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Abstract: A two-stage decoupling model based on an artificial neural network with polynomial
regression is proposed for the six-component force sensor load decoupling problem in the case of
multidimensional mixed loading. The six-dimensional load categorization stage model constructed
in the first stage combines 63 load category label sets with a deep BP neural network. The six-
dimensional load regression stage model was constructed by combining polynomial regression with
a BP neural network in the second stage. Meanwhile, the six-component force sensor with a fiber
Bragg grating (FBG) sensor as the sensitive element was designed, and the elastomer simulation and
calibration experimental dataset was established to realize the validation of the two-stage decoupling
model. The results based on the simulation data show that the accuracy of the classification stage is
93.65%. The MAPE for the force channel in the regression stage is 6.29%, and 3.24% for the moment
channel. The results based on experimental data show that the accuracy of the classification stage
is 87.80%. The MAPE for the force channel in the regression phase is 5.63%, and 4.82% for the
moment channel.

Keywords: six-component force sensor; decoupling; back propagation neural network; polynomial
fitting; fiber Bragg grating sensor

1. Introduction

With the rapid development of rotorcraft such as UAVs and helicopters, six-component
force sensors and fiber Bragg grating sensors have become increasingly important in
the field of aerospace structure monitoring [1–8], which can simultaneously measure
the mechanical quantities Fx, Fy, Fz, Mx, My, Mz of six degrees of freedom in space. In
practical applications, there is cross sensitivity among the measurement dimensions of
the six-component force sensor; that is, in the case of multidimensional mixed loading,
the output signal of a single dimension of the sensor will be affected by other dimensions.
The decoupling model separates these effects through mathematical methods to improve
the output accuracy and application generalization of the sensor [9–15]. Therefore, the
decoupling model optimization of the six-component force sensor is very important in the
field of rotor structure monitoring.

Current decoupling models can be divided into linear and nonlinear models. In 1978,
B.E. Semino et al. [16] used linear regression for the first time to decouple a four-beam six-
component force sensor. In 1995, Patra JC et al. [17] used a BP neural network for the first
time to decouple pressure sensors. In 2002, Jiang Li et al. [18] used a BP neural network to
decouple a micro-fingertip sensor, and the experimental results showed that the decoupling
accuracy was higher than that in linear regression. In 2013, Gai Guanghong et al. [19] took
a Stewart six-component force sensor as the research object and proposed an averaging
linear decoupling matrix to reduce the degree of error fluctuation. In 2016, Zhang Jiamin
et al. [20] trained the decoupling model of a BP neural network using single-dimensional
loading calibration experimental data, analyzed the decoupling performance of model
training under a different number of neurons in hidden layers, and conducted experimental
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verification. In 2018, Yingjun Li et al. [21] proposed a decoupling model combining linear
regression and support vector machine regression, and conducted decoupling experiments.
In 2020, Xu Jiaqi et al. [22] proposed a stochastic forest decoupling model optimized by
a genetic algorithm. Experimental results show that the operation time of this model is
shorter and the accuracy is improved on the basis of ordinary stochastic forests. In 2023,
Wang Zhijun et al. [23] proposed a decoupling model based on polynomial regression
and conducted calibration experiments to verify the conclusion that decoupling error is
better than linear regression. For nonlinear models, a BP neural network, random forest,
and so on are widely used. In 2023, Zha Hao et al. [24] developed an online decoupling
module of a BP neural network optimized by a genetic algorithm based on EtherCAT (bus
communication system) and carried out field data acquisition, and the results showed
that the decoupling accuracy was better than that in linear regression. The above research
mainly analyzes the static decoupling problem of sensors under single-dimensional loading.
For a linear model, this model is simple and only needs single-dimensional calibration data
to achieve decoupling, but the accuracy and generalization are low, and a linear model
is more suitable for load decoupling under integer multiple-step loading. For nonlinear
models, the accuracy is generally better than that in linear models, but more data are
needed to build the model. To sum up, although the sensor decoupling model has been
widely studied, there are few studies on decoupling under multidimensional mixed loading
in practical engineering.

To solve these problems, a two-stage decoupling model combining linear and nonlinear
is proposed. The first stage of the model is load classification, and the second stage is load
regression. At the same time, the elastomer structure and sensitive element layout scheme
are designed, the elastomer is simulated by ANSYS, and the training set and verification
set are made based on the sensitive element layout position. Finally, MATLAB and a
simulation dataset are used to construct a two-stage decoupling model and verify the
model performance. It provides a research idea for promoting the technical progress of a
six-component force sensor in a space structure monitoring field.

2. Design of Sensor

Due to the advantages of small size, electromagnetic interference resistance, and high
sensitivity of a fiber Bragg grating sensor (hereinafter referred to as FBG), the overall
scheme of a six-component force sensor is designed based on FBG and a load-bearing beam
elastomer. The design steps include the following: the elastomer and assembly structure of
the six-component force sensor was designed, the FBG layout scheme was designed, and
the decoupling model was established based on the elastomer structure and FBG sensing
principle. Details are as follows.

