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Abstract: With the development of biometric identification technology, finger vein identification
has received more and more widespread attention for its security, efficiency, and stability. However,
because of the performance of the current standard finger vein image acquisition device and the
complex internal organization of the finger, the acquired images are often heavily degraded and
have lost their texture characteristics. This makes the topology of the finger veins inconspicuous
or even difficult to distinguish, greatly affecting the identification accuracy. Therefore, this paper
proposes a finger vein image recovery and enhancement algorithm using atmospheric scattering
theory. Firstly, to normalize the local over-bright and over-dark regions of finger vein images within a
certain threshold, the Gamma transform method is improved in this paper to correct and measure the
gray value of a given image. Then, we reconstruct the image based on atmospheric scattering theory
and design a pixel mutation filter to segment the venous and non-venous contact zones. Finally, the
degraded finger vein images are recovered and enhanced by global image gray value normalization.
Experiments on SDUMLA-HMT and ZJ-UVM datasets show that our proposed method effectively
achieves the recovery and enhancement of degraded finger vein images. The image restoration
and enhancement algorithm proposed in this paper performs well in finger vein recognition using
traditional methods, machine learning, and deep learning. The recognition accuracy of the processed
image is improved by more than 10% compared to the original image.

Keywords: finger vein image recognition; atmospheric scattering theory; gray value reconstruction;
image recovery; image enhancement

1. Introduction

With the development of big data and information technology, there is an increasing
demand for a higher level of identification technology. Finger vein recognition is a live
detection technology with the following advantages. (i) Finger vein lines are unique and
unchanging in every individual [1]. It has been medically proven that the vein pattern in the
fingers of each individual is specific and unique. Even in twins, there are some differences in
the distribution of the veins. And the shape stabilizes with age. (ii) Finger vein images can only
be acquired from a healthy human body with good blood circulation. This makes it extremely
difficult to steal and copy finger vein images. (iii) Finger vein recognition is resistant to
interference. Unlike fingerprints, palm prints, etc., finger vein recognition technology collects
information about the distribution of veins inside the finger. This information is not affected
by factors such as finger surface stains and breakage [2]. Based on the above features, finger
vein recognition technology is secure and highly anti-counterfeiting.

The principle of finger vein recognition technology lies in the fact that, when near-
infrared (NIR) light is used to penetrate the finger, the area in which it is located has a
smaller gray value because the hemoglobin in the vein region within the finger has a
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stronger absorption capacity for NIR light. This region is also known as the venous region.
The non-vein region of the finger absorbs less infrared light, resulting in a higher gray value
in this region. This region is known as the non-vein region. By comparing the different
gray values of the vein region and non-vein region in the finger vein image, the unique
vein pattern and topology of the finger can be reflected. Thus, the finger vein images
described above can be used for identification [3]. The system used by the project team to
collect the finger vein image dataset (ZJ-UVM) is shown in Figure 1. The schematic and
device diagrams of the system are given in Figure 1a,b. In order to ensure the operation
visualization and recognition effect during the acquisition process, the device is set up
as a semi-open type. The light source is placed on both sides and tilted at 60 degrees to
penetrate the finger. Figure 1c gives the finger vein image after the region of interest (ROI)
is processed. It can be seen in this figure that the vein vessels will form a stripe projection
on the image. The region of the finger vein stripe projection has a lower gray value, which
is the vein region mentioned above.
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Figure 1. Finger vein image recognition system. (a) System schematic. (b) Finger vein recognition
project device. (c) Finger vein image.

The images captured by existing finger vein devices often suffer from severe image
quality degradation. This affects the accuracy of the recognition to some extent. For some
individuals, finger vein recognition is not even possible because the vein pattern of their
finger vein image is not distinct enough. Even re-capture cannot solve this problem. The
reason for this is that there is inherent scattering, uneven light intensity, and near-infrared
light attenuation during finger tissue imaging when acquiring vein images [4]. This results
in unclear vein patterns in the images and a low contrast between vein and non-vein
regions. The specific manifestations on these images are: first, the vein edges are blurred,
and there is no obvious difference between the vein regions and the bordering non-vein
regions. Second, in some images, the non-vein regions of some fingers will have smaller
gray values than some vein regions. The extracted vein texture features are too thick or too
thin and deviate from the actual veins. Third, the vein regions are difficult to determine
and extract directly. Therefore, restoring and enhancing original finger vein image texture
features is a key step in finger vein authentication and recognition techniques.

To solve the above problems, this paper examines and studies the process by which
the internal tissues and skeleton of the finger absorb near-infrared light. It is found that the
local imaging process of the image is basically the same as the process of capturing an image
in bad weather. Therefore, we propose a finger vein image recovery and enhancement
algorithm based on atmospheric scattering theory in computer vision. The enhancement of
the studied finger vein images is recognized through experiments.
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The main contributions of this paper are as follows:

(i) We improve the gamma transform method for use in the conversion of gray values of
finger vein images. According to the image gray level requirement, the image gray
value is normalized to within a specific threshold value. It is used to improve the gray
level difference of pixel points at the vein edges. This method avoids the problem
that gray values cannot be reconstructed in the next step because they exceed a
fixed threshold;

(ii) The main points of the image gray value reconstruction method designed in this
paper include (1) proposing image local-region light intensity for eliminating the
differences in incident light intensity between different regions due to different tissues
and skeletons. (2) Designing a pixel mutation filter to solve the problem of different
absorption rates of light intensity in local regions, and realizing the segmentation of
vein and non-vein regions. We combine the above method points with the atmospheric
scattering theory formula to realize finger vein image gray value reconstruction;

(iii) The homomorphic filtering technique is introduced to globally normalize the image by
decreasing the gray value of the high-frequency components in the vein regions and
increasing the gray value of the low-frequency components in the non-vein regions.
This can further improve the contrast of the image.

The rest of the paper is organized as follows: Section 2 presents work related to this
paper. Section 3 describes the atmospheric scattering model. Its application to finger vein
images is also analyzed and studied. Section 4 presents the framework and details of the
image restoration and enhancement algorithm of this paper. In Section 5, we analyze and
experimentally verify the effectiveness of the application of the algorithm in this paper.
Finally, the conclusion of this paper is given in Section 6.

2. Related Works

In order to solve the problem of the degradation of finger vein images, which leads to
decreasin of recognition accuracy, the related finger vein image recovery and enhancement
algorithms are mainly researched based on the characteristics of the finger vein image itself
and the depth features.

2.1. Finger Vein Image Enhancement Based on Optical Features

From the optical features of finger vein images, Lee et al. [5,6] performed deconvo-
lution based on the amount of finger vein image blur. And the image gray level was
corrected using least squares filtering, which was used to recover the clear finger vein
image. Yang et al. [7] proposed a bio-optical model (BOM) specific to finger vein imaging.
The light-scattering component was estimated and correctly removed by the ensemble.
Their method realizes the recovery of finger vein images with a simple computational
procedure. However, the method is not effective for severely degraded finger vein images.
Guo et al. [8] and others used methods such as grayscale gradient and region enhancement
for image recovery based on this. Zhang et al. [9] proposed an image enhancement method
based on weighted wavelet visual perception fusion. By utilizing the weighted wavelet
visual perception fusion strategy, enhanced global and local images were fused to obtain
high-quality images. However, the fuzzy kernel parameters of the above methods are
difficult to determine due to the differences between different finger vein images. More
importantly, the recovery effect of the above methods is overly dependent on the estimation
and setting of parameter values. When replacing different datasets, the difference in the
processing effect is large. Therefore, these methods need to be improved.

