
33 = diag{rg0, rg1, rg2}, Γg1

44 = −β2 I, Γg2
44 = −γ2 I, hm = h + 0.5mT,

ng1
m,ij = [Pg − jw0QH

f ]A
g
m+2,ij + e−αhm [RH

gm − GH
gm], dgm = e−αhg [RH

gm − GH
gm]

ng2
m,ij = PgA

g
m+2,ij + e−αhm [RH

gm − GH
gm], rgm = −e−αhm [QH

gm +RH
gm]

J 1
m,i = e−αhm [GH

1m −RH
1m]s + n2

m+1εC̄T
i ΩC̄i, J 2

m = e−αhm [GH
2m −RH

2m]s,

QH
f = HTQ f H, RH

gm = HTRgmH, QH
gm = HTQgmH, GH

gm = HTGgmH,

Ĉij = [C1
2,ij C1

3,ij C1
4,ij], Â = [A1

2,ij A1
3,ij A1

4,ij], Rg = diag{Rg1,Rg2,Rg3},

H = [I 0], C̄i = [Ci 0].



Sensors 2024, 24, 2677 9 of 17

Proof. Choose a piecewise Lyapunov function as follows:

Vg(t) = V1
g (t) + V2

g (t) + V3
g (t), (29)

with

V1
g (t) = ψT(t)Pgψ(t),

V2
g (t) =

2

∑
m=0

∫ t

t−hm
e−α(t−s)ψT(t)QH

gmψ(t)ds,

V3
g (t) =

2

∑
m=0

hm

∫ t

t−hm

∫ t

θ
e−α(t−s)ψ̇T(t)RH

gmψ̇(t)dsdθ.

Differentiating Vg(t) in (29) yields:

V̇1
g (t) = 2ψT(t)Pgψ̇(t),

V̇2
g (t) = −αV2

g (t) +
2

∑
m=0

(1 − e−αhm)ψT(t − hm)QH
gmψ(t − hm),

V̇3
g (t) ≤ −αV3

g (t) +
2

∑
m=0

h2
mψ̇T(t)RH

gmψ̇(t)−
2

∑
m=0

hm

∫ t

t−hm
ψ̇T(t)RH

gm
˙ψ(t)ds. (30)

To analyze the H− fault sensitivity condition β and H∞ performance level γ, define
J1(t) and J2(t) as:

J1(t) = β2 f T(t) f (t)− rT
e (t)re(t), (31)

J2(t) = rT
e (t)re(t)− γ2ρT(t)ρ(t). (32)

Assume that the fault occurs in the middle-frequency domain, and using Lemma 2, it
follows that

U =
∫ +∞

0
[(ω1ψ(t) + jψ̇(t))(ω2ψ(t) + jψ̇(t))∗]dt

=
1

2π

∫ +∞

−∞
[(ω1 − ω)(ω2 − ω)X (ω)X T(ω)]dω, (33)

where X denotes the Fourier transform. According to (9), it is obvious that τU ≤ 0 holds
for all solutions of (16), which is equivalent to (21). Note that QH

f ≥ 0; then, we have

tr(UQH
f ) ≤ 0. Similar to the trace operations in [29], one can obtain that

tr{
QH

f

2
He[(ω1ψ(t) + jψ̇(t))(ω2ψ(t) + jψ̇(t))∗]}

= ψT(t)ω1ω2QH
f ψ(t) + ψT(t)jω0QH

f ψ̇(t)− ψ̇T(t)jω0QH
f ψ(t) + ψ̇T(t)QH

f ψ̇(t) ≤ 0, (34)

with ω0 = 1/2(ω1 + ω2).
For t ∈ Hk,n ∩ L1,n, define ϖ1(t) = col{ψ(t), ψ(t − ϵ), ψ(t − ϵ − T

2 ), ψ(t − ϵ − T ),
ψ(t − h), ψ(t − h − T

2 ), ψ(t − h − T ), ϑ(t), ek,n(t)}. Combining (12), (27), (30)–(34), and
Lemma 1 yields that

V̇1(t) + αV1(t) + Jr(t) ≤
2

∑
i=1

2

∑
j=1

ϖT
1 (t)Φ̂

1r
ij ϖ1(t), (35)

with Φ̂1r
ij = Φ1r

ij + ∆1
ijR

−1
1 ∆1T

ij + Ξ1T

ij Ξ1
ij.
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Note that the membership functions satisfies

