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Abstract: Soil water content (θ), matric potential (h) and hydraulic conductivity (K) are key parameters
for hydrological and environmental processes. Several sensors have been developed for measuring
soil θ–h–K relationships. The cost of such commercially available sensors may vary over several
orders of magnitude. In recent years, some sensors have been designed in the framework of Internet
of Things (i.e., IoT) systems to make remote real-time soil data acquisition more straightforward,
enabling low-cost field-scale monitoring at high spatio-temporal scales. In this paper, we introduce
a new multi-parameter sensor designed for the simultaneous estimation of θ and h at different soil
depths and, due to the sensor’s specific layout, the soil hydraulic conductivity function via the
instantaneous profile method (IPM). Our findings indicate that a second-order polynomial function
is the most suitable model (R2 = 0.99) for capturing the behavior of the capacitive-based sensor
in estimating θ in the examined soil, which has a silty-loam texture. The effectiveness of low-cost
capacitive sensors, coupled with the IPM method, was confirmed as a viable alternative to time
domain reflectometry (TDR) probes. Notably, the layout of the sensor makes the IPM method less
labor-intensive to implement. The proposed monitoring system consistently demonstrated robust
performance throughout extended periods of data acquisition and is highly suitable for ongoing
monitoring of soil water status.

Keywords: IoT system; capacitive-based sensors; soil water content; soil water retention curve

1. Introduction

The soil unsaturated zone (or the vadose zone) is the connection zone between the
atmosphere and the groundwater and, from a hydrological point of view, plays a fun-
damental role in the partition of precipitation between surface water, soil water and
groundwater [1–4]. The amount of water that enters the soil is stored in the vadose zone
and, from here, can be subjected to several hydrological processes that cause water to
move within the soil profile. Estimation of water availability and water flux in the vadose
zone provides fundamental information on the soil water balance, which depends on
climatic variables and on soil physical and hydraulic properties [5,6]. The availability of
such information can have great importance in tackling hydrological, environmental and
agricultural issues [7–9].

In irrigated areas, for example, in-depth knowledge of the soil hydraulic parameters is
crucial for crop growth and productivity, as well as for limiting leaching of water, nutrients
and other substances (e.g., pesticides) through the unsaturated zone [10–15]. In this context,
in recent decades, researchers have developed several techniques to estimate soil hydraulic
properties, both in field and laboratory conditions. All of the above techniques require
sensors for measuring either the water content or the pressure head or both.

With reference to soil water content measuring systems, most determine water content
based on the change in some thermal or electrical properties of the soil [16–19]. As for
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sensors based on the measurement of electrical quantities, their operation can be based on
the propagation of electromagnetic (EM) waves in a medium, which is called dielectric.
Belonging to the latter category of sensors are those based on time domain reflectometry
(TDR) and frequency domain reflectometry (FDR) techniques, as well as capacitive-based
sensors [20,21]. The latter are known to work at low frequencies, and measurements
are affected by soil texture, temperature and salinity [22–25]. Extensive research has
demonstrated that such sensors are not so prone to temperature and salinity factors if
working in the soil temperature range 15–30 ◦C and for soils where soil solution electrical
conductivity ECw is less than 10 dS/m [26]. However, as measurement frequency increases
(around 50 MHz and above), this influence is reduced [27] (Meter Group, online technical
note on soil moisture sensors).

Furthermore, capacitive sensors also exhibit varying responses when installed in
sandy versus clayey soils due to the distinct porosity and water retention properties of
the respective soils. In sandy soils, with their larger particle sizes and higher porosity,
water tends to drain more rapidly, resulting in faster sensor response times but potentially
lower accuracy in capturing subtle moisture changes. Conversely, in clayey soils with finer
particles and greater water retention capacity, water movement is slower, leading to delayed
sensor responses and possibly more stable readings over time. Logsdon and Laird [28]
also highlighted that clay minerals demonstrate ongoing dispersion beyond frequencies
of 100 MHz. This phenomenon significantly affects the determination of water content in
clayey soils, as demonstrated by Robinson et al. [29]. To mitigate this issue, manufacturers
typically develop factory calibrations under controlled laboratory conditions using soil
media with known physico-chemical and dielectric properties [30].