In order to solve the scattering problem of light in the propagation process, Kaiming
et al. [10] proposed a classical dark-channel a priori algorithm. In their algorithm, the
thickness of the haze in the image is estimated, followed by image enhancement based
on atmospheric scattering theory. Lee et al. [11] proposed the use of dark-channel a priori
knowledge of hyperpixels to determine the absorption and scattering rates of light, and
combined it with continuous color correction to achieve image enhancement. Zhang
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et al. [12] first corrected different color channel color biases. Then, different enhancement
methods were used according to the characteristics of different channel layers. Thus, the
image contrast was improved and enhanced in detail. Further, while the images captured
by the finger vein device in their study are formed by the transmission or reflection of
near-infrared light, and this type of image has the same gray value for each channel. This
makes it so that there is no need for dark-channels or special features of different channels.
Zhang [13] proposed a local adaptive contrast enhancement technique for the problem of
chromatic aberration and low visibility of images. It effectively improves the performance of
underwater image algorithms. Bhateja [14] proposed a Multi-scale Retinex with Chromacity
Preservation (MSRCP) to improve the contrast of images. Then, Li et al. [15] developed
an adaptive multi-scale retinal (AWRM) method. In this method, the chunked images are
processed separately and combined globally using optimal scale parameters and weights.
Through experiments, a better experimental performance was obtained. The above methods
have achieved some results on three-channel images. However, the processing effect on
single-channel images such as finger vein images still has some shortcomings.

2.2. Finger Vein Image Enhancement Based on Texture Features

Liu et al. [16] proposed fully extracting finger vein features using global histogram
equalization. Chen et al. [17] proposed a histogram equalization algorithm that fuses global
and local finger vein images based on the distribution specificities of different regions
the images. Lu et al. [18] proposed a modular adaptive histogram equalization algorithm.
Thair et al. [19] proposed a method combining image descriptors and global histogram
equalization to improve the contrast of finger vein images. The method achieves non-
returnable image information and provides good security. The above method transforms
the histogram distribution of gray values of an image as a whole and locally. The gray
level difference between the vein region and the non-vein region of the image is enlarged
to highlight the vein region and enhance the contrast of the image. However, these meth-
ods enhance the vein region along with the noise information. Due to the fragmented
distribution of noise, it creates a large obstacle for the subsequent feature extraction process.

The Gabor filter can obtain the maximum possible joint resolution in both spatial and
spatial-frequency domains and is gradually becoming widely used for finger vein image
enhancement. Kumar et al. [20] used the Gabor filter and morphological transformation to
obtain binary images for image matching. However, in the enhancement process, the fake
veins generated by irregular shadows are also enhanced and, hence, the accuracy of the
recognition is not high. Zhang et al. [21] proposed an adaptive Gabor filter incorporating a
convolutional network to enhance the vein region and suppress pseudo-veins to overcome
this problem. However, this method did not completely solve the above problem. Sub-
sequently, Menaha et al. [22] applied direction-specific Gabor filters in their work, which
were convolved with a scaled-up picture to filter out unnecessary areas. Kovac [23] used
a 2D Gabor filter to obtain the orientation and phase features of veins from finger vein
images for recognition, and its parameters were locally adjusted to fit the local orientation
and frequency of the underlying vein patterns. Zhang et al. [24] proposed a finger vein
image enhancement algorithm based on a bootstrapped tri-Gaussian filter. Better results
were achieved in maintaining the vein structure, local processing, and noise suppression.
These methods have achieved good results in highlighting vein structures. However, due
to the uneven grayscale distribution of some finger vein images, and even the presence of
irregular shadow regions [25], the possibility exists of over-segmentation of the vein region
when using such algorithms for enhancement [3].

2.3. Finger Vein Image Enhancement Based on Deep Feature

With the development of computer vision, neural networks are more and more widely
used in the field of image processing. Pathak et al. [26] proposed a CNN image restoration
model based on contextual coding in which semantic restoration was achieved by recon-
structing the standard pixel loss and adversarial loss to construct image gray values. Du
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et al. [27] and Shand et al. [28] used feature semantic compression and fusion to construct a
feature network for image recognition, and achieved quite good restoration results on large
datasets. However, the finger vein image database that such methods are applied to is small
in size and low in resolution, and cannot meet the requirements of deep model training.
Choi [29] constructed a lightweight adversarial neural network (GAN) for enhancing finger
vein images to achieve image deblurring. He et al. [30] proposed an improved GAN method
in which, by adjusting the loss weights, the contrast between vein and non-vein regions
is improved. It is effective in recovering the optical blur in original finger vein images.
Gao et al. [31] proposed an image-processing method for adaptive blurring. This method
utilizes the adversarial game features of the generator and discriminator to obtain better
deblurring results. However, important vein texture information is largely lost due to the
frequent downsampling process during the feature recovery and enhancement. This leads
to poor enhancement of the image, especially for low-resolution and severely degraded
images. Moreover, in practical applications, neural networks require advanced equipment
platforms due to their complex structure and parameter requirements.

In order to obtain clear underwater images, Li et al. [32] combined the physical model
of imaging with underwater optical features to realize image enhancement, and also
designed a lightweight convolutional neural network model (CNN) for adapting different
scenes. However, finger vein images are generally acquired using transmitted light, and
the acquired light is affected by both scattering and the tissue structure and cannot be
directly migrated for use. Hsia et al. [33] proposed a deep learning (DL) based semantic
segmentation method and used the maximum curvature method to extract vein features. A
better equal error rate was obtained. Li et al. [34] designed a finger vein model (FV-ViT)
based on a visual transformer (ViT). Excellent recognition performance was achieved after
adding strict regularization. Devkota et al. [35] integrated the DenseNet model, squeeze
excitation (SE), and hybrid pooling (HP). Then, a series of preprocessing methods were
used to obtain vein patterns. The method acquired better accuracy and generalization in
the dataset. However, the above methods require advanced equipment and do not take
into account the characteristics of the finger vein images themselves. This is not effective
for the processing of heavily degraded images.

3. Image Recovery Model

In foggy and hazy environments, images acquired by cameras often suffer from severe
scattering and degradation, resulting in extremely blurred contour edges between different
objects. Narasimhan [36] proposed an atmospheric scattering model for processing single-
channel transmission images to solve the degradation problem of monochrome images.
After testing, the method provides good recovery of images in hazy environments. The
total irradiance E received by the sensor is equal to the sum of the attenuation model Edt
and the atmospheric light model Eα:

E (d, λ) = Edt (d, λ) + Eα (d, λ) (1)

The attenuation model Edt refers to the way in which the light reflected from the scene
is attenuated as it propagates to the camera. The attenuation irradiance is described as:

Edt (d, λ) = E∞(λ) r(λ) e−θ(λ)d d−2 (2)

where d refers to the width from the field point to the camera and λ represents the wave-
length. θ(λ) is called the atmospheric scattering coefficient, and its magnitude reflects the
ability of the atmosphere to scatter light per unit volume. E∞ refers to the brightness of the
light, and in atmospheric modeling, it refers to the horizon brightness. r is a function of the
reflectivity properties and sky aperture, describing the scene point.

The atmospheric light model Eα refers to the total irradiance of ambient light that
enters the camera through atmospheric multiple scattering, refraction, etc., coinciding with
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a scene point. This term reflects the light intensity of the atmospheric light. Eα can be
described as:

Eα (d, λ) = E∞(λ)(1 − e−θ(λ)dd−2) (3)

In the acquisition of finger vein images, near-infrared light is transmitted through
the finger. Based on the fact that hemoglobin is more sensitive to infrared rays, an area
with a lower gray value on the captured image is determined to be a vein. This is followed
by identification of the individual based on the pattern composed of the vein area as
a characteristic of the individual. However, scattering and light intensity attenuation
inevitably occur during the penetration of near-infrared light into the finger. Shown in
Figure 2a is a schematic diagram of the main internal structures that affect the quality of
finger vein imaging, including skin tissue, flesh, bone, and finger veins. The finger veins are
located throughout the skin tissue and muscles. There are some differences between tissues
and bones at different locations, and the further the distance between two pixels points, the
greater the difference. This is a key factor that directly affects finger vein imaging. Figure 2b
represents the schematic diagram of two-finger-vein-point imaging. The different lines in
the figure indicate the different propagation modes of the light: NIR refers to the light that
comes directly from the light source to the finger; attenuated light refers to the light that
is weakened after refraction and reaches the vein area; refractive light refers to the light
that is refracted and does not reach the designated vein area. Refractive light is the biggest
cause of decreased contrast between vein and non-vein areas. The extraneous light is light
from non-vein areas that is refracted and reaches the vein area. The venous points in the
figure are located at different locations and the degree of attenuation varies greatly. This
is the reason why the gray value of some vein areas is larger than that of non-vein areas
(under normal circumstances the vein areas are smaller than the non-vein areas).