2

∑
i=1

2

∑
j=1

φi(φ̂j − φj)ϖ
T
1 (t)Φ̂

1r
ij ϖ1(t) = 0. (36)

Combining (36) and φ̂j ≥ k j φj, it follows that

2

∑
i=1

2

∑
j=1

φi φ̂jϖ
T
1 (t)Φ̂

1r
ij ϖ1(t) ≤

2

∑
i=1

2

∑
j=1

φ2
i ϖT

1 (t)[ki(Φ̂1r
ij −M1r

i ) +M1r
i ]ϖ1(t)

+
2

∑
i=1

∑
i<j

φi φjϖ
T
1 (t)[ki(Φ̂1r

ij −M1r
i ) +M1r

i + k j(Φ̂1r
ji −M1r

j ) +M1r
j ]ϖ1(t). (37)

Using the Schur complement to (26), it is easy to derive that Φ̂1r
ij < 0.

Likewise, for t ∈ [τ2,n, τ1,n+1), defining ϖ2(t) = col{ψ(t), ψ(t − ϵ), ψ(t − ϵ − T
2 ),

ψ(t − ϵ − T ), ψ(t − h), ψ(t − h − T
2 ), ψ(t − h − T ), ϑ(t)}, it holds that

V̇2(t) + αV2(t) + Jr(t) ≤ ϖT
2 (t)Φ̂

2r
ij ϖ2(t), (38)

with Φ̂2r
ij = Φ2r

ij + ∆2
ijR

−1
2 ∆2T

ij + Ξ2T

ij Ξ2
ij.

Let ϑ(t) ≡ 0, and considering the arbitrary of k, one has

Vg(t) ≤ e−α(t−τg,n)Vg(τg,n), ∀t ∈ [τg,n, τ3−g,n+g−1). (39)

Combining (28) and (39), we can obtain

Vg(τg,n) ≤ µ3−gV3−g(τ
−
g,n). (40)

Based on the above discussion, adopting the similar recursive process in [37] yields

V(t) ≤
{

V1(0)eδ− δ
T t, t ∈ [τ1,n, τ2,n)

1
µ2

eα(T−Tmin
off )e−

δ
T tV1(0), t ∈ [τ2,n, τ1,n+1),

(41)

which implies

V(t) ≤ πe−
δ
T tV1(0), (42)

with π = max{ek, (1/µ2)eα(T−Tmin
off )}, δ = αT − In(µ1µ2) > 0.

Recalling the definition of V(t), and denoting
∥∥ψ0

∥∥
h = max{∥ψ(t0 + s)∥, ∥ψ̇(t0 + s)∥}

for s ∈ [−h, 0), then, it is easy to obtain that

V(t) ≥ ξ1
∥∥ψ(t)

∥∥2, V1(0) ≤ ξ2
∥∥ψ0

∥∥2
h, (43)

with ξ1 = min{λmin(Pg)}, ξ2 = max{λmax(Pg)+∑2
m=0{(h3

m/2)λmax(Rgm)+λmax(Qgm)}.
Combining (42) and (43) yields that

∥∥ψ(t)
∥∥ ≤

√
πξ2

ξ1
e−

δ
2T t∥∥ψ0

∥∥
h, (44)

which indicates that the system (16) is exponentially stable with the decay rate δ/2T.
In the following, the H− fault sensitivity and H∞ norm bound of the proposed sys-

tem (16) will be proved, respectively.
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For ρ(t) ≡ 0 under zero initial conditions, it is obvious that J1(t) < 0 is equivalent
to the H− condition in (20). Considering the fact that Vg(+∞) > 0, Vg(0) = 0, integrating
J1(t) from 0 to +∞, it follows that∫ ∞

0
J1(t)dt =

∫ +∞

0
[J1(t) + V̇g(t) + αVg(t)]dt − Vg(+∞) + Vg(0)−

∫ +∞

0
αVg(t)dt

≤
∫ ∞

0
[Jg(t) + V̇g(t) + αVg(t)]dt ≤ 0, (45)

which implies the system (16) satisfies the H− condition in (20).
For f (t) ≡ 0 under zero initial conditions, employing a similar method, we have that

if J2(t) < 0 holds, the H∞ performance objective in (22) is satisfied. By the same analysis
as J1(t), one can obtain∫ ∞

0
J2(t)dt ≤

∫ ∞

0
[J2(t) + V̇g(t) + αVg(t)]dt ≤ 0, (46)

which means that the system (16) has an H∞ norm bound γ in (22). This ends the proof.