2.1. Structural Design of Sensor Elastomer and Assembly

The designed six-component force sensor is shown in Figure 1, and the overall size is
300 mm × 300 mm × 100 mm. The main structure of the sensor includes (1) the measured
object, (2) the top cover, (3) the elastomer, (4) the wiring bottom cover, (5) the fastener for
the measured object, and (6) the sensor fastener. The measured object in Figure 1 is the
double-blade rotor and the motor module. (5) The connected fasteners of the object to be
measured connect the elastomer, the top cover, and the object to be measured by bolts, and
the load generated when the object to be measured works is transmitted to the center table
through bolts and then transmitted to the four bearing beams, which are sensed by the
sensitive elements. (3) Cylindrical beams are selected for elastomer bearing beams because,
compared with rectangular beams, the bending section coefficient of circular sections under
the same size conditions is smaller, and the structure is more sensitive to strain changes.
Thin-walled floating beams around the perimeter amplify the strain. (6) Sensor fasteners
assemble the sensor as a whole through bolts and nuts.
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Figure 1. Six-component force sensor and object measured.

2.2. FBG Sensing Principle and Layout

As shown in Figure 2, the six-component force sensor uses 16 FBG as the sensitive
element, including eight groups of two in each group. Each group is symmetrical about the
cylinder and pasted on the surface of the elastomer along the length of the cylinder beam.
The position of the grid area is the midpoint along the length of the cylinder beam. When
Fx is applied, FBG15 and FBG16 are a set of differential symmetric positions, one stretching,
the other compressing; FBG8 and FBG7 are a set of differential symmetric positions, one is
stretched, the other is compressed, and the two positions of each group produce equal and
opposite signs of strain, which can realize signal amplification and temperature compensa-
tion after subtraction. For other positions, for instance, FBG1 and FBG2 are both stretched,
and FBG11 and FBG12 are compressed and are zero after subtraction, which has no effect
on Fx. Therefore, only FBG15, FBG16, FBG8, and FBG7 are included in the Fx calculation
relation. The calculation logic of the load is consistent with that of Fx.
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The FBG sensing principle [25] is shown in Figure 3, a six-component force sensor
decoupling model is established based on this principle, and the feasibility of using a neural
network and other models for multidimensional load decoupling is illustrated. When the
light enters the core and passes through the gate area, reflection and transmission occur,
and the light that meets the specific wavelength will be reflected; the specific wavelength is
the central wavelength. The central wavelength satisfies the following relation:

λ = 2ne f f Λ (1)

where λ is the central wavelength of FBG, ne f f is the effective refractive index of the fiber
core, and Λ is the grating period.
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When there are stress and temperature changes around the fiber, the central wave-
length will shift, as shown in Figure 3d,

∆λ = λ[(1 − Pe)∆ε + (α + ξ)∆T] (2)

where ∆λ is the change in central wavelength, ∆ε is the change in strain, and ∆T is the
change in temperature. For quartz FBG at room temperature, the Pe elasto-optical coefficient
is 0.22, the α thermal expansion coefficient is 5.5 × 10−7/°C, and the ξ thermo-optical
coefficient is 6.8 × 10−6/°C.

Taking the symmetric measurement points FBG1 and FBG2 in the same temperature
field as an example, the center wavelength changes of these two measurement points
are ∆λ1 and ∆λ2, respectively, and the strain changes are ∆ε1 and ∆ε2, and the center
wavelength shift changes are obtained by differential operation as follows:

∆λ1 − ∆λ2 = λ(1 − Pe)(∆ε1 − ∆ε2) (3)

2.3. Establishment of Decoupling Model

According to Equation (3), the temperature-compensated FBG center wavelength
versus strain is defined as follows:

Er = a1Λ (4)

(∆ε1 − ∆ε2, ∆ε4 − ∆ε3, . . . , ∆ε15 − ∆ε16)
T = a1(∆λ1 − ∆λ2, ∆λ4 − ∆λ3, . . . , ∆λ15 − ∆λ16)

T (5)

In Equation (4), Er is the change of eight groups of strain, Λ is the change of eight
groups of central wavelength, and a1 = 1

λ(1−Pe)
is the conversion coefficient between

the change of strain and central wavelength. In Equation (5), the subscript of strain and
wavelength is the serial number of the measuring point position.