Sensors 2024, 24, x FOR PEER REVIEW 6 of 23 
 

 

ability of the atmosphere to scatter light per unit volume. E∞ refers to the brightness of the 
light, and in atmospheric modeling, it refers to the horizon brightness. r is a function of 
the reflectivity properties and sky aperture, describing the scene point. 

The atmospheric light model Eα refers to the total irradiance of ambient light that 
enters the camera through atmospheric multiple scattering, refraction, etc., coinciding 
with a scene point. This term reflects the light intensity of the atmospheric light. Eα can be 
described as: 

Eα (d, λ) = E∞(λ)(1 − e−θ(λ)dd−2) (3)

In the acquisition of finger vein images, near-infrared light is transmitted through the 
finger. Based on the fact that hemoglobin is more sensitive to infrared rays, an area with 
a lower gray value on the captured image is determined to be a vein. This is followed by 
identification of the individual based on the pattern composed of the vein area as a char-
acteristic of the individual. However, scattering and light intensity attenuation inevitably 
occur during the penetration of near-infrared light into the finger. Shown in Figure 2a is a 
schematic diagram of the main internal structures that affect the quality of finger vein 
imaging, including skin tissue, flesh, bone, and finger veins. The finger veins are located 
throughout the skin tissue and muscles. There are some differences between tissues and 
bones at different locations, and the further the distance between two pixels points, the 
greater the difference. This is a key factor that directly affects finger vein imaging. Figure 
2b represents the schematic diagram of two-finger-vein-point imaging. The different lines 
in the figure indicate the different propagation modes of the light: NIR refers to the light 
that comes directly from the light source to the finger; attenuated light refers to the light 
that is weakened after refraction and reaches the vein area; refractive light refers to the 
light that is refracted and does not reach the designated vein area. Refractive light is the 
biggest cause of decreased contrast between vein and non-vein areas. The extraneous light 
is light from non-vein areas that is refracted and reaches the vein area. The venous points 
in the figure are located at different locations and the degree of attenuation varies greatly. 
This is the reason why the gray value of some vein areas is larger than that of non-vein 
areas (under normal circumstances the vein areas are smaller than the non-vein areas). 

 

 
(a) (b) 

Figure 2. Finger vein scattering model. (a) Main internal structures of the fingers. (b) Schematic 
diagram of the scattering effect of near-infrared light inside the finger. 

Unlike the scattering of particles in the atmosphere, there is complex multiple scat-
tering in the finger vein imaging modes [7]. And since it cannot be directly ignored as in 
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diagram of the scattering effect of near-infrared light inside the finger.

Unlike the scattering of particles in the atmosphere, there is complex multiple scat-
tering in the finger vein imaging modes [7]. And since it cannot be directly ignored as in
Equation (1), it is not possible to apply the theoretical model of atmospheric scattering
directly to finger vein image recovery. The difference between the imaging of finger veins
and atmospheric light imaging modes is:

(i) Scene imaging in atmospheric systems is an incident imaging mode. The pixel values
of the image are derived from light reflected from the object and atmospheric light
from the environment. The atmospheric light in the environment remains essentially
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the same without interference, which is the key to the de-fogging algorithm. Therefore,
the foggy image is affected by the severe scattering caused by the fog. However, a
particular scenario is affected to the same degree. Finger vein imaging is a type of
transmission imaging. The pixel values of the image are derived from the attenuation
of a beam of light after it has passed through the finger. And the gray value of each
pixel point is affected by the surrounding area. The degree of influence of the light is
related to the light intensity and distance of the surrounding area. This means that
different pixel locations are affected differently.

(ii) Imaging environments have different scene depths. Imaging within atmospheric
systems has a wide field of view. Therefore, the atmospheric scattering coefficient
of a scene can be calculated based on the wavelength and scene depth. Finger vein
imaging environments have a camera distance of less than 10 cm from the finger
NIR light source. The effect of different regions cannot be described simply by a
fixed function.

(iii) In an atmospheric imaging system, the intensity of the light arriving at a scene is
the same. It is absorbed by the scene points and reaches the camera. The finger vein
device uses a string of LED light beads to provide near-infrared light. The intensity of
the light entering the finger is different due to the different positions and thickness of
the finger. And since the finger veins are not distributed in a single plane, the light
intensity reaching different finger veins also varies.

Considering the different effects of the light attenuation rate, incident light intensity,
and surrounding area, before introducing the image recovery and enhancement algorithms
in this paper, we need to propose the following two processing methods based on the
distribution characteristics of finger vein images to facilitate the processing:

(1) Due to the more complex organization within the finger, different regions have dif-
ferent attenuation rates. However, as the region gets progressively smaller at each
successive pixel point, the attenuation rate within each region is approximately the
same. This value can be considered as a constant.

(2) In the finger vein image, the gray value of the vein region in any small area is smaller
than the gray value of the non-vein region. And there is a continuous gradient change
in the gray value connecting the vein region and the non-vein region. These features
are maintained even in heavily degraded finger vein images. Therefore, in a region
larger than the width of the finger vein, when the gradient of the gray value changes
continuously and exceeds a certain threshold, it can be recognized that there are both
vein regions and non-vein regions. Conversely, it is possible in this scenario that there
are only non-vein regions.

Currently, in the field of computer vision, in order to simplify the parameterization of
a scattering model, the model for a single image can be described as:

I(x) = e−µD(x) J(x) + Is

(
1 − e−λD(x)

)
(4)

where I is the acquired image irradiance. µ denotes the extinction coefficient (set to constant
in the calculation). Its magnitude determines the degree of image degradation. D(x) denotes
the distance coefficient. J is the intrinsic intensity of the scene itself. Is is the irradiance
of the light source, which is generally expressed as the highest brightness point of the
scene [37]. Given µ, D(x), and Is, we can obtain the image’s irradiance without scattering.
However, due to the narrow and complex environment of finger vein imaging, it is not
possible to obtain these parameter values simply and accurately.

Based on the above analysis, the difference between the atmospheric imaging sys-
tem and finger vein imaging lies in the atmospheric irradiance Is and the amount of
light scattering. Therefore, in this paper, the image scattering model in finger veins is
described as:

I(x) = J(x) ε(x) + A(1 − ε(x)) (5)



Sensors 2024, 24, 2684 8 of 23

where J(x) is the light intensity of the image to be recovered, indicating the recovered image.
I(x) is the acquired finger vein image. ε(x) is the absorptance of a pixel point of the finger,
which is used to calculate the scattered light intensity and received light intensity of the
light intensity of each pixel point. A(x) is the intensity of the scattered light in the localized
region where the pixel point is located. In this paper, A(x) is a variable whose size is related
to the light intensity in the region of I(x). At the time of acquisition, the natural light source
is negligible, so the intensity of this region can also be considered as the sum of the scattered
intensities of different particles in the region.

4. Image Recovery Algorithm

In Section 3 of this paper, it is shown that the acquired finger vein images are obtained
by a combination of a light source, tissue transmittance, and scattering. This leads to the
severe degradation of images. And the complex internal structure of the finger makes it
difficult for many image enhancement algorithms to achieve the desired results. Therefore,
we propose a combined local and global finger vein image recovery and enhancement
algorithm based on atmospheric scattering theory.