Soil matric potential is the second Kernel soil hydraulic property. It is an integral over
the macroscopic interfacial tension of the pore scale menisci of all air–water–soil interfaces.
Tensiometers have been used to measure this hydrological variable [31]. However, for
large-scale applications, extensive soil hydrologic characterizations are generally required
due to their spatial and temporal variability [32], which may require monitoring water
content and pressure head in several sites simultaneously. This commonly implies high
monitoring costs, especially when sensors have to be connected in a network and the
monitoring system includes automatic monitoring and telemetry, with data transmitted
in real time using mobile communication technologies [6]. This aspect may contribute to
limiting adoption of such sensing technologies [23,33].

To overcome such problems, several low-cost monitoring systems have been devel-
oped for soil hydraulic characterization [34]. Most of these devices are noninvasive, with a
fast response, no radiation, flexibility in electrode design and, above all, are amenable for
automation in the framework of IoT systems [29,35–40].

In this context, the aim of this research was to design and implement a compact IoT-
based platform for stand-alone soil water status monitoring, using several sensors which
can be remotely controlled. Our IoT platform allows measurements of volumetric water
content (θ) and soil matric potential (h) at different depths. Furthermore, the specific layout
of the measuring system also allows the K(θ) or K(h) relationship to be estimated via the
instantaneous profile method (IPM; [41]).

2. Materials and Methods
2.1. Conceptual Framework of the Monitoring System

The basic apparatus of the monitoring system (named Soil HYdraulic PROperties Meter:
SHYPROM) consists of (i) a microcontroller board, (ii) three pairs of steel electrodes for soil
moisture estimates, (iii) a pair of porous tensiometer cups connected to two electronic pressure
transducers for soil water matric potential measurement, and (iv) a temperature sensor.

Raw data collected from sensors are managed by the microcontroller and wirelessly
transferred to a Cloud Server (e.g., ThingSpeak, https://thingspeak.com/) at fixed time
intervals. After sending on Cloud, stored data can then be displayed on an end device
(e.g., laptop, mobile phone, etc.). To facilitate sensor data visualization on mobile devices,

https://thingspeak.com/
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a customized Android-based application (named SHYPROM_APP) was also developed.
Figure 1 shows the schematic diagram of the IoT-based device platform.
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Figure 1. Conceptual framework of the IoT-based sensor platform.

2.2. Development of the IoT-Based Monitoring System

Nowadays, there is a wide range of commercially available microcontrollers. In the
present project, we selected the ESP 32 SIM800L as a microcontroller mainly because of its
multiple 12 bits Analogical-to-Digital Converter (ADC) inputs and the capability to generate
Pulse Width Modulation (PWM) signals at higher frequencies than other microprocessors
such as Arduino Uno. Furthermore, the microcontroller features an integrated nano SIM
card slot, as well as WIFI and Bluetooth modules, facilitating remote sensor control.

The device comprises two plexiglass tubes (2 cm in diameter) serving as tensiometers.
Each tensiometer is assembled with a porous ceramic cup with an air entry value equal
to 150 kPa and an electronic pressure transducer (MPX5100DP model, Freescale Semicon-
ductor, Austin, TX, USA). The pressure transducer includes integrated signal amplification
and temperature compensation circuits, supporting a linear voltage output for an overall
differential pressure range from 0 to 100 kPa. Each pressure transducer was glued onto a
three-way valve, allowing the opening and closing of the tensiometer for water filling. The
valve was installed onto a silicone stopper, closing the top side of the tensiometer.

