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Abstract: Fault diagnosis can improve the safety and reliability of diesel engines. An end-to-end
method based on a multi-attention convolutional neural network (MACNN) is proposed for accurate
and efficient diesel engine fault diagnosis. By optimizing the arrangement and kernel size of the
channel and spatial attention modules, the feature extraction capability is improved, and an improved
convolutional block attention module (ICBAM) is obtained. Vibration signal features are acquired
using a feature extraction model alternating between the convolutional neural network (CNN) and
ICBAM. The feature map is recombined to reconstruct the sequence order information. Next, the
self-attention mechanism (SAM) is applied to learn the recombined sequence features directly. A
Swish activation function is introduced to solve “Dead ReLU” and improve the accuracy. A dynamic
learning rate curve is designed to improve the convergence ability of the model. The diesel engine
fault simulation experiment is carried out to simulate three kinds of fault types (abnormal valve
clearance, abnormal rail pressure, and insufficient fuel supply), and each kind of fault varies in
different degrees. The comparison results show that the accuracy of MACNN on the eight-class fault
dataset at different speeds is more than 97%. The testing time of the MACNN is much less than
the machine running time (for one work cycle). Therefore, the proposed end-to-end fault diagnosis
method has a good application prospect.

Keywords: diesel engine; end-to-end fault diagnosis; machine learning; attention mechanism; self-
attention mechanism

1. Introduction

The diesel engine has been widely employed in construction machinery, ships, nuclear
power, and other fields for high thermal efficiency, immense output power, and extended
service life. Many complex components of the engine are prone to failure due to their
prolonged operation in high temperature, high pressure, and severe vibration environ-
ments [1]. When critical components fail, it can lead to downtime, financial loss, and even
life-threatening issues [2,3]. Therefore, it is significant to carry out research on engine
fault diagnosis.

The fault diagnosis based on vibration signal has become a hot research topic for simple
measurement, high accuracy, and non-disassembly [4]. Traditional signal processing-based
methods usually require manual feature extraction, which requires strong expert knowledge.
This method has two downsides: Firstly, artificial involvement leads to uncertainty of recog-
nition results. For example, Barai [5] and Lu [6] used empirical mode decomposition (EMD)
and wavelet transform to extract fault features in vibration for identification, respectively.
The choice of wavelet basis functions, EMD components, and classifiers greatly affect the
diagnosis [7]. Secondly, the sensitivity of artificial features varies greatly between faults,
resulting in low generalizability. For example, Zhao [8] and Ke [9] used multi-channel signal
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entropy and multi-scale bidirectional diversity entropy to characterize the degree of faults,
respectively. The results show that the applicability of features is different for various types
of faults. Manual feature selection is inefficient and difficult.

The end-to-end fault diagnosis expects to use raw time-domain data as input, complete
feature extraction, and classification through self-learning. Represented by deep learning,
end-to-end methods have been widely used in fault diagnosis [10]. Habbouche et al. used a
convolutional neural network (CNN) to classify the features extracted by variational mode
decomposition [11]. The effectiveness of this method is still affected by artificial features.
CNN has excellent advantages in image feature extraction. Ribeiro [12] and Wang [13]
et al. used methods such as short-time Fourier transform to convert vibration signals into
two-dimensional pictures, which were classified by CNN. These methods are complicated,
and there is a risk of information loss in the process of dimension transformation. And,
dimension transformation methods have poor generalizability. Zhao et al. proposed a
CNN-based adaptive inter- and intra-class fault diagnosis method for variable operating
condition gears [14]. This method efficiently implements end-to-end fault diagnosis. Du
et al. used a one-dimensional convolutional neural network (1DCNN) to process vibration
signals of automobile engines to achieve fault diagnosis and classification [15]. Zhao et al.
proposed a multi-branch convolutional neural network with an integrated cross-entropy to
identify six diesel engine faults [16].

The CNN has strong local feature extraction capabilities but has limitations because
it does not utilize the sequence order information of the time-domain data. The accuracy
of end-to-end fault diagnosis directly used for engine vibration is not high. Recurrent
neural network (RNN) has structural advantages in temporal data processing. Huang
et al. used long short-term memory networks (LSTM) to diagnose high-speed train bogie
faults [17]. Qin et al. proposed a multi-scale CNN-LSTM neural network with a residual-
CNN denoising module for anti-noise diesel engine misfire diagnosis [18]. Ouyang et al.
proposed a new bi-directional gated recurrent unit (BiGRU) to diagnose faults in blast
furnaces [19]. Zhi et al. implemented wavelet denoising combined with the CNN-LSTM
for fault diagnosis of harmonic reducers, achieving better results than CNN and LSTM [20].
As mentioned above, RNN-like methods are better than CNNs for classifying temporal
data. However, the RNN typically factors computation along the input and output symbol
positions, aligning the positions to steps in computation time, resulting in low efficiency,
which limits its application in fault diagnosis. In 2016, Zhou et al. completed the relation
classification task by introducing the self-attention mechanism (SAM) into LSTM [21]. In
2017, Vaswani et al. extensively used multi-head SAM to learn text representation and
then proposed the famous transformer model [22]. Since then, transformers have been
widely used in natural language processing. Compared to CNN and LSTM, SAM has a
stronger temporal feature learning capability. Liu et al. constructed a prediction model
of the exhaust gas temperature of the marine diesel engine based on attention-LSTM [23].
However, SAM has an ordinary feature extraction ability for raw time domain data, so it is
necessary to combine it with other feature extraction networks to design the model. Using
CNN-like networks for feature extraction and then using SAM for learning is a better idea.
However, preserving the temporal features of the original data in CNN is also a problem.