The overall flowchart of the algorithm of this paper is shown in Figure 3. The image
input is first processed with Gaussian blurring. And the finger vein image grayscale
threshold is adjusted to the specified range by using the improved Gamma transform
method. Then, the image gray value is reconstructed based on atmospheric scattering
theory. Therefore, the local vein region and non-vein region are separated. Finally, the
global normalization of the image is realized based on homomorphic filtering. The specific
process of the algorithm is described in detail below:
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4.1. Grayscale Value Quantization

Finger vein images can be influenced by the NIR luminosity. Different locations of
the finger have different absorption rates. This leads to excessive differences in the overall
brightness of the finger vein image. That is, the gray value of some areas is too large or too
small. This greatly affects the subsequent reconstruction of gray values. Therefore, it is
necessary to normalize the gray values of vein regions and non-vein regions in different
finger vein images so that they are within a certain threshold range. Wang [38] adjusted the
image parameters using local Gamma transformation and verified the effectiveness of the
method. Its standard formula is:

I(x, y) = (Y(x, y))γ (6)
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where I(x, y) is the corrected gray value. Y(x, y) is the original image. γ is a control
parameter, and when γ is less than 1 but greater than 0, the overall brightness increases.
When γ is smaller than 1, the overall brightness decreases.

This method has satisfactory results for uniformly overexposed images. However, for
a finger vein image, the overall gray value is generally too large or too small. The direct
application of Gamma transformation cannot achieve effective separation. And it cannot be
transformed to within a certain threshold. Therefore, we improved the gamma transform
method to correct the image gray value. Firstly, the gray values of the finger vein images
are normalized to the range [0, 1]. In order to improve the threshold range of different gray
values after normalization and to differentiate between different sizes of gray values, this
section describes the normalization of each image by its own maximum and minimum gray
value as a base point. The transformation formula is:

G0(x, y) = (I0(x, y) − min(I0))/(max(I0) − min(I0)) (7)

where G0(x, y) is the corrected gray value. I0(x, y) is the original image’s gray value. min(I0)
is the image’s minimum gray value. max(I0) is the image’s maximum gray value.

Next, Gaussian filtering is used to blur the normalized finger vein image to remove
the noise and make the image smooth, with the processing equation:

Guess(x, y) = (2πσ2)−1 e0.5(u2+v2)2σ−2 (8)

G1(x, y) = ∑(Guess (x, y) · G0(x, y)) (9)

where Guess(x, y) is the Gaussian kernel and σ is taken to be 1.5. G1(x, y) is the pixel value
after applying Gaussian blurring.

Finally, an exponential transformation is performed on the gray value of the image
after the above processing. In order to ensure the threshold of the gray value of the image,
upper and lower limits are added during the transformation process, and the final range of
the gray value is [Gm, Gm + Gn]. The calculation formula is:

Wg(x, y) = G1 (x, y)r Gm + Gn (10)

where Wg is the transformed gray value and r is the index. When r > 1, the image’s gray
value becomes smaller and the brightness becomes darker and vice versa. Gm is the upper
threshold limit and Gn is the lower threshold limit.

4.2. Image Enhancement Based on Atmospheric Scattering Theory

In Section 3, by analyzing the atmospheric scattering theory, this paper gives the
atmospheric scattering Formula (5) applicable to finger vein image enhancement. However,
due to the complex internal structure of the finger, calculation of the absorption rate ε and
light intensity A is very complicated. In this section, we process the above two parameters
and get the final formula.

4.2.1. Calculation of the Absorption Rate ε

To calculate the absorption rate ε, we assume that the optical intensity A is known.
Therefore, ε is calculated as:

ε(x, y) = Iout(x, y)/Iin(x, y) (11)

where Iin is the incident light intensity and Iout is the light intensity reaching the camera. In
the imaging environment of finger veins, the sources of near-infrared light mainly include
light sources and near-infrared wavelength light from natural light. However, compared to
the NIR light source, the IR light in natural light is negligible. Therefore, the incident light
intensity Iin is approximated as the light intensity A of the light source, i.e., Iin = A.
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The outgoing light intensity Iout represents the part of the near-infrared light that is
not absorbed, scattered, or reflected by the tissues of the finger and is captured by the
camera, i.e., Iout = I (I is the image gray value). According to Equation (5), the outgoing
light intensity is equal to the distinction between the gray value of the captured picture and
the scattered component, i.e., I − A(x)(1 − ε(x)). However, the estimation of the scattering
component of the grayscale image is difficult to obtain using practical calculations. From
the perspective of image enhancement, atmospheric scattering theory is utilized to recover
and enhance the image to improve the contrast between veins and non-veins. And the
vein region and non-vein region are normalized to a certain threshold range to realize the
segmentation of vein lines. This makes the vein lines clearer and the vein features easier to
extract. Therefore, a filter of mutations pixel (FMP) is designed in this paper. The FMP can
be described as:

FMP(x, y) = maxΩ2(I(x, y)) + N·min(CΩ1(I(x, y))·(mxΩ1 − mxΩ2), mxΩ1) (12)

mxΩ = maxΩ (I (x, y)) (13)

N =

{
1, CΩ1(I(x, y)) ≥ count(Ω2)/count(Ω1)
−1, CΩ1(I(x, y)) < count(Ω2)/count(Ω1)

(14)

where FMP(x, y) is the filtered pixel value. Ω is the gray value region of the image. (x, y)
denotes the position of the pixel point and (x, y) ∈ Ω2 and Ω2 ∈ Ω1. maxΩ(I(x, y)) is the
maximum value in the region of Ω, and min() takes the minimum value. count(Ω) is the
number of pixel points in the region of Ω. CΩ1(I(x, y)) is the ratio of the number of pixel
points that are not larger than the I(x, y) to the number of all pixel points in the region.
Therefore, the absorption rate ε can be described as

ε(x, y) = FMP(x, y)/Iin(x, y) (15)

4.2.2. Calculation of the Area Light Intensity A

In a finger vein imaging environment, the near-infrared light source is the main factor
affecting the image. This is because the near-infrared wavelength brightness of natural
light is negligible compared to near-infrared light sources. Infrared light sources commonly
used in finger vein collection devices include both top-emitting and side-emitting types.
When infrared light is irradiated to the finger, on the one hand, there is some difference in
the initial light intensity of the finger due to the uneven distribution of the light source and
the shape of the finger. On the other hand, the organizational structure of different regions
of the finger varies greatly, and even in the same non-vein region, the absorption rate of
infrared light is not the same in different locations. This results in the gray value of some
non-vein regions being smaller than that of the vein regions.

As shown in Figure 4, we selected two images of finger veins with severe degradation
and counted the average gray values of the three regions, respectively. Among them,
1⃝ = 101, 2⃝ = 112, 3⃝ = 109, 4⃝ = 34, 5⃝ = 65, and 6⃝ = 14. By comparison, we found that the

average gray value of different regions is directly related to the light source and the internal
organization of the finger. The presence of veins has little effect on the average gray value.
Therefore, it is difficult to extract the finger vein features of such fingers. Moreover, there is
a large difference in the intensity of incident light reaching the finger veins, which makes it
difficult to segment the vein region from the non-vein region.
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Therefore, the concept of regional light intensity in finger vein images is proposed in
this paper. In order to ensure the consistency of the gray value of recovered finger vein
images, when applying Equation (5) to calculate the gray value of a pixel point, the average
of the top 5% of points with larger gray values in the region is taken as the A value of the
region, which is denoted by A(x, y). The formula is:

A(x, y) = maxiΩ1(I(x, y)) (16)

where A (x, y) is the regional light intensity at pixel point (x, y). maxiΩ1() is the average of
the first 5% of Ω1 for regions with a large gray value.

