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Abstract: Ultrasonic guided wave (UGW) inspection is an emerging non-destructive testing(NDT)
technique for rail flaw detection, where weak UGW signals under strong noise backgrounds are
difficult to detect. In this study, a UGW signal identification model based on a chaotic oscillator is
established. The approach integrates the UGW response into the critical state of the Duffing system
to serve as a disturbance control variable. By evaluating the system’s motion state before and after
introducing the UGW response, identification of UGW signals can be realized. Thus, the parameters
defining the critical state of Duffing oscillators are determined by Ke. Moreover, an electromagnetic
transducer was specifically devised to enable unidirectional excitation for UGWs targeted at both
the rail base and rail head. Experimental studies showed that the proposed methodology effectively
detected and located a 0.46 mm notch at the rail base and a 1.78 mm notch at the rail head. Further-
more, Ke was directly proportional to the notch size, which could be used as a quantitative index to
characterize the rail flaw.

Keywords: ultrasonic guided waves; chaotic oscillator; Kolmogorov entropy; rail; electromagnetic
acoustic transducer

1. Introduction

Rail flaw detection is crucial due to the increased likelihood of rail damage from
external loads as the service life extends. An accident can lead to significant loss of life
and property. Currently, ultrasonic detection is the most widely employed technology
for rail flaw detection. The fundamental operation of ultrasonic detection involves using
a transducer to excite ultrasonic pulses that characterize and locate internal rail flaws
through measured quantities such as the amplitude of the echo signal and time. However, a
limitation of ultrasonic testing is that it requires point-to-point scanning of the rail, leading
to low detection efficiency and a blind spot at the rail base.

UGW inspection is an emerging NDT technology [1]. Due to the dispersive, multimodal,
and attenuating characteristics of UGWs in long range detection, actual sampled guided wave
signals often appear as weak signals against a background of strong noise. Scholars have exten-
sively researched signal processing methods for UGWs, including time–frequency analysis [2],
such as short-time Fourier transform [3], 2D Fourier transform [4], wavelet transform [5,6],
Hilbert–Huang transform [7], empirical modal decomposition [8], Wigner–Ville distribution [9],
and artificial neural networks [10], as well as dispersion compensation methods [11], time inver-
sion focusing methods [12], etc. Most of the above methods use noise suppression techniques
to reduce the noise of the target signal and the noise signal superimposed on the overlapped
signal, which can reduce the sensitivity of damage detection. Furthermore, some state-of-the-art
fault detection methods [13–15] have been proposed using training data collected with ambient
noise in industrial processes.
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With the development of nonlinear science, some scholars have begun to study weak
signal detection methods based on nonlinear systems, and one of the most representative
methods is chaos detection based on chaos theory. Chaos theory discusses the unity
of complexity, randomness, and certainty that prevails in nature. Lorenz identified the
following three characteristics of chaos [16]: (1) an appearance of randomness, with the
actual behavior determined by precise laws; (2) a sensitive dependence on initial conditions;
and (3) a sensitive dependence on the intrinsic variability in initial conditions.

Typical models of chaotic dynamics include the Duffing equation [17], the Van-der-pol
system [18], logistic mapping [19], and the Loren attractor [20], among which the Duffing
equation is a typical model of chaotic dynamics that has garnered significant attention in
the field of signal detection, due to its inclusion of a periodic excitation term. Jalilvand [21]
examined the impact of frequency, phase, and noise on a weak signal in a Duffing oscillator.
Nohara [22] researched the response of the Duffing system when subjected to square wave
excitation, assessing its potential for square wave detection. Srinivasan [23] delved into the
dynamics of the Duffing equation under sawtooth wave excitation. As research progressed,
scholars started incorporating chaotic determination indices into UGW signal detection,
Cheng [24] utilized the Poincaré map as a chaos indicator to identify pipe damage using
the Duffing oscillator. Acknowledging the subjective nature of qualitative chaos indices in
determining system motion states, some scientists began exploring quantitative chaos indexes.
Zhang [25] examined the effectiveness of an enhanced Duffing system for UGW detection in
pipelines by altering the nonlinear term of the Duffing equation. Hu [26,27] detected weak
second harmonic signals in plates due to micro-cracks by assessing the maximum Lyapunov
exponent of the Duffing equation. Wu [28] carried out simulation and experimental studies
on the UGW detection of pipeline defects using the maximum Lyapunov exponent and
the Lyapunov fractional dimensions as phase determination indexes, respectively. Ng [29]
identified hole defects in rails using the maximum Lyapunov exponent of the Duffing equation.
Additionally, Cheng [30] developed a pipeline damage detection method based on the double
Duffing equation for detecting weak defect echo signals caused by pipeline defects.