The convolutional block attention module (CBAM) [24] is proposed to enhance the
feature map representation capability of the model and to selectively focus on important
information. The CBAM uses spatial attention and channel attention to fully utilize the
spatial and channel information of the feature map. Guo et al. proposed an end-to-end
fault diagnosis method based on attention CNN and BiLSTM, in which CBAM redistributes
the weights between different feature dimensions and enhances the model’s focus on
important features [25]. Yao et al. considered the effect of the location of spatial and
channel attention additions on the effectiveness of pavement crack detection [26]. Yan
et al. incorporated the convolutional block attention module and the improved residual
module into the convolutional variational autoencoder for fault diagnosis tasks [27]. Song
et al. proposed a multi-source information fusion meta-learning network with CBAM for
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bearing fault diagnosis under a limited dataset [28]. The effect of implementing CBAM
largely depends on its parameter settings, such as the configuration of spatial and channel
attention mechanisms. Spatial attention is usually implemented through a convolutional
layer, and the size of the convolutional kernel of this layer affects how local features are
aggregated. Larger convolution kernels may capture broader spatial relationships, while
smaller convolution kernels pay more attention to detailed features. Small convolution
kernels pay more attention to detailed features and abnormal patterns in small areas, which
is very useful for capturing small changes or early subtle fault signals. Large convolution
kernels help the model understand the working status of the entire device or the overall
failure mode. However, the influence of the arrangement of channel and spatial attention,
as well as the kernel size, on the effectiveness of fault diagnosis has been little discussed.

In this paper, an end-to-end fault diagnosis method based on multiple attention con-
volutional neural networks (MACNN) is proposed. The main contributions are as follows:

(1) The paper improves the arrangement of channel attention and spatial attention in the
CBAM method while optimizing the kernel size.

(2) The feature map obtained after feature extraction is sequentially recombined to pre-
serve the temporal features of the vibration signal. The recombined feature maps are
recognized using SAM.

(3) A Swish activation function is introduced to suppress “Dead ReLU”, and the dynamic
learning rate curve is designed to improve the convergence efficiency.

This paper is organized as follows: Section 1 introduces the research background and
significance. Section 2 shows the fundamental algorithm theories. Section 3 includes the
engine fault simulation experiment and data processing. The MACNN is proposed in
Section 4. The results of diesel engine fault diagnosis based on MACNN are analyzed in
Section 5. Conclusions are given in Section 6.

2. Background Theories
2.1. Convolutional Neural Networks

Convolutional neural networks are the most widely used deep learning algorithms
in the field of computer vision. Their essential components mainly include the input,
convolutional, pooling, fully connected, and output layers. The convolutional layer and
the pooling layer appear alternately to extract features and reduce dimensions [29].

The convolutional layer uses multiple convolutional kernels to convolute with the local
area of input data, and each convolutional kernel shares the weights in the convolutional
process. The specific process of convolution is shown in (1).

yl
k = ∑ wl

kxl
j + bl

k (1)

where xl
j is the j-th input block of the l-th layer and wl

k and bl
k are the weights and biases of

the k-th convolutional kernel of the l-th layer.
The activation function can strengthen the nonlinear expression ability of the model.

The ReLU function is a widely used activation function [30], and its expression is shown
in (2).

f (x) =
{

x x > 0
0 x ≤ 0

(2)

The ReLU activation function has a gradient of 0 when the input is negative, which
will cause the neurons to be unable to update, resulting in the “Dead ReLU” problem. The
solution to this problem will be explained later.

To further reduce the risk of over-fitting and reduce the dimensions of data, the pooling
layer is often used for down-sampling after the convolutional layer. Usually, there are two
ways of average pooling and maximum pooling. To fully extract the impact characteristics
in the vibration signal and filter out part of the noise, the maximum pooling operation is
adopted in this paper, as shown in (3).
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pl+1
k (j) = max

(j−1)w+1≤t≤jw

{
al

k(t)
}

(3)

where al
k(t) is the activation value of the t-th neuron in the k-th feature plane in the l-th

layer, w is the width of the pooling area, and pl+1
k (j) is the corresponding value of the

l + 1-th layer.

2.2. Convolutional Block Attention Module

CBAM combines the ideas of CNNs and attention mechanisms, with the main advan-
tage of adaptively learning important features for a specific task. Attention mechanisms
enable the model to focus on the most relevant features for the task at hand. By dynamically
adjusting the importance of different features, attention mechanisms help extract discrim-
inative information from the input data, leading to improved performance. In addition,
attention mechanisms allow the model to selectively attend to specific parts of the input
data. This selective feature extraction enables the model to focus on relevant information
while ignoring irrelevant or noisy features, leading to more robust representations. There
are channel attention modules and spatial attention modules in CBAM. The structure of
CBAM, channel attention module, and spatial attention module are shown in Figure 1.
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The channel attention focuses on the connections across the channel in the feature
map. The channel attention module MC(·) is calculated by (4).

MC(P) = σ(Conv2(Conv1(Pc
avg)) + Conv2(Conv1(Pc

max))) (4)

where Pc
avg ∈ RC×1×1 and Pc

max ∈ RC×1×1 are the global average pooling feature and
global maximum pooling feature across the spatial axis. Conv1 and Conv2 share the same
parameters for both inputs and they are connected by the activation function, whereby
the convolutional kernel size in Conv1 and Conv2 will be discussed later, and σ is the
activation function.

The spatial attention MS(·) focuses on the connections across the spatial regions,
calculated by (5).

Ms(P) = σ(Conv([Ps
avg, Ps

max])) (5)

where Ps
avg ∈ R1×H×W and Ps

max ∈ R1×H×W are the global average pooling feature and
global maximum pooling feature across the channel axis, [Ps

avg, Ps
max] ∈ R2×H×W is spliced
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by Ps
avg ∈ R1×H×W and Ps

max ∈ R1×H×W , whereby the convolutional kernel size will be
discussed later, and σ is the activation function.

2.3. Self-Attention Mechanism

SAM is a special form of attentional mechanism that improves the ability to model cor-
relations between different positions in a sequence [24]. The attention weight is calculated
based on (6).