Next, the finger vein image recovery algorithm according to the atmospheric scattering
theory proposed in this section is applied to process the images and compare the changes
in gray values before and after processing. As shown in Figure 5a,d, severe scattering of
image I and image II occurs. Among them, the incident light intensity of image I Figure 5a
is higher, and the overall gray value of the image is higher, whereas the incident light
intensity of image II Figure 5b is lower and, hence, the overall gray value of the image
is lower. The finger vein features of the two images are very blurred, and their direct
application to identification will result in serious misclassification. Figure 5b shows the
variation in the gray value of image I in the vertical direction. The gray value of each
pixel point is derived from the average of three pixel points on the horizontal square.
These three pixel point locations are the three pixels points with a horizontal pixel scale
of [80, 82] at the same vertical height as the chosen pixel point. By comparison, it is found
that the pixel values of the specified region change more gently, and the difference between
the gray values of vein and non-vein is less than 50. Figure 5e is a graph of the variation in
gray value in the vertical direction of image I. The gray value of each pixel point is derived
from the average of three pixel points on the horizontal square. The gray value of its pixel
points is obtained by the same method. The pixel value changes in the specified area follow
a certain monotonicity, and the difference in the gray value of different pixel points in a
small range is very small.

Figure 5c is a graph of gray value changes in the specified area of image I after
processing. Figure 5f is the gray value change graph of image II after processing. The gray
value of each point is obtained by the same method as described above. As can be seen
from the figure, the trend of gray value changes in image I and image II after processing
becomes obvious. And the gray values of pixels in small areas change drastically. This
indicates that the contrast of the vein region of the image is significantly improved after
enhancement using the method proposed in this section.
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Figure 5. Degraded finger vein image and its gray-value change map. (a) Degraded finger vein image
I. (b) Grayscale value changes in the specified area of image I. (c) Grayscale value changes in the
specified area of image I after applying atmospheric scattering model restoration. (d) Degenerated
finger vein image II. (e) Change in gray value of the specified area of image II. (f) Change in gray
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In Figure 6, a visualization of the grayscale values of the degraded finger vein image is
shown. Figure 6a,c are the original images. Figure 6b,d are the processed images. The x-axis
and y-axis represent the positions of pixel points. The height is the gray value of the pixel
point. The higher the gray value, the higher the pixel point and the lighter the color. From the
figure, it is known that the texture of the finger vein image is clearer after processing. And the
difference in the size of the gray values between different veins is more obvious. This means
that the texture characteristics of finger vein images are more obvious after processing.
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4.3. Global Image Normalize

The finger vein image is processed as described above, which enhances the localized vein
pattern contrast. However, since most of the previous processing enhancement takes into account
the gray value changes in the current zone, it is necessary to continue the normalization process
for the whole image. In order to solve the problem of the global normalization of finger vein
images, this paper proceeds according to the basic principles of single-parameter homomorphic
filtering [39] and designs a global normalization method based on homomorphic filtering.

Homomorphic filtering combines the irradiated and reflected components of an im-
age in a multiplicative manner according to the image irradiation-reflection model. The
descriptive equations are as follows:

f (x, y) = i(x, y) · r(x, y) (17)

where f (x, y) is the acquired image. i(x, y) is the irradiation component, which represents the
light portion. r(x, y) is the reflection component. Then, a logarithmic transformation is used to
convert the product into a sum, which facilitates noise separation. The formula is as follows:

ln f (x, y) = ln i(x, y) · ln r(x, y) (18)

Fourier transformation of Equation (18):

F(u, v) = I(u, v) + R(u, v) (19)

The transformed results are processed using the transfer function H(u, v):

H(u, v) · F(x, v) = H(u, v) · I(u, v) + H(u, v) · R(u, v) (20)

H(u, v) = rH − rL

[
1 − e−c( D(u, v)

2D0
)

2n
]
+ rL (21)

where D0 is the cutoff frequency and is taken as 25. rH is the high-frequency gain and is
taken as 2. rL is the low-frequency gain and is taken as 0.5. c is the sharpening coefficient. n
is the number of filter orders. D(u, v) is the distance from the frequency (u, v) to the center
frequency (u0, v0) and is computed as:

D(u, v) = ((u − u0)2 + (v − v0)2)0.5 (22)

The unprocessed finger vein image is shown in Figure 7a. Figure 7b is the image in
Section 4.2 after processing, which corresponds to the original image, and it effectively
distinguishes the vein regions and non-vein regions in the image. However, since only the
local gray value changes are considered in the processing, the difference between the vein
and non-vein gray value thresholds in different regions is relatively large. Figure 7c shows
the finger vein image after homomorphic filtering. The image vein texture of this image is
clearer. The image contrast is further improved.
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5. Experimental Results and Evaluation

In this section, we choose the publicly available dataset SDUMLA-HMT [40] and the
ZJ-UVM finger vein dataset experimentally acquired by our group for our experiments.
Among them, the SDUMLA-HMT dataset has 106 experimenters. Each experimenter
provided six fingers. Six finger vein images were acquired for each finger. The total number
of finger vein images in this dataset is 3816. The ZJ-UVM dataset is derived from finger vein
images acquired using a device of our own design. The dataset consists of 73 experimenters.
Each experimenter performed the same classification and image processing as described
above. The dataset contains a total of 2628 finger vein images. In Figure 8, some of the
finger vein images in the ZJ-UVM dataset are shown.
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of finger vein images in this dataset is 3816. The ZJ-UVM dataset is derived from finger 
vein images acquired using a device of our own design. The dataset consists of 73 experi-
menters. Each experimenter performed the same classification and image processing as 
described above. The dataset contains a total of 2628 finger vein images. In Figure 8, some 
of the finger vein images in the ZJ-UVM dataset are shown. 

 
Figure 8. Selected finger vein images from the ZJ-UVM dataset. Figure 8. Selected finger vein images from the ZJ-UVM dataset.

The algorithms for the experiments in this paper were written in Python 3.9. The
computer equipment used was Intel® CoreTM i7-9700F CPU @3.00 GHz with 32 GB of RAM.
The operating system is Windows 10 64-bit Professional Edition.

5.1. Ablation Experiment

The degraded finger vein image recovery and enhancement algorithm based on
atmospheric scattering theory proposed in this paper consists of a total of three steps:
(1) Gray value metric; (2) image enhancement based on atmospheric scattering theory;
(3) global image normalization. In order to verify the necessity of each step, ablation
experiments are used.

A schematic of the ablation experiment is shown in Figure 9, where Figure 9a is the
original finger vein image. These six images are the most severely degraded images in the
SDUMLA-HMT dataset and the ZJ-UVM dataset. Figure 9b is the image processed by using
the gray value metric and the enhancement algorithm based on atmospheric scattering
theory. Through experiments, it is determined that the direct use of the enhancement
algorithm based on atmospheric scattering theory leads to the gray value of the pixel
points exceeding the threshold value (the gray value threshold value is 0~255). Figure 9c
shows the finger vein image after processing using homomorphic filtering. Figure 9d is the
image after processing using the degraded image recovery and enhancement algorithm
based on atmospheric scattering theory proposed in this paper. From the figure, it is
clear that processing with one method alone cannot realize the effective improvement of
image quality.
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Figure 9. Schematic representation of the results of the ablation experiment. (a) Original figure.
(b) Image after processing by an image enhancement algorithm based on atmospheric scattering
theory. (c) Image after processing based on homomorphic filtering. (d) Image after processing using
the method of this paper.