The soil moisture sensing device is a self-made capacitance-based apparatus, consisting
of three pairs of electrodes that operate as a capacitor. The electrodes have a tubular
shape and are made of stainless steel 304 (a chromium (18%)–nickel (8%) austenitic alloy).
These cylinders (3 cm high and 2 mm thin) were positioned at different heights on the
two plexiglass tensiometer tubes, forming three pairs of electrodes. To prevent sensor
deterioration, after installation, the electrodes were isolated by spraying with a water-based
paint. Additionally, the part of the tube between two electrodes was covered with PLA
cylinders (obtained via 3D printing) to protect the wires soldered to the electrodes. The
center of the electrodes was located at 11.5 cm, 18.5 cm and 25.5 cm from the top of the
plexiglass tubes, the distance between the center of the two tensiometers being set at
8.0 cm. The microcontroller has an integrated oscillator operating at 600 kHz, driving the
three capacitors and generating outputs (i.e., the soil’s voltage) proportional to the soil’s
dielectric constant (ε, see Appendix A for more details). Figure 2a,b illustrate the wiring
diagram and the printed circuit board (PCB) for the proposed monitoring system.

Since capacitance measurements are influenced by soil temperature, the device in-
cludes a temperature sensor. Specifically, the DS18B20 (waterproof version, Dallas Semi-
conductor, Dallas, TX, USA) sensor was selected. The sensor operates in the temperature
range of −55 ◦C to +125 ◦C (with ±0.5 ◦C accuracy from −10 ◦C to +85 ◦C). The device
is also equipped with an external micro SD card slot to store raw data in the event of no
connection with the Cloud Server. Figure 3a–d display the hardware components of the
sensor. The prototype is powered by a Li-ion battery (3.7 V, 10,000 mAh), charged through
a solar charger board connected to a waterproof 6 W solar panel. The printed circuit board
(PCB) of Figure 3c was designed in Kicad software (https://www.kicad.org/), resulting
in a board size of 95 mm × 100 mm. Table 1 presents a list of electronic components (also
known as BOM: Bill Of Materials) required for assembling the IoT-based monitoring system
(detailed information on the assembly of the monitoring system is reported in Appendix B).

https://www.kicad.org/
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Table 1. List of main electronic components required for making the monitoring system.

Sensor Unit Designator Quantity Material Type

Microcontroller board ESP32SIM800L 1 Semiconductor

Tensiometer MPX5100DP 2 Semiconductor

Capacitive Soil Moisture

Resistor 10 kΩ 3 Other

Resistor 1 MΩ 3 Other

1N4007
(High Current Rated Diode) 3 Semiconductor

Capacitor 100 nF 3 Ceramic
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Table 1. Cont.

Sensor Unit Designator Quantity Material Type

Temperature
DS18B20 1 Other

(pullup) resistor 4.7 kΩ 1 Other

Additional components

micro SD card slot 1 Other

Li-ion battery
(3.7 V, 10,000 mAh) 1 Other

solar charger board 1 Other

Solar panel 1 Other
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(c) details of the printed circuit board (PCB), and (d) additional material.

2.3. The Source Code Used to Program the Monitoring System

The source code which governs the hardware of the proposed monitoring system
was written in C++ using the Arduino Integrated Development Environment (IDE). The
architecture of this monitoring system is illustrated in the flowchart of Figure 4. Initially, the
microcontroller initiates the general setup, which involves exiting sleep mode, initializing
the SD card module and activating the internal modem. At this stage, the algorithm
conducts a battery check before commencing the readings from various sensors: (i) soil
temperature, (ii) soil voltage from the capacitive module at three distinct depths, and
(iii) voltage output from tensiometers at two selected depths. Once obtained, the data are
stored on the SD card and transmitted to the Cloud Server. Subsequently, the sensor enters
sleep mode to minimize power consumption until the designated time slot concludes.
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2.4. Evaluating the Soil K(θ) Function through the Instantaneous Profile Method (IPM)
Using SHYPROM

The IPM (also known as the internal drainage method) [41] is a widely recognized
technique for in situ determination of the K(θ) function of subsurface layers during unsteady
or transient processes [1]. This method relies on simultaneous measurements over time of
volumetric water content and the soil water matric potentials at different depths along the
soil profile. The procedure involves the installation of various probes, such as time domain
reflectometry (TDR) or capacitive probes and tensiometers, to measure the hydraulic
properties of the investigated medium. The soil is wetted to achieve saturation, and then
the K(θ) curves are determined during either a drainage or evaporation process [42–45]. The
obtained information is crucial in addressing environmental and agricultural challenges,
particularly for estimating water drainage below the root zone and determining the soil
water balance [46].