Define the relationship between stress and strain as follows:

Fr = a2Er (6)

Fr = ( f1 − f2, f4 − f3, . . . , f15 − f16)
T (7)

In Equation (6), Fr is the stress variation of eight groups, and a2 is the stress–strain con-
version coefficient. In Equation (7), the subscript of stress is the position sequence number.
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Combining the elastomer and the FBG arrangement position defines the load matrix
Ld as follows:

Ld =



Fx
Fy
Fz

Mx
My
Mz

 =



k1[( f15 − f16) + ( f8 − f7)]
k2[( f11 − f12) + ( f4 − f3)]

k3[( f1 − f2) + ( f5 − f6) + ( f9 − f10) + ( f13 − f14)]
k4r[( f5 − f6) + ( f14 − f13)]
k5r[( f10 − f9) + ( f1 − f2)]

k6r[( f3 − f4) + ( f7 − f8) + ( f11 − f12) + ( f15 − f16)]

 (8)

ki is the conversion coefficient of the change in the i load and stress, and r is the vertical
distance from the measuring point to the center of moment of the elastomer. This formula
shows that Equation (8) is obtained by matrix decomposition.

Ld = G1G2Fr (9)

G1 and G2 are the coefficients’ matrix after decomposition. Since the simulation strain
data are used in this paper for model verification, Equation (6) is brought into Equation (9)
to obtain the following:

Ld = a2G1G2Er (10)

Let U = a2G1G2.
Ld = UEr (11)

From Equation (11), it can be seen that Ld is the output matrix of model training, which
corresponds to the six-dimensional load values set in the simulation; Er is the input matrix,
which corresponds to the eight sets of FBG strain variations or the simulation strain results;
U is the model parameter matrix for the linear model; and U is the model weight for the
nonlinear model such as the BP neural network, which further shows that the numerical
relationship between the FBG strain data and the six-dimensional load can be represented
by models such as the BP neural network and other models.

3. Decoupling Model Theory

On the basis of sensor design, the proposed two-stage decoupling model is further
discussed. The discussion of the model includes describing the overall framework of
the model, explaining the content and establishment method of the model dataset, and
analyzing the comparison results and evaluation indicators between the other four models
and the two-stage model, and the specific contents are as follows.

3.1. Definition of Load Category Label

The definition of the load category label is shown in Table 1. The six-bit binary number
and the corresponding decimal number are used to define the payload category. When
the payload exists, the corresponding bit is assigned to 1. When the load does not exist,
the value is 0, and since the load has six dimensions, there are 26 − 1 categories excluding
the case of no load. For example, when Fx, Fy, Fz exists and Mx, My, Mz does not exist, the
binary label is (1,1,1,0,0,0) and the corresponding decimal label is 56. It is important to note
that the decimal label acts as the input and output of the classification neural network. The
above definition method can effectively quantify the load categories and be applied to the
operation of neural networks.
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Table 1. Classification label.

Label_D Label_B_Fx Label_B_Fy Label_B_Fz Label_B_Mx Label_B_My Label_B_Mz

1 0 0 0 0 0 1
2 0 0 0 0 1 0
3 0 0 0 1 1 0

. . . . . . . . . . . . . . . . . . . . .
61 1 1 1 1 0 1
62 1 1 1 1 1 0
63 1 1 1 1 1 1

3.2. Framework of Decoupling Model

The framework of the six-component force sensor decoupling model is shown in
Figure 4. The model mainly consists of two stages. The first stage (stage 1) is the clas-
sification stage. The second stage (stage 2) is the regression stage, which applies the
corresponding regression model for different load categories and output channels to obtain
the load value corresponding to the strain data.
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The solid line in Figure 4 represents the model running route when the classification
model recognizes the strain data as category label 62. The running route is used as an
example to introduce the model framework in detail.

(a) Preprocessing of input data

The preprocessing is the normalization of strain data, and all eight strain data are
mapped to values in the range of 0 to 1, mainly for the training process and verification
process of neural networks, with the purpose of speeding up the convergence speed of
network training and preventing overfitting.

(b) Classification stage of model

The preprocessed strain data are input into the neural network classification model,
and the decimal class label 62 is obtained first, and then the decimal label is converted into
the six-bit binary label 111110. For the channel Mz with binary bit 0, its regression value is
directly set to zero.

(c) Regression stage of model
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For the channel whose binary label bit is not 0, the corresponding regression model
is used to carry out load value regression. Polynomial regression is used for the first
three Fx, Fy, and Fz channels, and a BP neural network is used for the last three Mx, My,
and Mz channels. In particular, there are regression models for each output channel of
each category of force labels; for example, the polynomial regression model for the Fx
channel of label 62 is qt_regression_62_1; there are regression models for each category
of torque labels. For example, the BP neural network regression model corresponding to
label 62 is bp_regression_62. Additionally, the training set of the regression model is the
corresponding class of data, rather than all the data. Based on the verification set regression
results of a single model (no classification stage), the polynomial regression error for the
force channel is small, and the BP neural network regression error for the torque channel
is small. Therefore, the combination of a BP neural network and polynomial regression is
selected for the regression stage.

(d) Outputting result

The regression values of all six channels are summarized and output.