Scholars have conducted extensive research on utilizing chaotic oscillators for weak signal
detection. However, challenges persist in applying these methods to detect UGW signals:

• The difficulty in the quantitative determination of the system parameters of a chaotic
oscillator when it is in the critical state between chaotic and periodic states;

• The commonly employed quantitative measures of chaos, such as maximum Lyapunov
exponents and Lyapunov dimensions, necessitate constant re-orthogonalization dur-
ing calculations, leading to computational inefficiency;

• Currently, only qualitative assessment and localization of damage can be achieved, as
it is difficult to quantitatively characterize defects using chaotic oscillators.

Otherwise, piezoelectric acoustic transducers are commonly used in UGW excita-
tion and reception technology for current rail detection. Although the efficiency of the
transducer is high, it is strongly influenced by the coupling conditions, which limits its
engineering applicability.Thus, it is important to develop a non-contact UGW transducer.

Given the challenges that current studies have struggled to address, this paper aimed
to achieve the following research objectives:

1. To develop a quantitative method to determine the system parameters of a chaotic
oscillator in the critical state;

2. To develop a computationally efficient quantitative characterization of chaos;
3. To develop a method for quantitative characterization of rail flaws;
4. To design a non-contact UGW transducer.

The outline of this paper is as follows: In Section 2, a UGW signal identification
model based on the chaotic oscillator is introduced. The model incorporates a method for
calculating Kolmogorov entropy(Ke) through orthogonal triangular decomposition. Within
this framework, Ke is employed as a quantitative index that characterizes the motion state
of the chaotic oscillator system. In Section 3, an electromagnetic transducer is designed



Sensors 2024, 24, 2730 3 of 19

which can achieve unidirectional excitation for UGWs at the rail base and rail head, and
experimental verification confirmed that the EMAT successfully amplified forward mode
signals and suppressed reverse mode signals. In section 4, experiments demonstrated that
the conventional wavelet transform method is incapable of detecting weak UGW signals
reflected by small-size defects. Furthermore, this study’s proposal to use the Kolmogorov
entropy of the Duffing oscillator for identifying rail damages was experimentally validated,
highlighting its effectiveness in damage identification. Section 5 provides a summary of
this study.

2. Detection UGW Signal Using a Chaotic Oscillator
2.1. Duffing Oscillator System

Since the Duffing equation contains a cosine element and the UGW signal is excited
in the form of a trigonometric function, the dynamic system expressed by the Duffing
equation is used as a UGW signal detection system.The standard Duffing equation can be
expressed mathematically through the state space as follows:

dψ1

dt
= ψ2

dψ2

dt
= ψ1 − ψ3

1 − δψ2 + γ cos Ωψ3 + s(t)

dψ3

dt
= 1

(1)

where δ refers to the damping ratio; γ refers to the amplitude of driving force of the Duffing
oscillator; Ω refers to the angular frequency; ψ1, ψ2, and ψ3 correspond to displacement,
velocity, and time in state space; and s(t) is the UGW signal to be detected. In numerical
calculations, s(t) can be expressed as

s(t) =
A
2
(1 − cos

ωt
10

) sin ωt + σn(t) (2)

In Equation (2), the first term on the right-hand side illustrates the UGW signal
modulated by the Hanning window, where A is the amplitude of the guided wave signal,
and ω is its angular frequency. The second term represents Gaussian noise, σ refers to the
magnitude of the noise, and n(t) is white noise with standard normal distribution.