Theorem 2. For given positive constants T, Tmin
off , h < Tmin

off , ε, γ, α, β, ki, and µg > 1, the
system (16) is exponentially stable with an H∞ norm bound γ while also sensitive to the finite-
frequency faults, if positive symmetric matrices Q f , P̃g, Qgm, Rgm, Ω, W , and matrices Ā f j, B̄ f j,
C̄ f j, D̄ f j, N

gr
i , Ggm exist with P̃g −W > 0, such that

Π̄gr
ij < 0, kiΠ̄

gr
ij + k jΠ̄

gr
ji +N gr

i +N gr
j < 0 (i < j), (47)[

Rgm Ggm
∗ Rgm

]
> 0, (48)

P̃g ≤ µ3−gP̃3−g

Qgm ≤ µ3−gQ(3−g)m

Rgm ≤ µ3−gR(3−g)m

, αT − In(µ1µ2) > 0, (49)

where

Ψ̄gr
ij =

Φ̄gr
ij ∆̄g

i Ξ̄gT

ij
∗ −Rg 0
∗ ∗ −I

, Π̄g1
ij =

[
Re(Ψ̄g1

ij ) Im(Ψ̄g1
ij )

−Im(Ψ̄g1
ij ) Re(Ψ̄g1

ij )

]
−N g1

i , Π̄g2
ij = Ψ̄g2

ij −N g2
i ,

Φ̄1r
ij =



Γ̄1r
11i Γ̄1r

12j Γ̄1r
13ij Γ̄1r

14 Γ̄1r
15i B̄ f j

∗ Γ̄1r
22j Γ̄1r

23ij 0 WB̄i B̄ f j

∗ ∗ Γ̄1r
33i Γ̄1r

34 0 0
∗ ∗ ∗ Γ̄1r

44 0 0
∗ ∗ ∗ ∗ Γ̄1r

55 0
∗ ∗ ∗ ∗ ∗ −Ω


, Φ̄2r

ij =


Γ̄2r

11i Γ̄2r
12j Γ̄2r

13ij Γ̄2r
14 Γ̄2r

15i
∗ Γ̄2r

22j Γ̄2r
23ij 0 WB̄i

∗ ∗ Γ̄2r
33 Γ̄2r

34 0
∗ ∗ ∗ Γ̄2r

44 0
∗ ∗ ∗ ∗ Γ̄2r

55

,

Λ̄1
i = [Āi 0 0 0 B̄i 0], Λ̄2

i = [Āi 0 0 0 B̄i],

Ξ̄1
ij = [0 C̄ f j Ĉij 0 H̄ D f j], Ξ̄2

ij = [0 C̄ f j 0 0 H̄],

∆̄g
i = [h0Λ̄gT

i Rg0 h1Λ̄gT

i Rg1 h2Λ̄gT

i Rg2], Γ̄g1
11i = Γ̄g2

11i − w1w2Q f ,

Γ̄g2
11i = αP̃g + [P̃gĀi]s +

2

∑
i=0

[Qgm − e−αhmRgm], Γ̄gr
12j = αW + Ā f j,
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Γ̄gr
13ij = [n̄g