3.3. Theory of Classification Stage

Since the zero-setting operation and regression model selection in the model depend
on the accuracy of classification, the classification stage is the key to affect the accuracy of
the model. The decimal class label and eight strain data are input into the classification-
stage deep BP neural network to obtain the corresponding load decimal class label. The
network structure of this stage is shown in Figure 5.
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The input data in the Figure 5 is the normalized strain value vector P =
(
p1, p2, . . . , p8

)T.
A = (a1, a2, . . . , a8)

T is the input layer vectors. The number of neurons in the three hidden
layers is 100-80-30. ReLU is the hidden layer activation function. A Softmax layer is used
for the tag probability mapping layer behind the hidden layer. E = (e1, e2, . . . , e63)

T is
the output layer neuron, corresponding to the probability of 63 load classes, and the class
label corresponding to the maximum probability in E is taken as the final output in the
classification stage. The number of iterations was 2000, and the learning rate was 0.05.

Since the classification stage is very important for this decoupled model, which is
associated with the zero-setting operation, the selection of the corresponding regression
model operation, the requirement of high prediction accuracy, and the high number of
output categories (63), it was chosen to construct a three-layer deep BP neural network
with a high number of neurons using the trainNetwork function in MATLAB to fit the
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relationship between the load values and the load categories. Generally, the settings of the
number of neurons and hidden layers for a particular task are based on experience and
repeated testing, for example, first selecting a smaller number of hidden layers, selecting a
number of neurons that are multiplicatively related to the dimensionality of the input data,
increasing or decreasing the number and testing it continuously to observe the prediction
performance of each setting, and finally, picking out the most appropriate number of
neurons and hidden layers. The decoupling task in this paper requires less data to be
processed compared with the image processing task; therefore, initially, three hidden layers
(a neural network with at least three hidden layers is known as a deep neural network)
and close to two times the number of output dimensions (126) are selected as the number
of neurons for the first hidden layer, and then the number of neurons is continuously
increased or decreased and tested in steps of 10 to observe the prediction accuracy. Finally,
100-80-30 is determined as the hidden layer setup scheme with the highest accuracy.

3.4. Theory of Regression Stage

After obtaining the load category label and zeroing the channel with binary label
bit 0, eight strain data are input into the polynomial model in the regression stage, and
the regression values of the three force channels are obtained. The polynomial used
for regression is Equation (12). The mi, nij, ki in the polynomial respectively represent
the coefficient of the first term, product term coefficient, and square term coefficient; c
represents the constant term. Polynomial coefficients are solved based on MATLAB’s fitlm
function, whose fitting model parameter is quadratic.

f (p1, p2, . . . , p8) =
8

∑
i=1

mi pi+
7

∑
i=1

8

∑
j=i+1

nij pi pj +
8

∑
i=1

ki pi
2 + c (12)

Taking the Fx channel of label 41 as an example, its coefficients and constant terms are
shown in Table 2. If no item appears in the table, its coefficient is 0.

Table 2. Coefficient of term.

Term Coefficient/1010 Term Coefficient/1010 Term Coefficient/1010

p1 −0.0154 p1p8 −124.2412 p5p8 6.1983
p2 0.0448 p2p3 −237.4281 p6p7 −11.7997
p3 −0.1064 p2p4 320.6829 p6p8 13.1048
p4 0.0279 p2p5 7.2262 p7p8 260.7574
p5 0.0337 p2p7 −451.7682 p1

2 −67.8017
p6 −0.0537 p2p8 169.8071 p2

2 −55.8811
p7 −0.0037 p3p4 557.7507 p3

2 −95.2274
p8 −0.0395 p3p5 −463.7950 p4

2 −510.3515
p1p2 125.5442 p3p6 407.8164 p5

2 −17.4421
p1p3 172.8450 p3p8 −81.0260 p6

2 10.6449
p1p4 −280.3908 p4p6 44.3733 p7

2 −410.6128
p1p5 96.2808 p4p7 628.2058 p8

2 −0.6020
p1p6 −102.6919 p4p8 −315.6849 c 0
p1p7 400.2304 p5p7 43.5794 — —

Eight strain data are input into the BP neural network in the regression stage, the
regression value of the six-dimensional load is obtained, and the results of the three
moments of the force are output. The network structure of this stage is shown in Figure 6.
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Figure 6. Network model of force channel in regression stage.

The input data in Figure 6 are consistent with the classification model, which are
strain value vectors P =

(
p1, p2, . . . , p8

)T. The hidden layer is the fully connected layer
of 50 neurons. H = (h1, h2, . . . , h6)

T is the output layer neuron, corresponding to the
load values of six load channels, but only outputting the regression values of three torque
channels. The number of training iterations is 2000, and the learning rate is 0.001. Finally, the
regression values of the three force channels and three moment channels are summarized
to form the final six-dimensional load output.