W = so f tmax(αT(Tanh(X′))) (6)

where α is a trained parameter vector, and the initial value is given by random initial-
ization at the beginning of training and then adjusted by the gradient descent algorithm.
W = {w1, w2 · · · wl′} is the weight learned from the recombined sequence feature X′. The
larger the wl′ is, the more important the information is to the classification decision.

Finally, the result is obtained by multiplying the attention weight and sequence
features, as shown in Equation (7).

y = Tanh(X′WT) (7)

where y is the result of SAM.

3. Data Preparation

Failure data of the diesel engine was obtained through simulation experiments. The
engine fault simulation bench test is carried out on a six-cylinder diesel engine. The
parameters of the engine are shown in Table 1. The experiments were conducted in a semi-
anechoic chamber with the diesel engine connected to the bench by rigid legs. The power
dynamometer is connected to the engine output end through a drive shaft to precisely
control its speed and load. The dynamometer (CAC380, Xiangyi Power, Changsha, China)
has a rated power of 380 kW, a rated torque of 2300 Nm, and a speed limit of 3790 r/min,
which meets the test needs of the diesel engine.

Table 1. Specifications of the tested diesel engine.

Items Specifications

Number of cylinders In-line 6 cylinders
Number of valves/cylinder 4

Displacement 7.14 L
Cylinder diameter/length 108/130 mm

Rated power/speed 220 kW/2300 r/min
Maximum torque/speed range 1250 Nm/1200–1600 r/min

The testing system includes vibration acceleration sensors (PCB 621B40), the signal
acquisition front-end (LMS SCADAS Mobile SCM05), and a computer (ThinkPad T530). The
vibration frequency of the test engine is usually lower than 10,000 Hz, and the amplitude
of vibration acceleration does not exceed 100 g (1 g = 9.8 m/s2). The range of the sensor
used is 500 g, and the sensitivity is 10 mV/g. The sensor error is less than 10% when the
test frequency is less than 18,000 Hz.

The cylinder head is closest to the combustion chamber and valve train and contains
less noise. The fault simulation experiment mainly collects the vibration signals from the
cylinder head, and the sensors are fixed on the cylinder heads of the 1 to 6th cylinders. The
location of the sensors and the experimental bench are shown in Figure 2.

The engine structure is complex and fault types are diverse. It is difficult to cover all
faults during experiments. Therefore, it is necessary to combine statistical laws to simulate
engine faults that occur frequently and are difficult to diagnose. Nahim et al. reviewed and
analyzed the main fault types of diesel engines and calculated the probability of various
types of faults [31]. The probability of fuel-injection equipment and fuel supply failures,
water leaks, and valve and seating failures are higher than other types of failures. Among
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them, water leakage failure will affect engine cooling and cause the body temperature to
be too high. This can be easily monitored through instruments without using complex
algorithms for diagnosis. The experiment mainly simulates three kinds of faults (abnormal
valve clearance, abnormal rail pressure, and insufficient fuel supply); each fault varies
in different degrees. Abnormal valve clearance is designed to simulate changes in valve
clearance due to wear and carbon buildup.
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Typical causes of common rail system failure are air leaks in the low-pressure line, oil
leaks in the high-pressure line, or oil pump failure, all of which will result in a reduction
in rail pressure. The injector is installed in the combustion chamber and operates for
a long time in an environment of high temperature, high pressure, and gas corrosion.
The injector is prone to failure, and the main causes include carbon buildup and wear
of the nozzle, which will lead to a reduction in fuel injection. Therefore, abnormal rail
pressure and insufficient fuel supply simulate common rail system failure and injector
failure, respectively. The valve clearance is changed by a feeler gauge, while the other
two faults are adjusted by the ECU. A total of eight types of fault states are included,
corresponding to labels 0 to 7. The details are shown in Table 2.

Table 2. Fault type.

Label Fault Type Fault Degree

0 Insufficient fuel supply
(Normal-100%)

75%
1 25%
2 Normal --

3 Abnormal rail pressure
(Normal-1500 bar)

1300 bar
4 1100 bar

5
Abnormal valve clearance

(Normal-in 0.30 mm, out 0.50 mm)

(in 0.25, out 0.45)
6 (in 0.35, out 0.55)
7 (in 0.40, out 0.60)

The setting of the sampling frequency must satisfy the Nyquist theorem. If the
sampling frequency is chosen improperly, the collected signal will experience aliasing.
Through a preliminary experiment conducted before the data collection of the diesel engine,
it was found that the vibration frequency of the engine used in the experiment does not
exceed 10,000 Hz. According to the Nyquist theorem, the sampling frequency in actual
applications should be 2.56 to 4 times the highest frequency of the signal, so that the
sampled signal can completely retain the information in the original signal. However, too
high a sampling frequency will lead to an excessively large dataset, which is not conducive
to subsequent storage and analysis. The sampling frequency is set to 25.6 kHz, and five
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stable speed conditions of 700 r/min, 1300 r/min, 1600 r/min, 2000 r/min, and 2300 r/min
are included in the experiment.

The sample length should be long enough to capture sufficient time series data to
effectively identify and analyze the engine’s operating status. Data should also be included
for at least one engine operating cycle to cover the possible duration of the failure. The
diesel engine used is a four-stroke diesel engine. The crankshaft turns two times in a
working cycle. Therefore, the length of a single sample should satisfy (8).

l ≥ 120 · f
n

(8)

where l is the length of a single sample, f is the sampling frequency (f = 25.6 kHz), and n is
the working speed (units: r/min).

When the speed is 2000 r/min, 1536 points are collected in one cycle of the diesel
engine. Therefore, the sample length is set to 1600 for convenience of calculation. To enlarge
the training dataset, the original time-domain data is intercepted with an overlap rate of
25% (overlap rate = (l − s)/l × 100%). The intercepted samples are represented by boxes of
different colors as shown in Figure 3. For the test data, the non-overlap method (overlap
rate = 0%) is adopted, which can better simulate the real application scene. The dataset is
divided in chronological order. The number of training and testing samples for each fault
state at 2000 r/min are 520 and 120, respectively. The length of a sample is the vibration
data of the one working cycle of the engine according to Equation (8).
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Figure 3. Data augmentation.