5.2. Experimental Results of Different Finger Vein Image Enhancement Algorithms

As shown in Figure 10, several commonly used finger vein image processing methods
are compared with the method in this paper. In order to show the overall effect of the
model, a total of six finger vein images with more serious degradation in the SDUMLA-
HMT dataset and the ZJ-UVM dataset are selected in this paper. The original six images
are shown in Figure 9a.
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(a) Adaptive histogram equalization (CLAHE) [16]. (b) Fusion of image descriptors and global
histogram equalization [19]. (c) 2D Gabor filter [23]. (d) Adaptive triple Gaussian filter [24].
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As shown in Figure 9a, the images are processed by an adaptive histogram equalization
algorithm [16]. This method improves the contrast between the venous and nonvenous
regions of the finger vein images to some extent. However, some of the vein patterns are
not displayed clearly enough or have been lost. Shown in Figure 10b is an image processed
using a fusion image descriptor and global histogram equalization method [19]. The
method effectively enhances the local details and improves the overall contrast. However,
effective segmentation is still not achieved for the finger veins in some severely degraded
regions. Shown in Figure 10c is the image after processing with a 2D Gabor filter [23]. Due
to the large difference in the gray value thresholds of the different datasets, the image
quality is not satisfactory enough when setting fixed parameters for image optimization.
Shown in Figure 10d is an adaptive triple Gaussian filter-processed image [24]. The grain of
the image becomes clearer to some extent. However, the effect of vein texture segmentation
is poor and cannot meet the recognition requirements.

Shown in Figure 9d is the image post-processing with this paper’s method. Compared
with the above finger vein image enhancement and restoration algorithms, the degraded
vein restoration means proposed in this paper can effectively improve the contrast between
the vein region and the non-vein region, and the determination and differentiation of the
non-vein region are better. Next, the SDUMLA-HMT and ZJ-UVM datasets are processed
using the four methods mentioned above and the method in this paper, respectively, and
the processing results are compared. For the convenience of narration, the processed data of
the above two datasets are referred to as Pr-SDUMLA-HMT and Pr-ZJ-UVM, respectively.

In order to examine the effectiveness of different methods for finger vein image restora-
tion and enhancement, this experiment was evaluated using mean structural similarity
(MSSIM) [41] and the contrast improvement index (CII) [42]. The MSSIM was calculated
using the formula:

MSSIM(x, y) = M−1∑SSIM (xi, yi) (23)

SSIM(x, y) = (2 ave(x) ave(y) + c) · (2 σxy + d)/(ave(x)2 + ave(y)2 + c) · ((σx)2 + (σy)2 + d) (24)

where x and y represent the pre- and post-processed images, respectively. xi and yi represent
the ith local region. m represents the number of local regions. ave () is the average gray value
of the region. σx and σy are the variance in the region’s gray value. σxy is the covariance of
the gray value. c and d are constants. The quality of the original image in this paper is low,
so when the MSSIM value is lower, it means a better improvement of the algorithm.

The CII is defined as:
CII = Cup/Craw (25)

C = N−1∑((Qmax − Qmin)/(Qmax + Qmin)) (26)

where Cup and Craw represent the contrast of the image before and after processing, respec-
tively. Qmax is the maximum value of the gray level of the local region. Qmin is the minimum
value of the gray level of the local region. n represents the number of local sub-regions.
When the value of CII is higher, the algorithm more effectively improves the image quality.

The four methods mentioned above and the method of this paper were used to process
the six images mentioned above (Figure 9a,d, and four images in Figure 10a–d). And the
MSSIM and CII values of each image were calculated. The calculated results are shown in
Tables 1 and 2. From the table, it is known that the MSSIM value and CII are optimal for
each image in this paper. This shows that the method proposed in this paper can effectively
improve the contrast of finger vein images.

Shown in Table 3 are the MSSIM and CII averages for the Pr-SDUMLA-HMT and Pr-
ZJ-UVM datasets. The contrast of the images is improved by some amount after process-
ing with the four methods mentioned above and the method in this paper, respectively.
Compared to the original image, the MSSIM values of these five methods decreased by
20.8%, 33.5%, 8.7%, 15.8%, and 42%. the CII values were improved by 262.3%, 225.5%,
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−30.2%, and 307.1%. This shows that this paper is optimal for finger vein image recovery
and enhancement.

Table 1. Different image enhancement and restoration algorithms’ MSSIM values.

Method
Image

1 2 3 4 5 6

raw image 1 1 1 1 1 1
Liu [16] 0.76 0.88 0.58 0.90 0.74 0.91

Tahir [19] 0.53 0.78 0.48 0.72 0.66 0.83
Kovac [23] 0.84 0.92 0.87 0.91 0.88 0.93
Zhang [24] 0.82 0.87 0.85 0.92 0.78 0.88
this article 0.52 0.60 0.42 0.70 0.47 0.64

Table 2. Different image enhancement and restoration algorithmss CII values.

Method
Image

1 2 3 4 5 6

raw image 1 1 1 1 1 1
Liu [16] 3.93 4.96 1.40 1.35 4.37 4.73

Tahir [19] 5.05 3.77 1.12 1.25 4.41 3.19
Kovac [23] 0.86 0.47 0.76 0.66 0.78 0.55
Zhang [24] 1.12 2.33 1.45 0.98 2.21 0.89
this article 5.85 4.70 5.72 4.54 8.38 6.59

Table 3. Quantitative assessment of the effect of image restoration on the dataset.

Method MSSIM CII

raw image 1 1
Liu [16] 0.792 3.623

Tahir [19] 0.665 3.255
Kovac [23] 0.913 0.698
Zhang [24] 0.842 1.322
this article 0.580 4.701

In order to verify the feasibility and effectiveness of the image recovery and enhance-
ment algorithm proposed in this paper, we use the detection error tradeoff (DET) curve for
testing. The DET curve consists of the false acceptance rate (FAR), the correct rejection rate
(FRR), and the EER value. The calculation formula is:

FAR = NA/ND (27)

FRR = NR/NS (28)

where NA is the number of times the pseudo-finger is recognized as true. ND is the total
number of times the pseudo-finger is recognized. NR is the number of times the true finger
is recognized as false. NS is the number of times the true finger is recognized.

The EER value is the intersection of the FRR–FAR curve with a straight line y = x. A
smaller EER value indicates that the algorithm has a better overall performance for that
user size. In the same situation, the lower the FAR value, the better the security of the
algorithm, and the lower the FRR value, the better the passability of the algorithm.

As shown in Figure 11, the DET curves of the results of the Pr-SDUMLA-HMT and
Pr-ZJ-UVM datasets’ recognition is shown. We use two classical feature-point matching
methods (Sift-Flann [43] and LBP-SVM [44]) to detect the effect of different methods on the
image feature-point enhancement. Among them, Figure 11a shows the DET curves of the
Sift-Flann image recognition method. Figure 11b is the DET curve of the LBP-SVM image
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recognition method. From the figure, it can be seen that the EER of the image enhancement
algorithm proposed in this paper has better results and the algorithm is more secure and
passable under the two means of feature-point extraction and matching recognition.
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Shown in Table 4 are the recognition accuracies of the Pr-SDUMLA-HMT and Pr-
ZJ-UVM datasets by the Sift-Flann [43], LBP-SVM [44], Resnet50 [45], Goognet [46], and
MAML [47] neural network methods. From the table, it can be seen that there are large
differences in the enhancement of the image recognition accuracy by the different processing
methods, and even for some extraction methods, the processed images are negatively
affected. Compared with the other image processing methods mentioned above, the
recovery enhancement method based on atmospheric scattering theory proposed in this
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paper has the most accurate performance of the above methods. The matching accuracy is
improved by more than 10% compared to the original image.

Table 4. Accuracy of different image recognition algorithms.

Method Raw Image Liu Tahir Kovac Zhang This Article

Sift_flann 0.735 0.539 0.814 0.547 0.634 0.88
Lbp_svm 0.647 0.726 0.686 0.578 0.633 0.744
Resnet50 0.833 0.804 0.902 0.922 0.786 0.941
Goognet 0.864 0.863 0.961 0.804 0.884 0.966
MAML 0.862 0.861 0.855 0842 0.828 0.926

5.3. Experimental Results of Different Optical Feature-Based Image Enhancement Algorithms

Shown in Figure 12 is a schematic of the undifferentiated images obtained after
processing the Pr-SDUMLA-HMT and Pr-ZJ-UVM datasets using the optical feature-based
image deblurring algorithm. The comparison shows that the method proposed in this paper
gives the best results. The method is able to realize global image recovery and enhancement
based on ensuring the contrast of local regions. And it normalizes the gray values of the
vein regions and non-vein regions of degraded finger vein images to a certain range. This
can effectively improve the accuracy of finger vein recognition.
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Figure 12. Comparison with other methods. (a) Original image. (b) Dark-channel a priori algo-
rithm [10]. (c) Bi-local adaptive contrast enhancement technique [13]. (d) MSRCP [14]. (e) AWRM [15].
(f) Results of the method in this paper.