Since the input dimension (8) and output dimension (6) of the network in the regression
stage are relatively small, the feedforwardnet function was initially chosen to construct a
neural network with a single hidden layer and two times the number of hidden layers in
the input dimension (16), and then the number of neurons was increased or decreased and
tested in steps of 5. Finally, a single layer and 50 neurons were determined to be the setup
solution with the smallest prediction error.

4. Simulation Verification and Analysis of Results
4.1. Simulation Setup and Establishment of Dataset

In order to ensure the generalization of the neural network model, the random number
generation program is used to generate the values of force and moment as the simulation
load data of the elastomer, where the force load ranges from 1000 N to 10,000 N, and the
torque load ranges from 1 × 105 to 1 × 106 N·mm. As shown in Figure 7, the force load
is evenly loaded in the geometric center of the four bolt holes of the center table, and the
torque is loaded in the geometric center of the central through hole. The elastomer material
is aluminum alloy. The outer wall of elastomer is a fixed constraint. The strain extraction
location is the 16 FBG locations in Figure 2, and the strain data are extracted according
to the node ID to ensure that the collection location of each group of data is completely
consistent. After exporting all the strain data, it is converted into eight-dimensional data
according to the differential symmetric position. The simulation results when Mz is loaded
are shown in Figure 8. The total number of samples in the training set is 3141, in which the
number of samples loaded in a single dimension is 20, the number of samples loaded in
a double dimension is 30, and the number of samples from three to six dimensions is 60.
The total number of samples of the classification verification set is 63. The total number of
samples of the regression verification set is 117.
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Figure 8. Simulation result.

After the simulation results are exported, the decoupling model dataset is made,
as shown in Table 3. Label is the label of the load category. Force and moment are six-
dimensional load values. Strain is the eight-dimensional simulated strain value after a
differential budget.

Table 3. Dataset of simulation strain results.

Label Force/N Moment/N·mm Strain/10−6ε

Label_D Label_B Fx Fy Fz Mx My Mz p1 . . . p8

1 000001 0 0 0 0 0 100,000 43 . . . 171
2 000010 0 0 0 0 100,000 0 342 . . . 68
3 000011 0 0 0 0 123,373 941,981 512 . . . 1618

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
61 111101 9555 2797 3332 372,349 814,763 291,549 3602 . . . 918
62 111110 9918 4221 1491 864,458 466,040 624,266 2124 . . . 729
63 111111 9980 8450 9701 375,133 320,063 809,102 3217 . . . 739

4.2. Result of Classification Stage Based on Simulation Data

The prediction results of the classification stage based on the simulation data are
shown in Figure 9, with an accuracy of 93.65% after 2000 generations of training. The
horizontal coordinate is the validation set sample serial number, and the vertical coordinate
is the label value., where red is the true label of the validation set and blue is the predicted
label. The labels with errors are 10, 31, 59 and 63, and after converting the decimal labels
to binary, it can be seen that the model has relatively poor prediction performance for
multidimensional loads.
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4.3. Result of Regression Stage Based on Simulation Data

The results of the regression stage based on the simulation data are shown in Figure 10,
which shows the regression of the six-dimensional load in the verification set, where the
training algebra of the torque channel neural network is 2000. The horizontal coordinate
is the sample number of the verification set, and the vertical coordinate is the load value.
The blue line is the load regression value, and the red line is the true load value of the
verification set. As can be seen from Figure 10 as a whole, under the action of prediction
and zero-setting in the classification stage, the two-stage model has a good regression effect
on the 0 values of the six channels, which reflects the importance of the classification stage
in this model. By comparing the subgraphs of a force channel and a moment channel,
it can be seen that the regression result of the two-stage model is better than that of the
force channel. Combining the prediction results of the classification stage (the label of
prediction error) and the data points with large errors in each subgraph, it can be seen that
the regression performance of the two-stage model for multidimensional loads is slightly
poor, and there is still room for optimization in training sets and network parameters.
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4.4. Analysis of Model Comparison 

Four single models are selected for comparison, which are linear regression, polyno-
mial regression, random forest, and BP neural network. The single model here refers to 
the nonclassification stage. 

Model comparison results are shown in Figure 11, where black is the true value of 
the verification set, light blue is the proposed two-stage decoupling model, red is linear 
regression, green is polynomial fitting, dark blue is random forest, and purple is BP neural 
network. It can be seen that the two-stage decoupling model is better than other models, 
especially the regression of a zero value, but the error of individual sample points is large. 
The error of linear regression is the largest, and it is not suitable to capture the nonlinear 
relationship between strain and load when multidimensional force is loaded. The error of 
single polynomial regression is smaller among the four contrast models, which is close to 
the two-stage decoupling model. The regression results of random forest for F୸, M୶, and M୷ are better, but other channels are worse. The regression error of a single BP neural 
network is larger for a zero value and smaller for a nonzero value. 