The IPM is based on the assumption that the amount of water stored, W, in a given
soil profile and the water flux density, q, at any depth z and any time t, can be calculated
as [1]:

W(z, t) =
∫ z

0
θ(z, t)dz (1)

q(z, t)z =
∫ z

0

∂θ(z, t)
∂t

dz =
∂W(z, t)

∂t

∣∣∣∣
z

(2)
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Darcy’s law for water flow, at any depth and any time, can be written as [45]:

q(z, t)z = K(θ)z
∂H(z, t)

∂z

∣∣∣∣
z

(3)

where H is the hydraulic head.
Substituting Equation (2) into Equation (3) and solving for K(θ)z produces, at the

reference plane z = z4 (i.e., the reference depth at which K has to be calculated):

K(θ) =

∂W(z,t)
∂t

∣∣∣
z=z4

∂H(z,t)
∂z

∣∣∣
z=z4

(4)

The soil conductivity function, at the reference plane, can be estimated under the
following hypothesis [47]: (i) the volumetric water content at soil surface (θ0) was assumed
to be equal to θ1; (ii) at the reference plane (z4), the volumetric water content (θ4) was
assumed to be equal to θ3. Figure 5 illustrates the schematic layout of the SHYPROM
system used in our laboratory experiments.
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2.5. Soil Characterization

The soil used in our laboratory experiments was a silty-loam Anthrosol [48], with
15.7% sand, 11.6% clay and 72.7% silt. The soil had a bulk density (ρb) of 1.13 g/cm3, organic
C content of 1.84%, electrical conductivity of the soil solution (ECw) of 0.17 dS m−1 and a
pH of 8.40. Soil texture, soil bulk density, organic content and pH were determined using
the methods proposed by [49–52]. ECw was obtained via a conductivity meter (Cyberscan
model 500, Eutech Instruments, Singapore).
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2.6. Laboratory Experiments

Two main sets of experiments, labelled as experiment #1 and experiment #2, were
conducted. Experiment #1 focused on the calibration and validation of the sensors. The
capacitive sensor underwent calibration and validation during an evaporation process
from a bare soil sample. Regarding the MPX5100DP transducers, which measure soil water
matric potential (h), these sensors come with their own factory calibration function. In this
case, we only verified that the pressure transducers operated according to the calibration
function provided by the manufacturer.

In experiment #2, the system was tested to measure θ and h at different depths,
following again an evaporation process. During this stage, the IPM was used to obtain the
K(θ) relationship.

For both experiments, the soil samples were preliminarily oven dried at 105 ◦C and
then sieved at 2 mm. Figure 6 shows a schematic representation of the measurement system
used in the laboratory experiments.
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Figure 6. Experimental setup used in (a) experiment#1 and (b) experiment#2.

2.6.1. Experiment #1: Sensor Calibration and Validation

In this experiment, measurements were carried out on a repacked soil sample 90 mm in
length and 70 mm in diameter using a capacitive sensor made of a single pair of electrodes.
The bottom end of the soil sample was held with a nylon gauze (25 µm) to avoid soil losses.
After packing, the electrodes of the capacitive sensor were inserted vertically into the soil
column. At the beginning of the test, the soil sample was saturated with water from the
bottom to prevent air bubbles being trapped in soil pores. For the calibration procedure,
once saturated, the soil sample was placed into a thermostat box and water was allowed to
evaporate from the top of the soil sample. Throughout the evaporation test, differences in
voltage V and θ values (obtained via the thermo-gravimetric method; [53]) were monitored
over time. The collected data were plotted on a Cartesian plane θ vs. 1/V and subsequently
utilized to derive the sensor calibration function.