While Ω = ω, inputting the UGW signal into the Duffing system is equivalent to
increasing the amplitude of the driving force. Since the Duffing oscillator is in a critical
state between chaotic and periodic motion, increasing the magnitude of the driving force
will cause the system to undergo a transition from a chaotic to periodic state.

Upon inputting both UGWs and noise signals (as shown in Figure 1) into the Duffing
oscillator system, the motion state of the system is scrutinized using the phase portrait, as
illustrated in Figure 2. While δ = 0.5, γ = 0.73493, Ω = ω = 1, the Duffing system is in
a critical state. Inputting UGW signals of very small magnitude at this point, the motion
state of the system will change, while noise is only a perturbation of the system state.

(a) (b)

Figure 1. UGW signal and noise signal: (a) Guided wave signal where A = 0.00001, (b) Gauss white
noise where σ = 0.2.
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(a) (b)

(c) (d)

Figure 2. Phase portrait under different input signals: (a) when A = 0, σ = 0, periodic state;
(b) when A = 0, σ = 0.2, periodic state; (c) when A = 0.00001, σ = 0, chaotic state; (d) when
A = 0.00001, σ = 0.2, chaotic state.

2.2. Kolmogorov Entropy as a Quantitative Index of Chaos

Determining the state of motion of the Duffing system from the phase portrait is
somewhat subjective, so it is preferable to use a quantitative index to describe its state.
Kolmogorov entropy (later referred to as Ke) is an extended concept of Shannon entropy,
which is a measure that describes the degree of chaos in a dynamical system and represents
the average information growth of the dynamical system, as shown in Table 1.

Table 1. A criterion for determining the motion state of a dynamical system by means of Ke.

The Value of K Motion State

Ke = 0 periodic state
0 < Ke < +∞ chaotic state

Ke = +∞ complete random state

The more common calculation of Ke is currently approximated by the generalized
second-order Renyi entropy via a reconstruction-based vector space solution method, due
to the fact that Ke is numerically equal to the first-order Renyi entropy [31]. Practical
engineering often requires a detection method that does not require a benchmark, and the
above solution method is an estimation of Ke [32]. In this paper, K entropy is calculated from
the perspective that Ke is defined as the average growth rate of the amount of information.

Consider the one-dimensional discrete mapping:

φn+1 = F(φn) (3)
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Assuming that the interval of variation of the variable φ is divided into n equal sub-
intervals and that φ has equal probability in each sub-interval, if φ is known to be in a
certain interval, the amount of information obtained is

H(φ) = −
n

∑
i=1

1
n

ln
1
n
= ln n (4)

The mapping enlarges the interval of variation of the variables by a factor of F′(φn)
after each iteration, so that each sub-interval becomes F′(φn)/n after the iteration, and the
change in the amount of information in the above mapping system after one iteration is

∆H(φ) =
n/F′(φn)

∑
i=1

|F′(φn)|
n

ln
|F′(φn)|

n
+ ln n = ln

∣∣F′(φn)
∣∣ (5)

The average per-iteration information growth over the entire process as the number of
iterations tends to infinity is given by

Ke = ∆H̄(φ) = lim
λ→+∞

1
λ

λ

∑
i=0

∣∣∣F′
(i)(φn)

∣∣∣ (6)

For an m-dimensional multidimensional system, the Kolmogorov entropy is

K(m)
e =

∫
ρ(φ)

m

∑
i=1

∆H̄idφ (7)

where ρ(φ) refers to the density of states function in phase space, and for an dynamic
system with no concrete physical meaning, the density of states is assumed to be invariant,
so that we can obtain