Figure 10. Cont.



Sensors 2024, 24, 2698 12 of 19

Sensors 2024, 24, x FOR PEER REVIEW 12 of 20 
 

 

 
(a) 

 
(d) 

 
(b) 

 
(e) 

 

(c) 
 

(f) 

Figure 10. Regression stage results based on simulation data: (a) F୶, (b) F୷, (c) F୸, (d) M୶, (e) M୷, 
(f) M୸. 
4.4. Analysis of Model Comparison 

Four single models are selected for comparison, which are linear regression, polyno-
mial regression, random forest, and BP neural network. The single model here refers to 
the nonclassification stage. 

Model comparison results are shown in Figure 11, where black is the true value of 
the verification set, light blue is the proposed two-stage decoupling model, red is linear 
regression, green is polynomial fitting, dark blue is random forest, and purple is BP neural 
network. It can be seen that the two-stage decoupling model is better than other models, 
especially the regression of a zero value, but the error of individual sample points is large. 
The error of linear regression is the largest, and it is not suitable to capture the nonlinear 
relationship between strain and load when multidimensional force is loaded. The error of 
single polynomial regression is smaller among the four contrast models, which is close to 
the two-stage decoupling model. The regression results of random forest for F୸, M୶, and M୷ are better, but other channels are worse. The regression error of a single BP neural 
network is larger for a zero value and smaller for a nonzero value. 
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4.4. Analysis of Model Comparison

Four single models are selected for comparison, which are linear regression, polyno-
mial regression, random forest, and BP neural network. The single model here refers to the
nonclassification stage.

Model comparison results are shown in Figure 11, where black is the true value of
the verification set, light blue is the proposed two-stage decoupling model, red is linear
regression, green is polynomial fitting, dark blue is random forest, and purple is BP neural
network. It can be seen that the two-stage decoupling model is better than other models,
especially the regression of a zero value, but the error of individual sample points is large.
The error of linear regression is the largest, and it is not suitable to capture the nonlinear
relationship between strain and load when multidimensional force is loaded. The error
of single polynomial regression is smaller among the four contrast models, which is close
to the two-stage decoupling model. The regression results of random forest for Fz, Mx,
and My are better, but other channels are worse. The regression error of a single BP neural
network is larger for a zero value and smaller for a nonzero value.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 20 
 

 

 

(a) 
 

(d) 

 

(b) 

 
(e) 

 
(c) 

 
(f) 

Figure 11. Regression results comparison of five models based on the simulation data: (a) F୶, (b) F୷, (c) F୸, (d) M୶, (e) M୷, (f) M୸. 
MAPE (mean absolute percentage error) is the mean absolute percentage error. The 

regression accuracy of the model is evaluated by calculating the average sum of the abso-
lute percentage error of all sample regression values and the true value. 

𝑀𝐴𝑃𝐸 = 1𝑛 ෍ |𝑦௜ − 𝑦పෝ||𝑦௜|௡
௜ୀଵ  (13)

𝑛 is the total number of sample points, 𝑦௜ is the true value, and 𝑦పෝ  is the regression 
value. The MAPEs of the five models are shown in Table 4. 

Table 4. Comparison of MAPE based on the simulation data. 

 
Linear Re-

gression (%) 
Polynomial 

Regression (%) Random Forest (%) 
BP Neural Net-

work (%)  
Two-Stage Model 

(%) F୶ 33.81 10.64 27.71 26.23 7.11 F୷ 38.43 9.45 32.64 17.54 5.63 F୸ 33.52 12.95 15.41 24.15 6.12 
Mean of force channel 35.25 11.01 25.25 22.64 6.29 

Figure 11. Cont.



Sensors 2024, 24, 2698 13 of 19

Sensors 2024, 24, x FOR PEER REVIEW 13 of 20 
 

 

 

(a) 
 

(d) 

 

(b) 

 
(e) 

 
(c) 

 
(f) 

Figure 11. Regression results comparison of five models based on the simulation data: (a) F୶, (b) F୷, (c) F୸, (d) M୶, (e) M୷, (f) M୸. 
MAPE (mean absolute percentage error) is the mean absolute percentage error. The 

regression accuracy of the model is evaluated by calculating the average sum of the abso-
lute percentage error of all sample regression values and the true value. 

𝑀𝐴𝑃𝐸 = 1𝑛 ෍ |𝑦௜ − 𝑦పෝ||𝑦௜|௡
௜ୀଵ  (13)

𝑛 is the total number of sample points, 𝑦௜ is the true value, and 𝑦పෝ  is the regression 
value. The MAPEs of the five models are shown in Table 4. 

Table 4. Comparison of MAPE based on the simulation data. 