Figure 4 illustrates the time domain signal waveforms for different working conditions
in Table 2. The results show that there is a difference in the waveforms of some types of
faults, such as abnormal valve clearance, which is a mechanical fault with an obvious shock
waveform. However, the degree of the fault could not be discerned. There is a need to
investigate suitable fault diagnosis methods for fast and accurate identification.

Sensors 2024, 24, x FOR PEER REVIEW 4 of 11 
 

 

·

·

· ·

· ·

Single sample  
Figure 3. Data augmentation. 

Figure 4 illustrates the time domain signal waveforms for different working condi-
tions in Table 2. The results show that there is a difference in the waveforms of some types 
of faults, such as abnormal valve clearance, which is a mechanical fault with an obvious 
shock waveform. However, the degree of the fault could not be discerned. There is a need 
to investigate suitable fault diagnosis methods for fast and accurate identification. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 4. Time domain waveform under different conditions; (a) 75% fuel supply, (b) 25% fuel sup-
ply, (c) normal, (d) reduced rail pressure by 200 bar, (e) reduced rail pressure by 400 bar, (f) reduced 
valve clearance, (g) increased valve clearance, (h) larger valve clearance. 

4. Proposed Method 
CNN has excellent advantages in feature extraction, and it dramatically speeds up 

the running by way of local connection and weight sharing. The CNN model has a strong 
ability to extract local features of data but has limited ability to extract temporal features. 
For the vibration signal of the engine, its time domain signal usually contains complete 
working cycle information and has strong time dependence, so it is important to extract 
its timing characteristics. In time series data, information at different moments may have 
different importance. The attention mechanism can dynamically adjust the weights so that 
the model can pay attention to the most important features at each moment, thereby im-
proving the performance of the model. Time series data often have long-range dependen-
cies that may be difficult to capture with traditional models. The attention mechanism can 
help the model better understand the temporal relationships in time series data, thereby 
improving the model�s ability to model long-range dependencies. In addition, time series 
data usually has noise and uncertainty, and the attention mechanism can help the model 
better cope with these noises and uncertainties, thereby improving the robustness and 
generalization ability of the model. Therefore, this paper uses CNN as the main body and 
introduces multiple attention mechanisms to design the end-to-end engine fault diagnosis 
system MACNN. The structure of MACNN is shown in Figure 5. The diagnosis process 
includes three steps: feature extraction, feature recombination, and feature learning. Each 
of them will be described next. All data in Section 4 are from 2000 r/min. The engine vi-
bration signal in the time domain is cut based on engine speed according to Equation (2). 
The vibration signals are input into the network after normalization. 

0 0.01 0.02 0.03 0.04 0.05 0.06
-50

0

50

Time(s)

A
m

pl
itu

de
(g

)

0 0.01 0.02 0.03 0.04 0.05 0.06
-50

0

50

Time(s)

A
m

pl
itu

de
(g

)

0 0.01 0.02 0.03 0.04 0.05 0.06
-50

0

50

Time(s)

A
m

pl
itu

de
(g

)

0 0.01 0.02 0.03 0.04 0.05 0.06
-50

0

50

Time(s)

A
m

pl
itu

de
(g

)

0 0.01 0.02 0.03 0.04 0.05 0.06
-50

0

50

Time(s)

A
m

pl
itu

de
(g

)

0 0.01 0.02 0.03 0.04 0.05 0.06
-50

0

50

Time(s)

A
m

pl
itu

de
(g

)

0 0.01 0.02 0.03 0.04 0.05 0.06
-50

0

50

Time(s)

A
m

pl
itu

de
(g

)

0 0.01 0.02 0.03 0.04 0.05 0.06
-50

0

50

Time(s)

A
m

pl
itu

de
(g

)

Figure 4. Time domain waveform under different conditions; (a) 75% fuel supply, (b) 25% fuel supply,
(c) normal, (d) reduced rail pressure by 200 bar, (e) reduced rail pressure by 400 bar, (f) reduced valve
clearance, (g) increased valve clearance, (h) larger valve clearance.
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4. Proposed Method

CNN has excellent advantages in feature extraction, and it dramatically speeds up the
running by way of local connection and weight sharing. The CNN model has a strong ability
to extract local features of data but has limited ability to extract temporal features. For the
vibration signal of the engine, its time domain signal usually contains complete working
cycle information and has strong time dependence, so it is important to extract its timing
characteristics. In time series data, information at different moments may have different
importance. The attention mechanism can dynamically adjust the weights so that the model
can pay attention to the most important features at each moment, thereby improving the
performance of the model. Time series data often have long-range dependencies that may
be difficult to capture with traditional models. The attention mechanism can help the model
better understand the temporal relationships in time series data, thereby improving the
model’s ability to model long-range dependencies. In addition, time series data usually
has noise and uncertainty, and the attention mechanism can help the model better cope
with these noises and uncertainties, thereby improving the robustness and generalization
ability of the model. Therefore, this paper uses CNN as the main body and introduces
multiple attention mechanisms to design the end-to-end engine fault diagnosis system
MACNN. The structure of MACNN is shown in Figure 5. The diagnosis process includes
three steps: feature extraction, feature recombination, and feature learning. Each of them
will be described next. All data in Section 4 are from 2000 r/min. The engine vibration
signal in the time domain is cut based on engine speed according to Equation (2). The
vibration signals are input into the network after normalization.
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4.1. Feature Extraction

MACNN combines the multi-layer CNN with improved CBAM (ICBAM) to extract
features from original time-domain data. The CNN layer alternates with the ICBAM layer.
The operating environment of a diesel engine is usually accompanied by a great deal of
noise, and the introduction of the attention mechanism makes the model pay more attention
to the fault-sensitive information in the signal and ignore the noise part.