6. Conclusions

Existing finger vein images are subject to severe degradation due to factors such
as the performance of the acquisition equipment, the structure of the finger, and the
scattering of light. This makes it impossible to quickly and accurately acquire vein features
from these images and causes greater interference to finger vein technology recognition.
Therefore, this paper proposes a degraded finger vein image restoration and enhancement
algorithm based on atmospheric scattering theory. The algorithm is divided into three steps.
First, an improved gamma transform method is used to measure the gray values of the
image. Then, the image’s gray values are reconstructed based on atmospheric scattering
theory. Finally, homomorphic filtering is used to normalize the grayscale of the whole
image. Experiments on the SDUMLA-HMT and ZJ-UVM datasets show that the finger vein
image restoration and enhancement algorithm proposed in this paper outperforms other
commonly used image enhancement algorithms in both MSSIM and CII metrics. In the
matching experiments using traditional machine learning and deep learning algorithms,
the accuracy of the images processed by this paper’s method is improved by more than
10% compared to the unprocessed images.

In future research, we will continue to explore alternative methods for restoring poor-
quality finger vein images. The ultimate goal is to be able to ensure the effective extraction
of finger vein features in all special cases and to apply these methods to practical devices.



Sensors 2024, 24, 2684 21 of 23

Author Contributions: Conceptualization, P.F. and D.F.; methodology, P.F.; software, P.F.; valida-
tion, Y.M., Y.Z. (Yang Zhou) and P.F.; investigation, Y.Z. (Yuqing Zeng); resources, Y.Z. (Ye Zhang);
data curation, Y.Z. (Yang Zhou) and Y.Z. (Yuqing Zeng); writing—original draft preparation, P.F.;
writing—review and editing, P.F., D.F. and Y.Z. (Ye Zhang); project administration, D.F. and
Y.Z. (Ye Zhang); funding acquisition, D.F. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the “Green Valley Lean” Talent Project (2020) of Lishui,
Zhejiang Province, China, and the Key Technology R&D Project of Power Monitoring System Based
on Cloud Computing of Zhejiang University of Technology, China, grant number KYY-HX-20190956.

Institutional Review Board Statement: Ethical review and approval were waived for this study
because the study was conducted on publicly available images of finger vein datasets and did not
involve experimental studies in humans.

Informed Consent Statement: Informed consent was obtained from all subjects involved in
the study.

Data Availability Statement: The data presented in this study are publicly available in the SDUMLA-
HMT, reference number [40]. Additional data are available upon request from the corresponding
author. The data is not available to the public due to the privacy of the companies’ data.

Acknowledgments: We sincerely acknowledge Shandong University, China for providing the finger
vein dataset for the experiments in this paper.

Conflicts of Interest: Author Dingzhong Feng was employed by the company Zhejiang Jinghong
Intelligent Technology. The remaining authors declare that the research was conducted in the absence
of any commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Ma, B.; Wang, K.; Hu, Y. Finger vein recognition based on bilinear fusion of multiscale features. Sci. Rep. 2023, 13, 249. [CrossRef]
2. Hu, N.; Ma, H.; Zhan, T. Finger vein biometric verification using block multi-scale uniform local binary pattern features and

block two-directional two-dimension principal component analysis. Optik 2020, 208, 163664. [CrossRef]
3. Qin, H.; He, X.; Yao, X.; Li, H. Finger-vein verification based on the curvature in radon space. Expert Syst. Appl. 2017, 82, 151–161.

[CrossRef]
4. Yang, J.; Shi, Y. Finger-vein network enhancement and segmentation. Pattern Anal. Appl. 2014, 17, 783–797. [CrossRef]
5. Lee, E.C.; Park, K.R. Restoration method of skin scattering blurred vein image for finger vein recognition. Electron. Lett. 2009, 45,

1074–1076. [CrossRef]
6. Lee, E.C.; Park, K.R. Image restoration of skin scattering and optical blurring for finger vein recognition. Opt. Lasers Eng. 2011, 49,

816–828. [CrossRef]
7. Yang, J.; Zhang, B.; Shi, Y. Scattering removal for finger-vein image restoration. Sensors 2012, 12, 3627–3640. [CrossRef]
8. Guo, X.; Li, D.; Zhang, H.; Yang, J. Image restoration of finger-vein networks based on encoder-decoder model. Optoelectron. Lett.

2019, 15, 463–467. [CrossRef]
9. Zhang, W.; Zhou, L.; Zhuang, P.; Li, G.; Pan, X.; Zhao, W.; Li, C. Underwater image enhancement via weighted wavelet visual

perception fusion. IEEE Trans. Circuits Syst. Video Technol. 2024, 34, 2469–2483. [CrossRef]
10. He, K.; Sun, J.; Tang, X. Single Image Haze Removal Using Dark Channel Prior. IEEE Trans. Pattern Anal. Mach. Intell. 2011,

2341, 2353.
11. Lee, H.S.; Moon, S.W.; Eom, I.K. Underwater image enhancement using successive color correction and superpixel dark channel

prior. Symmetry 2020, 12, 1220. [CrossRef]
12. Zhang, W.; Jin, S.; Zhuang, P.; Liang, Z.; Li, C. Underwater image enhancement via piecewise color correction and dual prior

optimized contrast enhancement. IEEE Signal Process. Lett. 2023, 30, 229–233. [CrossRef]
13. Zhang, W.; Zhuang, P.; Sun, H.H.; Li, G.; Kwong, S.; Li, C. Underwater Image Enhancement via Minimal Color Loss and Locally

Adaptive Contrast Enhancement. IEEE Trans. Image Process. 2022, 32, 3997–4010. [CrossRef]
14. Bhateja, V.; Yadav, A.; Singh, D.; Chauhan, B.K. Multi-scale Retinex with Chromacity Preservation (MSRCP)-Based Contrast

Enhancement of Microscopy Images. Smart Intell. Comput. Appl. 2022, 2, 313–321.
15. Li, D.; Zhou, J.; Wang, S.; Zhang, D.; Zhang, W.; Alwadai, R.; Alenezi, F.; Tiwari, P.; Shi, T. Adaptive weighted multiscale retinex

for underwater image enhancement. Eng. Appl. Artif. Intell. 2023, 123, 106457. [CrossRef]
16. Liu, C. A new finger vein feature extraction algorithm. IEEE Int. Congr. Image Signal Process. (CISP) 2013, 1, 395–399.
17. Chen, A.; Yuan, F.; Liu, J.; Liu, S.; Li, A.; Zheng, Z. Adaptive overlapped sub-blocks contrast enhancement. In Proceedings of the

10th Conference on Optics and Photonics for Information Processing, San Diego, CA, USA, 29–30 August 2016.

https://doi.org/10.1038/s41598-023-27524-4
https://doi.org/10.1016/j.ijleo.2019.163664
https://doi.org/10.1016/j.eswa.2017.03.068
https://doi.org/10.1007/s10044-013-0325-y
https://doi.org/10.1049/el.2009.1231
https://doi.org/10.1016/j.optlaseng.2011.03.004
https://doi.org/10.3390/s120303627
https://doi.org/10.1007/s11801-019-9033-1
https://doi.org/10.1109/TCSVT.2023.3299314
https://doi.org/10.3390/sym12081220
https://doi.org/10.1109/LSP.2023.3255005
https://doi.org/10.1109/TIP.2022.3177129
https://doi.org/10.1016/j.engappai.2023.106457


Sensors 2024, 24, 2684 22 of 23

18. Lu, Z.; Ding, S.; Yin, J. Finger vein recognition based on finger crease location. J. Electron. Imaging 2016, 25, 043004. [CrossRef]
19. Tahir, A.A.; Mustafa, A.A. Improving the Performance of Finger Vein Recognition Using the Local Histogram Concatenation of

Image Descriptors. Int. J. Pattern Recognit. Artif. Intell. 2022, 36, 2256020. [CrossRef]
20. Kumar, A.; Zhou, Y. Human identification using finger images. IEEE Trans. Image Process. 2012, 21, 2228–2244. [CrossRef]
21. Zhang, Y.; Li, W.; Zhang, L.; Ning, X.; Sun, L.; Lu, Y. Adaptive learning gabor filter for finger-vein recognition. IEEE Access 2019, 7,

159821–159830. [CrossRef]
22. Menaha, R.; Jayanthi, V.E.; Mary, A.L.; Suganyadevi, S.; Aishwarya, S. A Finger Vein Image-based Person Recognition System

using BCH Codes to Access Medical Records. In Proceedings of the 2023 International Conference on Inventive Computation
Technologies (ICICT), Lalitpur, Nepal, 26–28 April 2023.