K(m)
e =

m

∑
i=1

∆H̄i

∫
ρ(φ)dφ =

m

∑
i=1

∆H̄i (8)

Thus, the key point in calculating Ke is to solve Equation (6). The following focuses on
the Ke calculation of the Duffing oscillator. The differential equation represented by the
Duffing oscillator can be expressed as

Ψ̇ = JΨ (9)

where J refers to the Jacobi matrix. Performing an orthogonal triangular decomposition of
Ψ, i.e., decompose Ψ into a product of an orthogonal matrix and a positive upper triangular
matrix; that is,

Ψ = QR (10)

where Q is a orthogonal matrix, R is a positive upper triangular matrix, so we obtain

Q̇R + QṘ = JQR (11)

Multiplying the left by the transpose matrix of Q and the right by the inverse matrix
of R, we obtain

QTQ̇ + ṘR−1 = QT JQ (12)

Introducing the intermediate variable θ, the orthogonal matrix Q is denoted as

Q =

(
cos θ sin θ
− sin θ cos θ

)
(13)
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the positive upper triangular matrix R is denoted as

R =

(
eη1 r12
0 eη2

)
(14)

The Jacobi matrix for the Duffing equation is

J =

(
J11 J12
J21 J22

)
=

(
0 1

1 − 3φ2
1 −δ

)
(15)

Combining the above equations, we obtain

dη1

dt
= J11 cos2 θ − J21 sin θ cos θ − J12 sin θ cos θ + J22 sin2 θ

dη2

dt
= J11 sin2 θ + J21 sin θ cos θ + J12 sin θ cos θ + J22 cos2 θ

dθ

dt
= −J11 sin θ cos θ − J21 cos2 θ + J12 sin2 θ + J22 sin θ cos θ

(16)

The intermediate variables ξ1, ξ2 are introduced and satisfy the following equation:
dξ1

dt
=

dη1

dt
+

dη2

dt
dξ2

dt
=

dη1

dt
− dη2

dt

(17)

so we can obtain 

dξ1

dt
= J11 + J22

dξ2

dt
= (J11 − J22) cos 2θ − (J12 + J21) sin 2θ

dθ

dt
=

1
2
(J22 − J11) sin 2θ − J21 cos2 θ + J12 sin2 θ

(18)

Substituting the Jacobi matrix of the Duffing system into the above equation, we can obtain

dξ1

dt
= −δ

dξ2

dt
= (3ψ2

1 − 2) sin 2θ + δ cos 2θ

dθ

dt
= −1

2
δ sin 2θ + (3ψ2

1 − 2) cos2 θ + 1

dη1

dt
=

1
2
(

dξ1

dt
+

dξ2

dt
)

dη2

dt
=

1
2
(

dξ1

dt
− dξ2

dt
)

(19)

By solving the differential equations Equation (19), the Ke can be calculated as:

Ke = max (η1, 0) + max (η2, 0) (20)

To localize the damage, a time-shift window is employed, as illustrated in Figure 3.
Only signals falling within this time-shifted window are fed into the critical state Duffing
oscillator system after undergoing periodic continuation. Therefore, the presence of a signal
within the window with Ke > 0 signifies a damage defect, while the absence indicates
no defect.
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Scan direction

UGW signals
Time-shift window

Figure 3. Time-shift window to localize the defect.

2.3. Determination of the Parameters of the Duffing Equation for the Critical State

To use the Duffing oscillator as a detection system for UGW signals, one of the keys is
to set the system as a critical state between chaotic and periodic motions, and it is important
to determine the parameters of the damping ratio and driving force amplitude at the critical
state. A common method of determining critical state parameters is through bifurcation
diagrams. The basic idea is to determine a specific damping ratio, solve the Poincare map
of the Duffing oscillators for different amplitudes of driving force , and then the set of
projections on the Poincare map is the bifurcation diagram. A bifurcation diagram cannot
quantify the degree of chaos and is still essentially a qualitative rather than quantitative
assessment method.