The feature extraction phase contains a total of four layers of CNNs. The first convolu-
tional layer uses 16 big convolutional kernels of size 5 × 1 to extract large-scale features.
For the next three-layer convolutional layer, 32 small convolutional kernels of size 3 × 1 are
used to extract deeper features. After each convolutional layer, a maximum pooling layer
(size 2 × 1) is used for down-sampling. Due to the difficulty in training the multi-layer
networks, a batch normalization (BN) layer [32] is added between the convolutional layers
to further improve the training speed and generalization of the model. The BN layer also
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reduces the variation between batches and helps the model to better handle noise. The
specific structure is shown in Figure 5.

The Swish function [33] is a smooth and continuously derivable function, which
is more stable during gradient computation and helps to improve the efficiency of the
optimization algorithm and the speed of convergence.

The function expression is Swish(x) = xsigmoid(βx). The Swish function and its
derivative curves are shown in Figure 6 (β = 1). Swish introduces the Sigmoid function
so that the output is non-zero even when the input is in the negative interval. When the
input is a positive value, the output of Swish approximates the input (Similar to ReLU).
The output does not converge to 0 until the input is a very large negative value, which is
equivalent to reducing the effect of negative values and avoiding “Dead ReLU”. Therefore,
the output of the convolutional layer is activated using the Swish function. According
to [26], β is set to 1.
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4.2. Optimization of ICBAM

The kernel size has a large impact on the performance of CBAM and has different
effects on spatial and channel attention, which need to be investigated separately. To deter-
mine the kernel size in the channel attention module, we set up five groups of experiments
with kernel size 1 × 1, 3 × 1, 5 × 1, 7 × 1, and 11 × 1. The data are divided according to the
method described in Section 3, and the time-domain vibration signal is put into MACNN
(the CBAM uses channel attention modules only) directly. The cross-entropy is determined
as the objective function, and the Adam optimizer is used to update parameters. Each
batch contains 256 samples.

The model in this section is built in PyTorch, based on Python 3.8. One NVIDIA GeForce
RTX3080 GPU is used for training, and we record accuracy on the test set, as shown in Table 3.
Table 3 shows that the kernel size of 7 × 1 in the channel attention module can perform best in
extracting features. The result is different from 1 × 1 in the original CBAM. We speculate that
the original CBAM is used for two-dimensional data learning tasks such as image processing,
which is different from learning tasks for time-series data. Therefore, we will use result 7 × 1
to extract fault features from one-dimensional time-domain data better.

Table 3. Kernel size in channel attention module.

Kernel Size Test Accuracy (%)

1 × 1 93.71
3 × 1 93.72
5 × 1 94.71
7 × 1 95.89

11 × 1 94.08
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Further, we set up five groups of comparative experiments to determine convolutional
kernel size in the spatial attention module, whereby only spatial attention is used in CBAM,
and the other experimental conditions are described above. The results are shown in Table 4.
The kernel size of 7 × 1 in the spatial attention module can perform best in extracting
features. The test results are similar to those of the channel attention, indicating that the
7 × 1 kernel size is more applicable in the processing of engine vibration data.

Table 4. Kernel size in spatial attention module.

Kernel Size Test Accuracy (%)

1 × 1 84.58
3 × 1 95.76
5 × 1 95.09
7 × 1 96.55

11 × 1 90.96

Another issue of ICBAM that needs to be addressed is the sequential arrangement
of the channel and spatial attention modules. Two modules can be placed in a parallel or
sequential manner. We set up six groups of experiments, as shown in Table 5. Note that
there are two cases (case 1 and case 2) with two modules placed parallelly. Specifically, the
final results of case 1 and case 2 are calculated by (9) and (10).

Table 5. Combining methods of channel and spatial attention module.

Description Test Accuracy (%)

channel 95.89
spatial 96.55

channel + spatial 96.67
spatial + channel 96.79

channel and spatial in parallel (case 1) 96.89
channel and spatial in parallel (case 2) 99.88

Case1:
P1 = (MC(P)⊗ MS(P))⊗ P (9)

where P1 is the final result and ⊗ denotes element-wise multiplication.
Case2:

P2 = MC(P)⊗ P + MS(P)⊗ P (10)

where P2 is the final result and ⊗ denotes element-wise multiplication.
The results are shown in Table 5. The channel module and spatial attention module

are placed in parallel (case 2) to obtain the best effect in ICBAM. The result differs from the
two modules with channel-first order in the original CBAM.

According to the above research, we redesign the ICBAM to extract fault features better
from one-dimensional vibration signal data. Specifically, the kernel size in the channel
attention module is changed from 1 × 1 to 7 × 1, the kernel size in the spatial attention
module remains unchanged at 7 × 1, and the layout of the two modules is changed to a
parallel manner (case 2). Compared with the original architecture of CBAM, the ICBAM in
MACNN can improve the accuracy from 96.67% to 99.88%, as shown in Table 6.

Table 6. Comparison of the original model and improved CBAM.

Description Test Accuracy (%)

MACNN (with CBAM) 96.67
MACNN (with ICBAM) 99.88
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The channel reduction ratio is a parameter used to control the number of channels of
the attention mechanism, which can significantly reduce the amount of CBAM parameters.
The MACNN has a total of four layers of CBSP + ICBAM structure (see Figure 5) in which
the first layer of ICBAM has a channel reduction ratio of 0.25 and the other layers have a
reduction ratio of 0.125.

4.3. Feature Recombination

Usually, the multi-dimensional feature map of convolutional output X =
{

x_,1, x_,2 · · · x_,d
}

,
x_,d ∈ Rl×1 is flattened into a one-dimensional vector and then input into the fully con-
nected layer to obtain the result in classic CNN. However, this method does not consider
the temporal information in the sequence learning tasks. The original sample contains the
complete signal of one working cycle of the engine, and the feature maps obtained by the
convolution kernel in sliding from front to back still retain certain temporal properties.
Unlike picture data, for vibration data in the time domain, temporal features are important.
By combining and reconstructing original features to generate new features with more
representational capabilities, it can improve the performance and generalization ability
of the model. Feature reorganization can help the model capture the relationships and
interactions between features, thereby improving the model’s ability to understand the
associations between complex data. Therefore, we will recombine the multi-dimensional
feature map of convolutional output, as shown in Figure 7. The result of recombination is
X′, as shown in (11).