 
Linear Re-

gression (%) 
Polynomial 

Regression (%) Random Forest (%) 
BP Neural Net-

work (%)  
Two-Stage Model 

(%) F୶ 33.81 10.64 27.71 26.23 7.11 F୷ 38.43 9.45 32.64 17.54 5.63 F୸ 33.52 12.95 15.41 24.15 6.12 
Mean of force channel 35.25 11.01 25.25 22.64 6.29 

Figure 11. Regression results comparison of five models based on the simulation data: (a) Fx, (b) Fy,
(c) Fz, (d) Mx, (e) My, (f) Mz.

MAPE (mean absolute percentage error) is the mean absolute percentage error. The
regression accuracy of the model is evaluated by calculating the average sum of the absolute
percentage error of all sample regression values and the true value.

MAPE =
1
n

n

∑
i=1

|yi − ŷi|
|yi|

(13)

n is the total number of sample points, yi is the true value, and ŷi is the regression
value. The MAPEs of the five models are shown in Table 4.

Table 4. Comparison of MAPE based on the simulation data.

Linear
Regression

(%)

Polynomial
Regression

(%)

Random
Forest (%)

BP Neural
Network (%)

Two-Stage
Model (%)

Fx 33.81 10.64 27.71 26.23 7.11
Fy 38.43 9.45 32.64 17.54 5.63
Fz 33.52 12.95 15.41 24.15 6.12

Mean of force
channel 35.25 11.01 25.25 22.64 6.29

Mx 22.75 8.87 17.07 6.91 4.24
My 19.16 9.22 12.29 5.45 3.86
Mz 41.87 15.12 24.26 5.74 1.61

Mean of
moment
channel

27.93 11.07 17.87 6.03 3.24

In addition to decoupling errors, model complexity is also a key index to evaluate
model performance. Now only the complexity calculation of the validation process is
considered, and the method is as follows:

(1) Time complexity

O(A·B)pr + O

(
A·∑

i
Mi Mi+1

)
bp

(14)

(2) Space complexity

O(A·C + B)pr + O(P + Q)bp (15)

where the lower-right footer pr denotes polynomial regression, the footer bp denotes BP
neural network, A is the number of validation set samples, B is the number of polynomial
coefficients, and C is the number of polynomial variables. Mi is the number of neurons in
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the ith layer (the input layer is the first layer, and the output layer is the last layer), P is the
number of neural network weights, and Q is the number of biases.

The time complexity of the validation process according to the two-stage model is
calculated to be O(1531530), and the space complexity is O(13363), given a sample size
of 117.

A comparison of the research progress of six-component force sensor decoupling
models within the last 6 years is shown in Table 5, which contains a comparison of the
error, model complexity, and application scope of the force and moment channels. The
assessment of model complexity in the table is more subjective due to the unavailability of
model codes from other researchers.

Table 5. Comparison of research progress.

Name of Model Year of Publication Mean Error of Force
Channel (%)

Mean Error of Moment
Channel (%) Model Complexity Scope of Application

Linear regression + support
vector machine [18] 2018 0.87 0.87 Complicated Single dimension

Random forest + genetic
algorithm [19] 2020 0.67 0.72 Complicated Single dimension

Polynomial regression [20] 2023 0.92 0.05 Simplex Single dimension
BP neural network + genetic

algorithm [21] 2023 0.15 0.15 Complicated Single dimension

Two-stage model 2024 6.29 3.24 Complicated Multiple dimension

Combined with Figure 11, Tables 4 and 5, it is summarized below:

(1) The two-stage model based on simulation data has a mean MAPE of 6.29% in the
force channel and 3.24% in the moment channel, which is not much different from the
single BP neural network regression model. It indicates that the operation of applying
the regression model in the subchannel combines the advantages of the two single
models, and the training of the corresponding models according to different load
types can reduce the error.

(2) The zero-setting operation in the classification stage largely reduces the regression
error on the value of 0. However, it depends on the model performance of the deep
BP neural network, which needs to be optimized in terms of the amount of data in the
training set, the structure of the network, the training function, and the learning rate.

(3) In the case of mixed loading of multidimensional forces, there is a nonlinear relation-
ship between the load value and the strain value, and it is not appropriate to use a
linear model, and the polynomial regression and BP neural network are more effective
in a single model.

(4) From the aspect of error, this paper targets the decoupling of multidimensional loading
cases, and the model input and output are nonlinear relationships, which need to be
followed up by increasing the number of samples in the training set and optimizing
the model parameters to further improve the model performance. From the aspect of
model complexity, the current state of the art of the research in recent years has mostly
been the combination of nonlinear models, which has certain requirements for the
hardware arithmetic and the amount of training data in the real-world applications.
From the aspect of the application in terms of application, the two-stage model has
stronger generalization and can be applied to multidimensional load decoupling.