It has been shown in Section 2.2 that Ke can be used as a quantitative characterization
index of the chaotic motion state, and therefore the critical parameter can be determined by
the relationship of Ke to the change in the motion state of the system with the driving force
amplitude γ at different damping ratios δ. In practical engineering terms, it is ideal to be
able to find a quantitative indicator that is strictly positively or negatively correlated with
the degree of damage.

As is shown in Figure 4, in some damping ratios, there is a large range in which Ke
is strictly positively correlated with the amplitude of the driving force γ, and the noise
has almost no effect on the Ke of the system in this range. The UGW signals will be
normalized during the actual detection, and the amplitude of the guided wave at the
damage is generally smaller than its peak amplitude, so the range of γ from 0.4 to 0.9, and
the range of Ke strictly increasing with the amplitude of the driving force, generally covers
the amplitude of the damaged UGW signals. Considering the diversity and uncertainty
of an actual detection environment, we still choose the critical point of the periodic and
chaotic states as the driving force amplitude of the detection system, and the critical point
is taken as δ = 0.8, γ = 1.3040. It is worth noting that, in an actual detection, due to the
influence of the environment and other signal aberrations and other complex factors, it is
impossible to achieve the ideal state of the simulation, and a certain threshold range should
be maintained when taking the driving force amplitude. The driving force amplitude is
taken in the left field of the critical point, although to some extent it will not be able to
achieve an ideal state in the simulation. Although it will reduce the detection sensitivity to
some extent, it can improve the stability of the Duffing detection system.

Thus, a rail flaw detection model based on the Duffing oscillator is established. By
evaluating the system’s motion state before and after introducing the UGW response, the
identification of ultrasonic guided wave signals can be achieved. Ke is a measure that
describes the degree of chaos in a dynamical system. A method for calculating Ke based on
orthogonal triangular decomposition is proposed, making it a quantitative characterization
factor of the motion state of the chaotic oscillator system. The entire flow of the above
method is shown in the Figure 5.
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Figure 4. Relating γ and Ke for different damping ratios δ when Ω = 1.
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YES 
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Figure 5. Flow chart of the rail flaw detection based on the Duffing oscillator system.

3. Design of an Electromagnetic Acoustic Transducer for UGWs

The ultrasonic acoustic transducers in NDT based on UGWs mainly include piezo-
electric, electromagnetic, air-coupled, and laser acoustic transducers. The piezoelectric
acoustic transducer is currently the most widely used type , but the disadvantage is that it
is greatly affected by the coupling conditions, thus limiting its applicability to engineering
sites. Therefore, designing a non-contact type transducer is of great importance for the
realization of rail flaw detection.



Sensors 2024, 24, 2730 9 of 19

Electromagnetic acoustic transducer(EMAT) has the advantage of good design-ability
and lower material costs compared to the lower conversion efficiency of piezoelectric
transducers.The principle of the excitation of the Lorentz force-based EMAT is shown in
Figure 6.

Due to the complexity of the rail cross-section, it is difficult to excite a single guided
wave mode in the rail, and when the guided wave encounters the boundary, the reflection
will undergo a complicated mode conversion. If the guided wave propagates from both
sides in the rail, the transducer will receive the reflected wave from both sides, which
will greatly increase the difficulty of the subsequent signal identification and feature
extraction. Therefore, in this study, a unidirectional excitation EMAT is designed to achieve
enhancement of the forward guided waves modal and suppression of the reverse modal.
The basic components of the EMAT are shown in Figure 7. Amplification in the forward
direction and suppression in the backward direction of guided-wave signals is achieved by
the arrangement of two meander coils spaced apart from each other and fed with electrical
pulses with a time delay, and the arrangement of the two coils is shown in Figure 8. As is
shown in Figure 9, the distance between the adjacent wires of the coil is λ/2 (where λ is
the wavelength of the guided waves), so that the guided waves generated by each wire
gain each other. The distance between coil 1 and coil 2 is λ/4, and a reverse current is
applied with a time delay of T/4 (where T is the cycle of the guided waves) to achieve
amplification of the forward UGW signals and suppression of the reverse signals.