As stated above, capacitive sensors are influenced by soil temperature. Thus, tests
were conducted at three different temperatures of 20 ◦C, 25 ◦C and 30 ◦C. For each selected
temperature, three replicates were performed. Additionally, an independent dataset was
prepared, using the same experimental protocol, for sensor validation.

2.6.2. Experiment #2: Laboratory Testing of the SHYPROM Monitoring System

Once the sensors had been calibrated and validated, the monitoring system was tested
overall, using the same experimental setup and protocol as in experiment #1. In this
final test, the sensor probes were placed in a soil sample 400 mm high and 250 mm in
diameter. Three evaporation tests were conducted at the temperature of 25 ◦C, during
which measurements of θ and h were carried out.
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2.7. Statistical Indices for Sensor Performance Evaluation

The performance of the calibration function was quantified by using different statistical
indices: (i) the mean bias error (MBE), (ii) the mean absolute percentage error (MAE) and
(iii) the model efficiency (EF), computed according to the following relations [54,55]:

MBE =
∑N

i=1(Ei − Oi)

N
(5)

MAE(%) =
|Ei − Oi|

N
· 100 (6)

EF = 1 − ∑N
i=1(Ei − Oi)

2

∑N
i=1

(
Oi − O

)2 (7)

where Ei is the prediction (model-simulated data) and Oi is the true value (observed data),
O is the mean of the observed data, and N is the number of observations.

3. Results and Discussions
3.1. Calibration and Validation of the Capacitive Sensor

The accuracy of capacitive-based sensors is influenced, amongst other things, by
temperature fluctuations. The outcomes of experiment #1, illustrated in Figure 7, show this
dependence with reference to the proposed monitoring system. The measured θ values
are plotted against 1/V for the three chosen temperatures. For a fixed temperature, the
dashed lines represent the regression functions selected to estimate the correlation between
the sensor output and volumetric water content. It is worth noting that, for a fixed sensor
voltage value, as soil temperature increases, the θ values decrease. Observable differences
in θ values become less evident as the soil becomes dry, since the dielectric response of the
sensor is more dependent on soil permittivity.
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Figure 7. Relationship between volumetric water content θ and the inverse of voltage readings (1/V)
for the soil investigated at the three selected soil temperatures T of 20 ◦C, 25 ◦C and 30 ◦C.

A second-order polynomial equation was employed to fit the experimental values,
and the computed coefficients (a, b and c) along with the coefficient of determination R2

are detailed in Table 2. Notably, the volumetric water content and sensor output exhibit a
strong correlation, as evident from the R2 values approaching unity.
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Table 2. Estimated regression coefficients a and b and coefficient of determination R2 of the θ vs. 1/V
experimental relationships for the three selected soil temperatures.

Soil Temperature (◦C) a b c R2

20 −0.0390 0.317 −0.073 0.99

25 −0.0348 0.2834 −0.0459 0.99

30 −0.0181 0.1933 −0.0097 0.99

In Figure 8, the θ values derived from regression functions are compared with the
known θ values from an independently acquired dataset dedicated to model validation.
The obtained values closely align with the 1:1 line, indicating the capacitive sensor’s
accurate performance in θ estimation from saturation to dry soil conditions. The sen-
sor’s accuracy is practically the same from saturation to dry soil conditions and among
different temperatures.
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Figure 8. Correlation between the observed and measured values of volumetric water content θ at
the temperatures T of 20 ◦C, 25 ◦C and 30 ◦C.

For comprehensive evaluation, Table 3 summarizes statistical indices, including MBE,
MAE and EF, which assess the goodness of fit between calculated and measured θ val-
ues. Across different soil temperatures, these indices affirm the sensor’s effectiveness in
predicting volumetric water content within the temperature range of 20–30 ◦C.

Table 3. Statistical indices mean bias error (MBE), mean absolute percentage error (MAE) and model
efficiency (EF) referring to the measured and predicted volumetric water content θ for the three
selected soil temperatures.