X′ =
{

x1,_, x2,_ · · · xl′ ,_
}

, x1,_ ∈ R1×d (11)

where l is the length of the vector X′. By recombining the feature map, some of the
sequence order features in the original signal are preserved, which makes the learning
of the SAM layer less difficult and can effectively improve the accuracy. In addition, the
attention mechanism can help the model pay more attention to important feature parts
when reorganizing features, thereby ensuring that key information is not lost.
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4.4. Feature Learning

Compared to RNN, SAM is able to capture global information better and solve long-
distance dependency problems. And SAM handles sequence feature extraction tasks better
than CNN. Therefore, after feature recombination, SAM is used to learn the temporal
characteristics of the vibration signal.

Dropout is a regularization method that can randomly discard the output of some
neurons during the training process, which helps to prevent the model from overfitting to
noise. The dropout layer is set after the SAM to improve the model generalization ability,
after which the fully connected layer is connected to output the classification results.
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Based on the above derivation, MACNN consists of three steps: (1) Combine CNN
with ICBAM to extract the deep features of the original time-domain data. (2) Recombine
the multi-dimensional feature map of convolutional output to preserve the sequence order
information. (3) Adopt the self-attention mechanism to learn the recombined sequence
feature. The procedure of MACNN is shown in Algorithm 1, and the hyper-parameters are
shown in Table 7.

Algorithm 1. Proposed model

Model: MACNN

Input: Training set: TRAIN_data and TRAIN_label, test data: TEST_data
Output: Predicted labels of test data: TEST_label
Training:
1: for k =1 . . . K do // forward propagation
2: Calculate the feature map P based on (1), (2), (3).
3: Calculate the feature map after adding attention P2 based on (4), (5), (10).
4: Recombine P2 to obtain recombined sequence based on (11).
5: Use the self-attention to learn the recombined sequence based on (6)~(7).
6: Use Adam optimizer to update parameters. // back propagation
7: end
Testing: Use TEST_data to predict labels of the test data TEST_label on trained model.

Table 7. Specific parameters of the MACNN model.

Layer Name Output Size Parametres

Conv1 16 5, stride 1, BN 16, Swish, max pool 2

ICBAM1 16 Channel (7, stride 1) and Spatial (7, stride 1) in
parallel (case 2), reduction = 4

Conv2 32 3, stride 1, BN 32, Swish, max pool 2

ICBAM2 32 Channel (7, stride 1) and Spatial (7, stride 1) in
parallel (case 2), reduction = 8

Conv3 32 3, stride 1, BN 32, Swish, max pool 2

ICBAM3 32 Channel (7, stride 1) and Spatial (7, stride 1) in
parallel (case 2), reduction = 8

Conv4 32 3, stride 1, BN 32, Swish, max pool 2

ICBAM4 32 Channel (7, stride 1) and Spatial (7, stride 1) in
parallel (case 2), reduction = 8

Recombine - -

Dropout - 0.5

SAM - -

FC 8 Softmax

5. Result Analysis
5.1. Training and Testing

To improve the convergence performance of the model training, this paper designs a
dynamic learning rate parameter so that the optimization method has a higher learning
rate in the early stage, and the model can learn the distributional features of the data faster.
As the training proceeds, the learning rate gradually decreases and will maintain a lower
level at the later stage to maintain convergence. The S-shaped curve just meets the above
requirements, so the dynamic learning rate was designed as S-shaped. The function of the
dynamic learning rate is shown in (12).

lr = lr0/(1 + exp(−k ∗ ((emax − e + 1)/W − x0))) (12)
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where e stands for epoch (e ∈ (1, emax)), W = (emax − 1)/L is the rate of change of the
function, L denotes the number of epochs needed for the learning rate to reach the plateau
stage, x0 = L ∗ (emax + 1)(emax − 1)/2 denotes the midpoint of the function, and lr0 is the
initial learning rate. In this paper, k = 0.6, L = 12, lr0 = 0.002, and the curve of lr is shown in
Figure 8 for an example of iterating 100 epochs.
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We trained MACNN on the eight-class fault dataset of the engine, which is described
in Section 3. The cross-entropy was determined as the objective function, and the Adam
optimizer was used to update parameters. Each training batch contained 256 samples. The
learning rate was varied according to (12). At the same time, the accuracy of the test set
and the time taken to test 100 samples were recorded.

Figure 9a shows that the MACNN reached the maximum test accuracy (99.88%) after
about 100 training steps. It took MACNN 0.35 s to test 100 samples. However, when the
speed of the diesel engine was 2000 r/min, the time taken for the diesel engine to work for
100 cycles was 6 s, which is much more than 0.35 s. Therefore, the test results show that
MACNN has an excellent effect on accuracy and calculation speed.
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Figure 9. Accuracy and loss curves for training. (a) The training process of MACNN; (b) improvement
of training by the introduction of the swish function.

It is worth noting that the introduction of the Swish activation function can improve
the “Dead ReLU”, which can dramatically improve the training efficiency, as shown in
Figure 9b, and shorten the convergence period of the model. Meanwhile, due to the
smoother activation curve of Swish, the accuracy is also improved.
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5.2. Analysis of the MACNN Output

The results in Section 4.1 show that MACNN can reach high accuracy and excellent
computation speed. CNN greatly speeds up the running speed through local connection
and weight sharing. However, CNN does not consider the order of information for sequence
learning tasks. Therefore, we recombined the multi-dimensional feature map to preserve
the sequence order. Before that, we introduced the ICBAM to CNN to extract critical
information. Finally, we adopted the self-attention mechanism to relate the different
positions of the recombined sequence to compute a representation of the sequence. This
section will analyze the effectiveness of the ICBAM, recombined method, and the self-
attention mechanism on the results.