S
N

NdFeB magnet

Component to be inspected

Eac

Meander coil

Static magnetic field

Eddy current

Lorentz force

Figure 6. Schematic diagram of UGWs excited by EMAT.

S
N

S
N

NdFeB magnet

Magnetic guide

Meander coil 1

Meander coil 2

Insulated layer 2

Insulated layer 3

Insulated layer 1

Component to be inspected

Figure 7. Schematic diagram of EMAT.

wavelength/2

wavelength/4

Meander coil 1

Meander coil 2

Figure 8. Arrangement of two meander coils.
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Meander coil 1
a1 a2 a3 a4 a5 a6 a7 a8

+ + +- - -+

a1

b1

Meander coil 2
b1 b2 b3 b4 b5 b6 b7 b8

+ + +- - - - +

-

forward

λ/4 λ/4

Figure 9. Schematic diagram of the principle of unidirectional guided wave excitation by EMAT.

The effectiveness of the EMAT in exciting UGWs was verified through an experiment
at the head and base of the rail. The experimental scheme is shown in Figure 10. The effect
of the unidirectional excitation of the double meander coils was verified by comparing
the guided wave signals received at equidistant positions on both sides of the EMAT, and
the experimental results are shown in Figure 11. The experimental results showed that the
EMAT designed in this study could achieve the amplification of the forward guided wave
signals and the suppression of the backward guided wave signals at the rail head and at
the rail base.

S
N

Rail

Amplifier 2Amplifier 1

Arbitrary wave generator Oscilloscope

Figure 10. Experiment to verify the effect of the EMAT on the excitation of UGWs in the rail.
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Figure 11. Experimental results: (a) Forward UGW signals at the rail base; (b) reverse UGW signals
at the rail base; (c) forward UGW signals at the rail head; (d) reverse UGW signals at the rail head.
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Thus, an EMAT was developed to enable unidirectional excitation of UGW signals at
both the rail base and rail head. The strategic placement of two meander coils, separated at
a specific distance, allows the amplification of guided-wave signals in the forward direction,
while simultaneously suppressing them in the backward direction. This effect is achieved
through feeding the coils with electrical pulses that are intentionally time-delayed.

4. Experiments to Detect Rail Defects

NDT technology based on UGWs includes four steps: excitation, propagation, re-
ception, and signal processing of UGWs. In order to verify the effectiveness of the NDT
method utilizing UGWs based on a chaotic oscillator, an experimental study on rail flaw
detection was conducted.

4.1. Experimental Design

Based on the above research, experimental schemes for damage detection of rail head and
rail bottom were established. First, an arbitrary waveform generator produced a sinusoidal
signal modulated by the Hanning window, which was passed through a power amplifier
to obtain amplification. The amplified signal was then passed through the EMAT to excite
UGWs in the rail. Next, the guided ultrasonic waves were reflected when they encountered
defects during propagation in the rail. The reflected guided wave signals were then sampled
as electrical signals by an oscilloscope through a receiving acoustic transducer. The sampled
guided wave signals were then input into the detection system based on the Duffing oscillator
described in Section 2, which ultimately enabled the identification of rail damage.

In the UGW detection experiment, it was important to reduce crosstalk between the ex-
ternal environmental noise and signals in each channel. To achieve this, it is recommended
to use BNC radio frequency cables with shielding layers and to keep the cable length as
short as possible to minimize signal distortion. Additionally, it is crucial not to share the
ground of each unit and to avoid sharing the shield of the signal cable with the ground of
other electrical equipment. Furthermore, it is advisable to keep power and signal cables of
the equipment as far apart as possible. In cases where separation is not feasible, one should
avoid cable crossings, refrain from laying cables in parallel, and if crossing is necessary, do
so vertically. Furthermore, it is important to avoid setting the amplifier power too high, as
excessive power can result in the generation of odd numbers of high harmonic currents,
due to the non-linearity of the electronic circuit.