0,ij n̄g
1,ij n̄g

2,ij], Γ̄gr
14 = [e−αh0Gg0 e−αh1Gg1 e−αh2Gg2], Γ̄g2

15i = P̃gB̄i,

Γ̄g1
15i = [P̃g − jw0Q f ]B̄i, Γ̄gr

22j = αW + [Ā f j]s, Γ̄gr
23ij = [ñ0,ij ñ1,ij ñ2,ij],

Γ̄1r
33i =

J̄ 1
0,i ω0,i ω1,i
∗ J̄ 1

1,i ω2,i
∗ ∗ J̄ 1

2,i

, ωm,i = n2
m+1εCT

i ΩCi, Γ̄gr
34 = diag{d̄g0, d̄g1, d̄g2},

Γ̄2r
33 = diag{J̄ 2

0 , J̄ 2
1 , J̄ 2

2 }, Γ̄gr
44 = diag{r̄0

g, r̄1
g, r̄2

g}, Γ̄1r
55 = −β2 I, Γ̄2r

55 = −γ2 I,

n̄g
m,ij = ñm,ij + e−αhm [Rgm − Ggm], ñm,ij = nm+1B̄ f jCi, r̄m

g = −e−αhm [Qgm +Rgm],

J̄ 1
m,i = e−αhm [G1m −R1m]s + n2

m+1εωi, J̄ 2
m = e−αhm [G2m −R2m]s.

Moreover, the filter gains are given by

A f j = Ā f jW−1, B f j = B̄ f j, C f j = C̄ f jW−1, D f j = D̄ f j. (50)

Proof. Suppose Pg =

[
P̃g X
∗ Z

]
, and define F1 = {I,XZ−1, I, I, I, I, I, I}, F2 = {I,XZ−1,

I, I, I, I, I}. Pre- and post-multiplying Ψgr
ij with Fg and its transpose yields Ψ̄gr

ij , with new
variables denoted as follows:

Ā f j = XA f jZ−1X T , B̄ f j = XB f j, W = XZ−1X T

C̄ f j = C f jZ−1X T , D̄ f j = D f j.

Similarly to (36), it holds that

2

∑
i=1

2

∑
j=1

φi(φ̂j − φj)(Π̄
gr
ij +N gr

i ) = 0. (51)

Combining (47), (51), and φ̂j ≥ k j φj, it follows that

2

∑
i=1

2

∑
j=1

φi φ̂j(Π̄
gr
ij +N gr

i ) ≤
2

∑
i=1

2

∑
j=1

φ2
i [kiΠ̄

gr
ij +N gr

i ]

+
2

∑
i=1

∑
i<j

φi φj[kiΠ̄
gr
ij +N gr

i + k jΠ̄
gr
ij +N gr

j ] ≤ 0. (52)

By Lemma 3 and (52), we have Ψ̄gr
ij < 0, which is equivalent to Ψgr

ij < 0. Then,

it holds that Φ̂gr
ij < 0 by the Schur complement. In addition, Pg > 0 is equivalent to

P̃g −XZ−1X T > 0, i.e., P̃g −W > 0. Therefore, by following the similar proof process in
Theorem 1, the exponential stability of the system (16) can be obtained, along with the H∞
attenuation level γ and the H− sensitivity condition β.

Using the similar approach in [32], the FDF gains can be calculated as in (50). This
ends the proof.

4. Simulation

A DC microgrid with one CPL is presented in this section, where the circuit parameters
are set as: rL,1 = 0.8Ω, rs = 0.4Ω, L1 = 40 mH, C1 = 1 mf, Ls = 17.3 mH, Cs = 1.05 mf,
P1 = 450 W, Vdc = 200 V. Choose the reference voltage vc0,1 as 300 V, and w̃2,1 as 100 V. The
fuzzy membership functions are given by:{

φ1(t) = 2 − 400
300+ṽC,1(t)

φ2(t) = 1 − φ1(t)
. (53)
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Choose the system controller K̃i as K̃1 = K̃2 = [−0.0389 −0.0002 0.0016 −0.0007].The
initial states of the DC microgrids and the FDF are given by xT(0) = [−0.003 0.283 0.28
0.28], and x̂T(0) = [0 0 0 0], respectively.

The external disturbance ρ(t) and the finite-frequency fault f (t) are given by:

ρ(t) =

{
10e−7.5tsin(50t), t ∈ [0, 1]
0, otherwise,

, (54)

f (t) =

{
10e−0.1tsin(8πt), t ∈ [0.2, 0.5]
0, otherwise.