As shown in Table 8, three models were used for training and testing on the same hard-
ware environment described above. The accuracy and the time taken to test 100 samples of
models were compared with the results of MACNN. Specifically, described as follows:

(1) ACNN: This is the model that MACNN lacks ICBAM, which is used to prove the
effectiveness of the introduction of ICBAM.

(2) MACNN-noSAM: Same as MACNN, combine the four-layer convolutional network
with ICBAM to extract features, and then flatten the recombined sequence features
and input them into the fully connected layer.

Table 8. Comparison of different models.

Model Accuracy (%) Test Used Time (Per 100 Samples)/s

ACNN 93.95 0.15
MACNN-noSAM 97.08 0.36

MACNN 99.88 0.35

Compared with ACNN, the test accuracy of MACNN is improved by about 6.0% to
99.88%. Therefore, increasing the time taken (test 100 samples) by 0.2 s is acceptable. Table 8
shows that the self-attention mechanism improves the accuracy from 97.08% to 99.88%
due to the self-attention mechanism focusing on the essential parts of the sequence and
suppressing unnecessary ones by assigning self-attention weights. The time taken to test
100 samples of MACNN-noSAM is 0.01 s longer than that of MACNN. That is because the
length of the input vector of the fully connected layer in MACNN-noSAM is longer than
that in MACNN, even if there is an additional self-attention module in MACNN.

5.3. Model Evaluation

The datasets under the 2000 r/min condition used by the MACNN model were
repartitioned for cross-validation. As described in Section 3, the dataset was divided in
chronological order. The first 520 samples were taken as the training set, and the last
120 samples were the testing set in the original division. Four more divisions were obtained
by re-dividing the data. The first 120 samples were taken as the testing set and the rest
were taken as the training set in the first new division as division 1 in Table 9. By extension,
the rest three divisions were obtained. The testing results on the four new divisions are
listed in Table 9. Results show that the test accuracies are all higher than 99%, which
indicates the proposed MACNN model does not benefit from the particular dataset and
has a good robustness.

Table 9. Model evaluation results of different divisions.

Case Original
Division Division 1 Division 2 Division 3 Division 4

Accuracy (%) 99.88 99.50 99.73 99.81 99.61
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To verify the validity and generalization ability, another four fault data sets of 700 r/min,
1300 r/min, 1600 r/min, and 2300 r/min were used to train and test the model. We set the
length of a single sample as shown in Table 10, and the diagnostic results were also recorded.

Table 10. Diagnostic results of different working speeds.

Speed
(r/min)

Length
(Per Sample)

Accuracy
(%)

Recall
(%)

Precision
(%)

Time/100 Samples
(s)

700 4400 98.50 98.51 98.50 0.50
1300 2400 98.96 98.95 98.95 0.40
1600 1920 99.88 99.88 99.89 0.38
2300 1360 98.59 98.57 98.59 0.34

Table 10 shows that MACNN can accurately identify different faults at different speeds,
and the accuracy at various speeds can reach more than 97%. In addition, the calculation
time of the MACNN is positively correlated with the length of the input sample. Because
the longer the sample is, the more convolution operations need to be performed in the
convolution process. However, it is gratifying that in the current test environment, the
calculation speed is much faster than the running speed of the diesel engine. Taking the
maximum speed of 2300 r/min as an example, it takes 5.2 s for the diesel engine to work
100 cycles, but it only takes 0.34 s for the model to test 100 samples. Therefore, this model
has a good application prospect in terms of diagnostic accuracy and calculation speed.

Table 10 also shows both the recall and precision of the proposed method for each
speed case. The results show that the recall and precision results are very close to the
accuracy, which is due to the fact that there is no class imbalance in the studied data.

Figure 10 demonstrates the confusion matrix of the proposed method to diagnose the
2300 r/min data. The results show that confusion occurs mainly between classes 3 and 4
and between classes 5, 6, and 7. The accuracy of class 0, class 1, and class 2 is 100%.
Table 2 shows that the MACNN made a few errors in distinguishing between different
degrees of abnormal rail pressure (classes 3 and 4) and abnormal valve clearance (classes
5, 6, and 7). Different degrees of the same type of fault may lead to similar characteristic
changes, making it difficult for the model to distinguish between them. For example,
varying fuel supply amounts or valve clearances might cause similar changes in vibration,
temperature, or pressure. In practical data, there may be noise or uncertainty, which makes
the characteristic changes between the same types of faults less distinct, thus making it
challenging for the model to accurately differentiate between them. Notably, no faults were
misclassified as normal (class 2), which is important for practical applications.
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The input layer, the feature layer of CBAM+CNN model and the recombined feature
layer of proposed model are downscaled using the t-SNE method respectively, and the 2D
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visualization results are shown in Figure 11. The distribution of the original signal is very
messy and has no obvious clustering characteristics as shown in Figure 11a. The complexity
of the components of the engine vibration signal determines that its fault characteristics
are difficult to obtain directly through dimensionality reduction. Only four types of faults
in the CBAM + CNN model show obvious classification effects in Figure 11b, and the
remaining categories are clustered together, indicating that its feature extraction ability is
poor and the classification visualization effect is poor. Figure 11c shows that the originally
disorganized data presents an obvious clustering effect after ICBAM’s feature extraction
as well as feature map reorganization. The results illustrate that the feature extraction of
ICBAM + CNN is able to acquire temporal features well.
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5.4. Comparison with Other Diagnosis Methods

To further evaluate the performance of MACNN, various methods were used to
diagnose the eight types of fault data sets established (2000 r/min), mainly including the
traditional method based on signal processing and the end-to-end method.