5. Static Calibration Experiment and Analysis of Results
5.1. Experimental Scheme and Establishment of Dataset

In order to further test the reasonableness and generalization of the two-stage decou-
pling model in real applications, static load calibration experiments of elastomers with
resin materials were carried out, as shown in Figure 12, and the experimental tools mainly
consisted of (1) nylon ropes, (2) fixed pulleys, (3) weights, (4) FBG joints, and (5) loading
part. The temperature of the experimental environment was maintained at about 20 ◦C. A
total of 16 FGBs were fused in series and pasted onto the elastomer surface, and after the
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center wavelength data of the FBGs were collected by a demodulator, the wavelength data
were converted into strain data according to Equations (3) and (4), and then, the static load
calibration experimental dataset was established in accordance with Table 3.
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Figure 12. Calibration experiment: (a) elastomer sample, (b) FBG demodulator, (c) loading of force.

The total number of samples in the training set based on the experimental data is
384, of which 24 are single-dimensional samples, 72 are two-dimensional samples, and
96 are three-dimensional samples. The total number of samples in the validation set based
on the experimental data is 41, of which 6 are single-dimensional samples, 15 are two-
dimensional samples, and 20 are three-dimensional samples. It should be noted that, due to
the limitation of experimental conditions, the maximum loading in the dataset is 3, which
means that the experiment only verifies the model feasibility in the case of one-dimensional,
two-dimensional, and three-dimensional loadings. The range of the force loading is from
2.5 N to 12.5 N, the range of the moment loading is from 750 N to 3750 N, and the forces
and moments are isometric loading. Some of the loading schemes in the validation set are
shown in Table 6.
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Table 6. Partial validation set based on experimental data.

Label_D Fx/N Fy/N Fz/N Mx/N·mm My/N·mm Mz/N·mm

1 0 0 0 0 0 3000
2 0 0 0 0 3000 0
4 0 0 0 3000 0 0
8 0 0 10 0 0 0

16 0 10 0 0 0 0
32 10 0 0 0 0 0
3 0 0 0 0 3000 3000

24 0 10 10 0 0 0
9 0 0 10 0 0 3000

56 10 10 10 0 0 0
7 0 0 0 3000 3000 3000

25 0 10 10 0 0 3000
11 0 0 10 0 3000 3000

5.2. Result of Classification Stage Based on Experimental Data

The prediction results of the classification stage based on the experimental data are
shown in Figure 13, and the accuracy of the decoupled model is 87.80%. The labels
with errors are 4, 9, 38, 40, and 44. Similar to the classification results based on the
simulation data, the prediction accuracies of the two-dimensional and three-dimensional
are relatively low.
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Figure 13. Classification stage results based on experimental data.

5.3. Result of Regression Stage Based on Experimental Data

The results of the regression stage based on the experimental data are shown in
Figure 14, from which it can be seen that the zero-setting operation in the two-stage model
still has a significant effect on the experimental data; similar to the simulation results, the
regression results of the two-stage model for the torque channel are better than those for
the force channel.
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Combined with Figure 10, Figure 14, Table 4, and Table 7, it is summarized below:

Table 7. MAPE based on experimental data.

Fx Fy Fz Mean of Force Channel Mx My Mz Mean of Moment Channel

5.74% 6.29% 4.86% 5.63% 6.53% 2.03% 3.91% 4.15%

(1) The average MAPE of the two-stage model based on the experimental data is 5.63%
for the force channel, 4.82% for the moment channel. Comparing the MAPEs of each
output channel in the simulation and experiment, it can be seen that there is not much
difference between the two, which indicates that it is feasible to use the two-stage
decoupling model in practical engineering, and also reflects the generalization of
the model.

(2) Due to the problems of funds and time, the loading schemes in the experiments are
all isometric and integer multiple loading, which is inconsistent with the random
loading in the simulation. If the subsequent experimental conditions are sufficiently
adequate, a digital loading platform, loading parts with more optimized structure,
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and expansion of the experimental dataset will be used to further verify the feasibility
of the two-stage decoupling model.

(3) Personally, I believe that the two-stage decoupling model can realize real-time six-
dimensional force dynamic monitoring under sufficiently ideal conditions in terms of
dataset and model optimization.

6. Conclusions

A two-stage decoupling model combining an artificial neural network and polynomial
regression is proposed for the decoupling problem of a six-component force sensor in the
case of multidimensional mixed loading. The elastomer structure of the sensor and the FBG
arrangement scheme are designed, and a dataset based on the simulation and experimental
results is constructed for verifying the feasibility of the proposed decoupling model. The
validation results show that the MAPEs of the simulation and experimental results are
similar, in which the decoupling model based on the experimental data has a MAPE of
5.63% for the force channel and 4.15% for the moment channel, and the performance of the
model is significantly better than that of linear fitting, polynomial regression, and random
forests, etc. However, there is still room for improvement in the performance of the model
when compared with the one-dimensional decoupling. The above work provides ideas
for the decoupling research of six-component force sensors in the field of rotor system
structure monitoring.
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