(55)

Set α = 0.4, µ1 = µ2 = 1.02, T = 0.1 s, Tmin
off = 0.025 s, h = 0.001 s, ε = 0.05, ki = kj = 0.5,

ω1 = 3 s−1, ω2 = 5 s−1, T = 0.001 s, γ = 10, β = 1.225. By solving Theorem 2, the gain
matrices of the proposed FDF and the event-triggered matrix Ω are obtained:

A f1 = 10−4 ×


0.0001 −0.1445 −0.0001 0.0004
0.0012 −0.1434 0.0000 −0.0005
−0.0001 −0.0021 0.0001 −0.0007
−0.0006 −0.0021 0.0003 −0.0009

,

A f2 = 10−4 ×


0.0001 −0.1290 −0.0001 0.0003
0.0008 −0.1298 0.0000 −0.0004
−0.0001 −0.0019 0.0001 −0.0006
−0.0005 −0.0019 0.0003 −0.0008

,

B f1 =
[
0.0065 −0.0012 0.0038 0.0007

]T ,

B f2 =
[
0.0084 −0.0015 0.0049 0.0009

]T ,

C f1 = 10−4 ×
[
−0.0401 −0.3097 −0.0399 −0.0477

]
,

C f2 = 10−4 ×
[
−0.0242 −0.1873 −0.0242 −0.0288

]
,

D f 1 = −0.0062, D f 2 = −0.0231, Ω = 0.0027.

Figure 2 illustrates the output behavior of the DC microgrid under two conditions:
without and with the fault f (t) described in (55). The comparison reveals a significant
impact of the fault on the system dynamics. Utilizing such output for control feedback
poses challenges in achieving system stability. Hence, prompt detection of this fault is
imperative to prevent damage from the DC microgrid system. Moreover, note that the
generated signal r(t) changes greatly when the fault occurs at t = 0.2s, which is helpful for
the fault detection.

(a) System output y(t) (b) The residual signal r(t)

Figure 2. Impacts of f (t) on the system output y(t) and the residual signal r(t).
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Figure 3 displays the release instants and releasing intervals of the system under the
proposed integrated ETM and the traditional ETM, respectively. Table 1 records the data
releasing rate under the above two ETMs. It can be observed that the data releasing rate
under our proposed integrated ETM is 14.4%, which is much less than the one under the
traditional ETM, thus saving the limited network resource.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(a) Under the proposed integrated ETM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(b) Under the traditional ETM

Figure 3. Release instants under different triggering mechanisms.

Table 1. The DRR under differents ETMs.

Cases Traditional ETM Our Integrated ETM

Total sampling 1000 1000
Total releasing 297 144

DRR 29.7% 14.4%

Figure 4 depicts the fault detection performance with different triggering mechanisms,
from which we can observe that by the proposed ETM, the fault is detected at t = 0.223 s,
which is slower than the traditional ETM (t = 0.214 s), indicating that although our inte-
grated ETM can further reduce the resource utilization of the network, there still exists
a trade-off between the fault detection performance and the amount of releasing data.

X 0.223

Y 0.00293598

(a) Under the proposed integrated ETM

X 0.214

Y 0.00276297

(b) Under the traditional ETM

Figure 4. Fault detection performance under different triggering mechanisms.

From Figure 5, it is observed that the general H∞ FDF detects the fault until t = 0.226 s,
which is slower than the proposed method for the fault detection in Figure 4 (t = 0.223 s).
The proposed FDF method in this study is designed for the fault occurring within a specified
frequency band, thereby exhibiting less conservatism compared to general H∞ methods
designed to detect faults across the entire frequency.
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X 0.226

Y 0.00733527

Figure 5. Fault detection performance using H∞ method.

5. Conclusions

A resilient event-based H−/H∞ FDF for DC microgrids against DoS attacks has been
designed in this paper, where the actuator fault is assumed to occur in a finite-frequency
domain, reducing more conservatism in the FDF design. The T-S fuzzy model is used
to handle nonlinear CPLs in DC microgrids, and a novel integrated ETM is proposed to
further decrease the unnecessary triggering events compared to the traditional ETM. By
constructing the switched residual system based on fuzzy rules, sufficient conditions of
exponential stability are obtained, along with the H∞ attenuation bound and H− sensitive
condition. The simulation results demonstrate the FDF’s ability to rapidly detect finite-
frequency faults, even in the presence of a DoS attack. Notably, its superior performance
compared to the conventional H∞ method underscores the effectiveness of the proposed
approach. For future research, fault detection against hybrid attacks for DC microgrids
requires deeper investigation.
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