The experimental scheme is shown in Figure 12. For rail base detection, the EMAT
was attached to the top of the rail base on both sides. For rail head detection, the EMAT
was attached to the bottom of the rail head on both sides.

In the experiment, artificial notches were set at the rail base and rail head, as described
in Figure 13. There were 7 different notches for the rail foot and 9 different notches for the
rail head. The specific notch sizes for different cases at the rail base can be seen in Table 2,
and the specific notch sizes at the rail head can be seen in Table 3.

Table 2. Various cases of defects at the rail base.

Case Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

Notch
width/mm 0 0.46 0.88 1.07 1.48 2.07 2.72

Table 3. Various cases of defects at the rail head.

Case Case 8 Case 9 Case 10 Case 11 Case 12 Case 13 Case 14 Case 15 Case 16

Notch
width/mm 0 1.78 2.20 2.75 3.10 3.76 4.70 5.08 5.65
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Figure 12. Experimental scheme for rail flaw detecting : (a) rail base; (b) rail head.
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Figure 13. Artificial notches in the experiment: (a) rail base; (b) rail head.

4.2. Experimental Results

In the flaw detection experiments conducted at the rail base and rail head, the time
domain signals of the guided waves were as depicted in Figures 14a and 15a. Initially, it
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was apparent that the time domain signal alone had limited efficacy in detecting damage,
with only a 2.07 mm notch discernible at the rail base and a 3.76 mm notch at the rail
head due to smaller defects being overshadowed by noise. Given this challenge, tradi-
tional signal processing approaches resort to signal cancellation techniques. Among these
techniques, time–frequency analysis stands out as a commonly utilized method in current
research practices. To address this limitation, the present study employed time–frequency
analyses using a wavelet transform on the UGW signals. The outcomes of this analysis
are displayed in Figures 14b and 15b. The application of the wavelet transform yielded
a notable noise reduction effect, thereby enhancing the damage detection threshold to
some extent. Nevertheless, the method still faced challenges in detecting minute damages.
Specifically, the wavelet transform-based time–frequency analysis method successfully
identified a 1.48 mm notch at the rail base and a 3.10 mm notch at the rail head.

Rail damage was detected using the chaotic oscillator detection system as discussed
in Section 2. The incoming UGW signals were processed by the critical Duffing oscillator
system, with the parameter Ke serving as an indicator of the system’s motion state. To
localize the damage, a time-shift window was employed. Only signals falling within
this time-shifted window were fed into the critical state Duffing oscillator system after
undergoing periodic continuation. Therefore, the presence of a signal within the window
with Ke > 0 signified a damage defect, while the absence indicated no defect. The results
are depicted in Figures 16 and 17, revealing the system’s ability to detect a 0.46 mm notch at
the rail base and a 1.78 mm notch at the rail head. Upon comparing the wavelet transform
method with the proposed method, it is evident that the method introduced in this paper
demonstrated greater sensitivity to rail damage and enhanced the threshold for detecting
rail flaws.

Figure 14. Experimental results of rail base detection: (a) time domain signal; (b) wavelet transform.
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Figure 15. Experimental results of rail head detection: (a) time domain signal; (b) wavelet transform.

Figure 16. Experimental results of rail base detection via Ke of Duffing oscillator.
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Figure 17. Experimental results of rail head detection via Ke of Duffing oscillator.

The results of identifying and localizing rail damage using the Ke of the Duffing
oscillator system are presented in Tables 4 and 5.

The position error(pe) for the rail notch could be calculated using Equation (21) as

pe =

∣∣∣∣ (L − l0)(t2 − t1)

l1(t1 − t0)
− 1

∣∣∣∣ (21)

where L is the axial length of the rail, l0 is the axial distance between the center of the
receiver transducer and the excited end face of the rail, l1 is the actual axial distance between
the center of the receiver transducer and the rail notch, t0 represents the time of the incident
wave with maximum amplitude, t1 corresponds to the time of the end echo with maximum
amplitude, and t2 is the time corresponding to the maximum amplitude of notch echo.