23. Kovac, I.; Marak, P. Finger vein recognition: Utilization of adaptive Gabor filters in the enhancement stage combined with
SIFT/SURF-based feature extraction. Signal Image Video Process. 2023, 17, 635–641. [CrossRef]

24. Zhang, L.; Wang, X.; Dong, X.; Sun, L.; Cai, W.; Ning, X. Finger Vein Image Enhancement Based on Guided Tri-Gaussian Filters.
ASP Trans. Pattern Recognit. Intell. Syst. 2021, 1, 17–23. [CrossRef]

25. Kotwal, K.; Marcel, S. Residual Feature Pyramid Network for Enhancement of Vascular Patterns. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, New Orleans, LA, USA, 19–20 June 2022; pp. 1587–1594.

26. Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; Efros, A.A. Context Encoders: Feature Learning by Inpainting. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2536–2544.

27. Du, S.; Yang, J.; Zhang, H.; Zhang, B.; Su, Z. FVSR-Net: An end-to-end Finger Vein Image Scattering Removal Network. Multimed.
Tools Appl. 2021, 80, 10705–10722. [CrossRef]

28. Shand, S.; Rahul. A Comprehensive Study on the Role of Machine Learning in Hybrid Biometric Recognition. In Proceedings of
the International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), Erode, India, 7–9 April
2022; pp. 85–90.

29. Choi, J.; Noh, K.J.; Cho, S.W.; Nam, S.H.; Owais, M.; Park, K.R. Modified conditional generative adversarial network-based
optical blur restoration for finger-vein recognition. IEEE Access 2020, 8, 16281–16301. [CrossRef]

30. He, J.; Shen, L.; Yao, Y.; Wang, H.; Zhao, G.; Gu, X.; Ding, W. Finger Vein Image Deblurring Using Neighbors-Based Binary-GAN
(NB-GAN). IEEE Trans. Emerg. Top. Comput. Intell. 2023, 7, 295–307. [CrossRef]

31. Gao, R.; Lu, H.; Al-Azzawi, A.; Li, Y.; Zhao, C. DRL-FVRestore: An Adaptive Selection and Restoration Method for Finger Vein
Images Based on Deep Reinforcement. Appl. Sci. 2023, 13, 699. [CrossRef]

32. Li, C.; Anwar, S.; Porikli, F. Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recognit.
2020, 98, 107038. [CrossRef]

33. Devkota, N.; Kim, B.W. Finger Vein Recognition Using DenseNet with a Channel Attention Mechanism and Hybrid Pooling.
Electronics 2024, 13, 501. [CrossRef]

34. Hsia, C.H.; Liu, C.H. New Hierarchical Finger-Vein Feature Extraction Method for iVehicles. IEEE Sens. J. 2022, 22, 13612–13621.
[CrossRef]

35. Li, X.; Zhang, B.B. FV-ViT: Vision Transformer for Finger Vein Recognition. IEEE Access 2023, 11, 75451–75461. [CrossRef]
36. Narasimhan, S.G.; Nayar, S.K. Removing weather effects from monochrome images. In Proceedings of the 2001 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, Kauai, HI, USA, 8–14 December 2001.
37. Zhang, J.F. Research on Segmentation and Feature Extraction Method of Finger Vein Image. Ph.D. Thesis, Tianjin University,

Tianjin, China, 2020.
38. Wang, W.; Yuan, X.; Chen, Z.; Wu, X.; Gao, Z. Weak-Light Image Enhancement Method Based on Adaptive Local Gamma

Transform and Color Compensation. J. Sens. 2021, 2021, 5563698. [CrossRef]
39. Gong, Y.; Xie, X. Research on coal mine underground image recognition technology based on homomorphic filtering method.

Coal Sci. Technol. 2023, 51, 241–250.
40. Yin, Y.; Liu, L.; Sun, X. SDUMLA-HMT: A multimodal biometric database. In Chinese Conference on Biometric Recognition; Springer:

Berlin/Heidelberg, Germany, 2011; pp. 260–268.
41. Pi, W.; Shin, J.; Park, D. An effective quality improvement approach for low-quality finger vein image. In Proceedings of the

International Conference on Electronics and Information Engineering, Kyoto, Japan, 1–3 August 2010; Volume 1, pp. V1-424–V1-427.
42. Oh, J.; Hwang, H. Feature enhancement of medical images using morphology-based homomor-phic filter and differential

evolution algorithm. Int. J. Control Autom. Syst. 2010, 8, 857–861. [CrossRef]
43. Wang, Y.; Li, H.; Wang, L. Similar Image Retrieval Using Color Histogram in HSV Space and SIFT Descriptor with FLANN. In

Advances in Intelligent Systems and Computing, Foundations of Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2014;
pp. 1085–1093.

44. Tian, Q.; Tian, G. Development and testing of a LBP-SVM based teeth visibility recognizer. In Proceedings of the IEEE International
Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA), Tianjin, China, 2–4 July 2012;
pp. 114–119.

45. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

https://doi.org/10.1117/1.JEI.25.4.043004
https://doi.org/10.1142/S0218001422560201
https://doi.org/10.1109/TIP.2011.2171697
https://doi.org/10.1109/ACCESS.2019.2950698
https://doi.org/10.1007/s11760-022-02270-8
https://doi.org/10.52810/TPRIS.2021.100012
https://doi.org/10.1007/s11042-020-09270-1
https://doi.org/10.1109/ACCESS.2020.2967771
https://doi.org/10.1109/TETCI.2021.3097734
https://doi.org/10.3390/app13020699
https://doi.org/10.1016/j.patcog.2019.107038
https://doi.org/10.3390/electronics13030501
https://doi.org/10.1109/JSEN.2022.3177472
https://doi.org/10.1109/ACCESS.2023.3297212
https://doi.org/10.1155/2021/5563698
https://doi.org/10.1007/s12555-010-0418-y


Sensors 2024, 24, 2684 23 of 23

46. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA,
7–12 June 2015; pp. 1–9.

47. Finn, C.; Abbeel, P.; Levine, S. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. In Proceedings of the 34th
International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1126–1135.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Related Works 
	Finger Vein Image Enhancement Based on Optical Features 
	Finger Vein Image Enhancement Based on Texture Features 
	Finger Vein Image Enhancement Based on Deep Feature 

	Image Recovery Model 
	Image Recovery Algorithm 
	Grayscale Value Quantization 
	Image Enhancement Based on Atmospheric Scattering Theory 
	Calculation of the Absorption Rate  
	Calculation of the Area Light Intensity A 

	Global Image Normalize 

	Experimental Results and Evaluation 
	Ablation Experiment 
	Experimental Results of Different Finger Vein Image Enhancement Algorithms 
	Experimental Results of Different Optical Feature-Based Image Enhancement Algorithms 

	Conclusions 
	References