Soil Temperature (◦C) MBE MAE (%) EF

20 −0.00014 1.17 0.89

25 −0.00021 1.14 0.87

30 −0.00030 1.69 0.85
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MBE and MAE values, respectively, vary between −0.00014 (at 20 ◦C) and −0.00030
(at 30 ◦C) and between 1.14% (at 25 ◦C) and 1.69% (at 30 ◦C). The EF exhibits a consistently
high value, falling within the range of 0.85 to 0.89.

3.2. SHYPROM Laboratory Testing

An overview of the outcome of the SHYPROM monitoring system is provided in
Figure 9a,b. Figure 9a illustrates the relationships between volumetric water content and
time at different depths. The graphic also includes polynomial functions used to fit the
raw data and the coefficient of determination R2 for the regression functions, which range
between 0.96 and 0.99. During the initial stages of the evaporation process, which last
around 60 h, the regression functions overlap. As expected, as the process progresses to
higher times, the moisture content decreases from the bottom to the top of the soil sample.
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Figure 9. Experimental (data points) and calculated (lines) (a) volumetric water content θ at three
depths, z1, z2 and z3, and (b) matric potential h at depths zmin and zmax vs. time.
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Figure 9b displays the measured soil matric potentials as a function of time. Exper-
imental h data were fitted, at the selected depths zmin and zmax, using a second-order
polynomial function with R2 equal to 0.99 for both investigated depths.

It is evident that, at a given time, the variations in h values are minimal. This can be
attributed to the relatively small distance between the tensiometers.

Figure 10a,b illustrate the θ(h) and K(θ) relationship at the reference depth z4; K values
were determined via the IPM method using Equation (4). The empirical retention model by
van Genuchten [56] and van Genuchten integrated with the Mualem [57] expression were
used to predict, respectively, the experimental θ(h) and K(θ) functions.
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Figure 10. (a) Experimental soil retention curve and modelled by van Genuchten (vG) equation and
(b) experimental soil hydraulic conductivity function and modelled by Mualem–van Genuchten
(M-vG) formula at the reference plane z4.
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The unknown parameters θs, θr, α, n, m and K0, listed in Table 4, were determined
by means of the RETC optimization software package, version 6.0 [58], based on the least
square method, which minimizes the deviations between the numerical solution of the
one-dimensional transient evaporation process and the real response of the system during
the laboratory tests. The high R2

vG and R2
M-vG values denoted that raw data estimated via

the SHYPROM monitoring system are of good quality.

Table 4. van Genuchten (vG) and Mualem–van Genuchten (M-vG) model parameters θs, θr α, n,
m, K0 and coefficient of determination R2

vG and R2
M-vG obtained from experimental retention and

conductivity functions with reference to the selected soil.

θs (cm3/cm3) θr (cm3/cm3) α (1/cm) n m = 1 − 1/n K0 (cm/min) R2
vG R2

M-vG

0.52 0.055 0.048 1.743 0.426 0.070 0.97 0.96

The results presented in this section demonstrate that the proposed monitoring system,
with its specific layout, accurately characterizes the temporal evolution of the water status
in the selected soil.

4. Conclusions

Capacitive sensors have been demonstrated to offer precise monitoring of soil water
status, serving both environmental and agronomic purposes. With a soil-specific calibration,
this category of sensors can serve as a viable, low-cost alternative to the time domain
reflectometry technique, which is widely employed for soil water content estimation.

The accuracy of capacitive-based sensors is influenced by various factors such as soil
type, moisture levels, soil conductivity or salinity, and temperature fluctuations. These
factors warrant further exploration, particularly under field-scale conditions, especially
in arid and semi-arid regions with diverse irrigated soil landscapes. In such contexts, the
deployment of soil water sensors becomes imperative for optimizing the utilization of
limited water resources.

In this study, a low-cost multi-parameter sensor, designed in the framework of IoT
systems, was developed and calibrated for measuring water status in a soil sample. The use
and applicability of the sensors (a capacitive-based probe to estimate θ and an electronic
tensiometer for h measurements) were investigated on a silty-loam soil.