The traditional methods include VMD-KFCM, EEMD-KFCM, and VMD-CNN. The
VMD and EEMD decompose the original time-domain signal into intrinsic mode compo-
nents used to compute feature parameters. The maximum three singular values, kurtosis
value, Shannon entropy, root mean square value, time-domain energy, fourth-order cumu-
lant, and multi-scale entropy are extracted to construct 21-dimensional features. The KFCM
and CNN are used as classifiers. The CNN is a four-layer convolutional network, and the
convolutional kernels’ sizes are all 3 × 1. Traditional methods require manual participation,
and the process is cumbersome. The calculation time is much longer than that of MACNN.
Therefore, the calculation time of traditional methods is not compared here.

The accuracy is shown in Table 11. The accuracy of EEMD-KFCM is less than 60%.
This poor result has much to do with the problem of mode aliasing in the recursive
decomposition algorithm, which leads to the poor quality of the final extracted features.
VMD extracts the same features, and KFCM can reach an accuracy of 77.29%. For the
three-dimensional features (Singular values) extracted by the VMD and the twenty-one-
dimensional features, the accuracy of CNN is 36.21% and 80.21%, respectively. The accuracy
of VMD-CNN (3D) is low, and we speculate that it is the small number of features that
limits the information mining ability of CNNs. The result of VMD-CNN (21D) reflects the
powerful feature representation ability of CNN. However, the final diagnostic accuracy of
traditional methods is far lower than the proposed method.

As shown in Table 12, various end-to-end methods are used for comparison. In
particular, LSTM, BiLSTM, GRU, and BiGRU divide the input sample into 200 data blocks
as input. CNN-BiLSTM and CNN-BiGRU adopt two-layer convolutional networks, and
BiLSTM and BiGRU have three-layer networks. One-dimensional CNN’s structures and
hyperparameters are the same as those of the CNN network in MACNN. The accuracy and
the test used time of 100 samples of each model are shown in Table 11.
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Table 11. Comparison with traditional methods.

Method Accuracy (%)

VMD-KFCM 77.29
EEMD-KFCM 55.42

VMD-CNN(3D) 36.21
VMD-CNN(21D) 80.21

MACNN 99.88

Table 12. Comparison with end-to-end methods.

Method Accuracy (%) Time Complexity Time/100 Samples (s)

LSTM 61.04 2 × 105 O 3.67
BiLSTM 88.32 6 × 105 O 7.26

GRU 83.33 5 × 105 O 4.01
BiGRU 92.59 5 × 105 O 8.12

CNN-BiLSTM 80.42 4 × 106 O 7.37
CNN-BiGRU 90.42 4 × 106 O 8.34

1DCNN 90.18 4 × 106 O 0.14
MACNN 99.88 6 × 106 O 0.35

Table 12 shows that using bidirectional networks (BiLSTM and BiGRU) to consider the
information before and after the input position can achieve better results than unidirectional
networks (LSTM and BiGRU). And the effect of joint networks (CNN-BiLSTM and CNN-
BiGRU) is worse than that of bidirectional networks (BiLSTM and BiGRU). All the above
methods based on RNN can achieve end-to-end fault diagnosis. As mentioned above,
BiGRU can reach an accuracy of 92.59%. The CNN model can achieve an accuracy of
90.18%. The MACNN proposed can achieve the highest accuracy of 99.88%.

Time complexity is also an important index of an algorithm, and the complexity of
each method is analyzed below. The MACNN is used as an example to demonstrate the
computation of time complexity. The MACNN contains four main convolutional and
attention layers, plus a self-attention layer and a fully connected layer. Since the size of
the batch is the same, the effect of the batch is not considered. The time complexity of the
one-dimensional convolutional layer is calculated as shown in (13).

N1DCNN = O(L × K × I × O) (13)

where L is the input sequence length, K is the convolution kernel size, and I and O denote
the sizes of input and output channels, respectively.

The complexity of ICBAM is summed by the channel and spatial attention as in (14). The
complexity of channel and spatial attention is computed similarly to convolutional layers.

NICBAM = Ochannel + Ospatial (14)

The time complexity of the self-attention mechanism is given as (15).

NSAM = O(H × L) (15)

where H is the number of neurons in the hidden layer and H = 32 in the model.
The complexity of the fully connected layer is given as (16). C is the number of classes.

NFC = O(H × C) (16)

The complexity of the LSTM layer is calculated via (17), where l is the number of
layers, T is the time step, and 4 represents four gates.

NLSTM = O(l × T × H × L × 4) (17)
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To calculate the time complexity of each model, a dataset of 1600 r/min with a sample
length of 1920 is used as input. The time complexity results for each algorithm are shown in
Table 12. The results show that LSTM has the lowest time complexity, followed by the other
RNN models and finally the CNN-based models. MACNN has the highest complexity but
is in the same order of magnitude as CNN-based models. The proposed model significantly
improves the accuracy without adding much complexity.

The actual testing time is not only related to the time complexity but also to the parallel
computational efficiency of the model. RNN cannot compute in parallel, so it takes 8.12 s
to test 100 samples. Considering the actual hardware environment is worse; the running
time of the above algorithm will be further increased. It takes only 0.14 s for CNN to test
100 samples. The proposed method takes 0.35 s to test 100 samples, which lays a good
foundation for real-time fault diagnosis of diesel engines.

6. Conclusions

In this paper, an end-to-end diagnosis system based on MACNN is designed. The pro-
posed MACNN uses CNN as the main body and introduces multiple attention mechanisms
to extract features and classify them by self-learning. And the fault simulation experiment
of the diesel engine is carried out to collect the vibration signal data of cylinder heads at
eight working states. Finally, the results of MACNN verified by the measured vibration
signal data show that MACNN can accurately identify different faults at different speeds,
and the accuracy at various speeds can reach more than 97%. In the meantime, its fast
calculation speed has laid a good foundation for real-time fault diagnosis of diesel engines.

The test data and training data used come from the same working condition in this
paper. However, in practical work, most of the operating conditions of mechanical equip-
ment are complex and changeable. Therefore, it is of great practical significance to realize
the single-condition data training model to complete the multi-condition fault diagnosis,
which will be the future work direction.
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