Laboratory-scale tests were conducted to assess sensor performance. Specifically, for
the capacitance-based module, calibration functions were established at different tempera-
tures to ensure accurate θ measurements. The sensors showed a polynomial behavior, in
the investigated domain, with acceptable validation statistics. The specific layout of the
sensors allowed estimation of the K(θ) function via IPM.

Our results indicate that the monitoring system demonstrated acceptable accuracy
from saturated to dry soil conditions. To properly evaluate the potential of the proposed
monitoring system, future research will aim to investigate sensor response in soils with
different textures and pedological characteristics, as well as the effects of soil salinity
on the dielectric response of the capacitive module. Finally, in the upcoming phases,
comprehensive field-scale tests will be carried out to evaluate sensor performance under
real field conditions.
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Appendix A. Theoretical and Operational Principles of the Capacitive-Based Module for
Volumetric Water Content Estimate

Capacitance sensors work as a capacitor. A capacitor consists of two conductors
(or electrodes) separated by an electrical insulator material known as a dielectric. Most
capacitance sensors are based on parallel plate theory to measure soil moisture [24,59]. In
such sensors, capacitance (C) describes how two conducting objects (i.e., the conductors)
with a space between respond to the voltage V applied between them:

C =
Q
V

(A1)

where Q is the (positive or negative) electrical charge stored on the capacitor. Equation (A1)
holds true for an ideal capacitor (i.e., characterized by a constant capacitance C). In practical
devices, charge build-up sometimes affects the capacitor mechanically, causing its capacitance
to vary. In this case, capacitance can be defined in terms of incremental changes:

C =
dQ
dV

(A2)

Capacitance is significantly influenced by the dielectric properties of the dielectric
medium. The dielectric material is made out of atoms and molecules and, when placed
between the plates of the charged-up capacitor, the negative charges in the dielectric are
going to get attracted to the positive electrode of the capacitor. But those negatives cannot
travel to the positive conductor, since this dielectric is a nonconducting material. However,
the negatives can shift or lean towards the positive conductor.

This causes the charge in the atoms and molecules within the dielectric to become
polarized. In the case of a soil medium saturated with water, it is also possible that
the dielectric material started off polarized because some water molecules are naturally
polarized. In this case, when the dielectric is placed between the charged-up conductors,
the attraction between the negative side of the polarized molecule and the positive side of
the capacitor would cause the polarized molecules to rotate, allowing the negatives to be a
little bit closer to the positively charged conductor of the capacitor.

The general equation for calculating parallel plate capacitance is as follows:

C = ε
A
D

(A3)

where ε = ε0εr is the dielectric permittivity of the medium, obtained as the product of the
dielectric permittivity of free space (ε0 = 8.9 × 10−12 F/m) and the relative permittivity
(εr), A is the area of each conductor, and D is the distance between them.
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In the proposed monitoring system, the soil moisture module is designed with a
parallel wire geometry, employing cylindrical conductors of the same diameter, each
featuring a hollow core. In this case Equation (A2) can be rewritten as [60]:

C =
επ

cosh−1(s/d)
(A4)

where d is the outer diameter of the electrode and s is the distance between them (from
center to center).

With reference to this specific geometry, we may observe that the capacitance is affected
by the relative permittivity, εr, of the region which is external to both conductors (i.e., the
space surrounding the electrodes) if the internal volume is filled with air or adequately
insulated. Figure A1 shows three different zones: (i) R1 (inside the conductors) where,
as stated above, εr of the conductor itself and that of the interior region does not impact
C, (ii) R2 (grey-shaded region) where εr impacts C to some degree, and (iii) R3 (between
conductors, yellow region), where εr has the largest impact on C.
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Appendix B. Supplementary Information

This section provides supplementary information essential for constructing the pro-
posed monitoring system. All the essential files (including PCB fabrication files, sensor
firmware file, 3D printing files, etc.) for building the monitoring system are available as
Supplementary Material accompanying this paper. The Supplementary Material folder is
organized as follows:

1. Board Fabrication Files folder:

(a) The Gerber files (SHYPROM.kicad_pcb.zip);
(b) The Centroid file (Centroid_SHYPROM.kicad_pcb.xls);
(c) The Bill of Materials (BoM: SHYPROM_BOM.xls; only electric components).

These files are crucial for PCB implementation in specialized electronics manufacturing
services. All the electronic components can be acquired in different electronics stores
(e.g., JLCPCB, Mouser, Digikey, RSOnline, etc.). The purchase links to electric components
can be found directly in the BoM spreadsheet.
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2. SHYPROM Firmware folder:

(a) Source code developed in Arduino IDE used to program the proposed moni-
toring system (SHYPROM.ino);

(b) Source code for the SHYPROM_APP (only for Android-based operating sys-
tems devices).

3. 3D Printing Materials folder:

(a) SHYPROM_BOX Folder: external box (waterproof), .stl files for containing the
monitoring system;

(b) SHYPROM_RINGS Folder: .stl files for quick assembling capacitive electrodes
on the plexiglass tensiometers;

(c) How to assemble SHYPROM Sensor: Quick tutorial useful for realizing and
assembling the SHYPROM monitoring system.

The 3D printing models were developed in Fusion 360 software, version 2.0.18961
(https://www.autodesk.com).

For implementing the electronic part of the SHYPROM monitoring system, two options
are possible. The first option is to construct the board by yourself, following the electrical
schematic in Figure 2. The estimated cost of fabricating one piece, including materials, is
approximately USD 15–20 for the ESP32SIM800L board, USD 50–55 for two MPX5100DP
pressure transducers, and around USD 2 for the other required components (listed in the
BoM file as a reference).

For field applications, it is advisable to utilize a specialized electronics manufacturing
service capable of producing low-cost printed circuit boards (PCBs). This option requires
the Gerber and BoM files (refer to the Board Fabrication Files folder in the Supplemen-
tary Material). In this case, fabrication costs are around USD 30 for printing five PCBs,
excluding shipping.

The SHYPROM monitoring system also requires materials for the two probes that
serve as tensiometers and for installing the electrodes of the capacitive-based module. This
part of the sensor can be constructed using (i) plexiglass tubes with an outer diameter of
20 mm and (ii) 3 cm long cylindrical tubes that act as electrodes (refer to local or online
markets for sourcing these materials). To simplify the assembly of the capacitive module,
consider 3D printing PLA cylindrical elements (see Probe Ring Bottom PLA.stl and Probe
Ring PLA.stl files in the SHYPROM_RINGS folder). These PLA elements were designed for
correctly wiring the electrical cables and securing the electrodes along the plexiglass tubes.

Once the SHYPROM monitoring system is assembled, the next step is to load the
firmware file into the ESP32SIM800L control unit (refer to SHYPROM.ino file, available for
download from the SHYPROM Firmware folder). Before loading the firmware, it is crucial
to set your Cloud URL (row 30 of the SHYPROM.ino file) and your Write API Key value
(row 34 of the SHYPROM.ino file); these parameters depend on the chosen Cloud platform.
The Firmware SHYPROM.ino file can be managed using the Arduino IDE, version 2.3.2
(https://www.arduino.cc/en/software).

Finally, the SHYPROM available data can be also visualized on the SHYPROM An-
droid app. To install the app on your device, you need the .apk file, which can be generated
from the SHYPROM_APP.aia file (available for download from the SHYPROM Firmware
folder). The latter file contains the source code and can be directly opened and modified on
the MIT APP INVENTOR online IDE (https://appinventor.mit.edu/). The code must be
rearranged for your specific requirements (i.e., it is necessary to modify the requested home
URLs according to your Cloud specifications). Once modified, the MIT APP INVENTOR
IDE creates the .apk file, which is the source file required for installation on Android-based
mobile devices.

https://www.autodesk.com
https://www.arduino.cc/en/software
https://appinventor.mit.edu/
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