Table 4. Results of locating the notch at the rail base.

Case
Number

Width of
notch/mm t0 (ms) t1 (ms) t2 (ms) Ke

Positioning
Error (%)

1 0 0.038732 1.158122 / 0 /
2 0.46 0.038732 1.158122 0.670047 0.001992 1.04
3 0.88 0.038732 1.142207 0.670047 0.032303 0.39
4 1.07 0.038732 1.158122 0.670047 0.041133 1.04
5 1.48 0.038732 1.158122 0.670047 0.064721 1.04
6 2.07 0.038732 1.158122 0.670047 0.093227 1.04
7 2.72 0.038732 1.158122 0.670047 0.139945 1.04



Sensors 2024, 24, 2730 16 of 19

Table 5. Results of locating the notch at the rail head.

Case
Number

Width of
notch/mm t0 (ms) t1 (ms) t2 (ms) Ke

Positioning
Error (%)

8 0 0.027364 1.250584 / 0 /
9 1.78 0.027364 1.250584 0.745835 0.003014 3.07

10 2.20 0.027364 1.250584 0.745835 0.016560 3.07
11 2.75 0.027364 1.250584 0.745835 0.029862 3.07
12 3.10 0.027364 1.250584 0.754930 0.042997 4.37
13 3.76 0.027364 1.250584 0.745835 0.051369 3.07
14 4.70 0.031911 1.255131 0.745835 0.079399 2.41
15 5.08 0.031911 1.255131 0.670047 0.082339 2.41
16 5.65 0.031911 1.255131 0.670047 0.094784 2.41

Moreover, the width of notches at the rail base and rail head were directly propor-
tional to the Ke, as shown in Figure 18. Thus, Kolmogorov entropy could be used as a
quantitative index to characterize the rail defects. The experimental results demonstrated
the effectiveness of the detection system based on a Duffing oscillator for rail flaw detection.
Specifically, the Duffing oscillator system was capable of detecting a 0.46 mm notch at the
rail base and a 1.78 mm notch at the rail head.

(a) (b)

Figure 18. The relationship between notch width and Ke: (a) rail base; (b) rail head.

5. Conclusions and Discussion

This study addressed the challenge of identifying weak UGW signals in a strong
noise background in rail flaw detection by proposing a damage identification method
based on chaotic oscillators. Initially, a mathematical model for detecting UGW signals
using the Duffing oscillator was introduced. The motion state of the Duffing system
was characterized by the Kolmogorov entropy, and a formula for calculating this entropy
was established. Subsequently, an electromagnetic UGW transducer was developed to
amplify forward UGW modes and suppress unidirectional UGW modes. The efficacy of
the proposed model and transducer in rail damage detection was then validated through
experimental testing. The main conclusions of this study are analyzed as follows:

1. A UGW signal identification model based on the chaotic oscillator was established.
The approach integrates the UGW response into the critical state of the Duffing system
to serve as a disturbance control variable. This incorporation leads to alterations
in the system’s motion state through the exploitation of the parameter disturbance
sensitivity characteristic of chaotic systems and the traversal of chaotic motion. By
evaluating the system’s motion state both pre- and post-introduction of the UGW
response, the identification of ultrasonic guided wave signals can be realized. This
methodology encapsulates the fundamental concept of employing chaotic systems for
discerning faint guided wave signals in NDT applications centered on UGWs;

2. A method for calculating Kolmogorov entropy based on orthogonal triangular decom-
position was proposed. Kolmogorov entropy is a measure that describes the degree of
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chaos in a dynamical system and represents the average information growth of the
system. Ke can be used as a quantitative characterization factor of the motion state
of the chaotic oscillator system. When Ke = 0, the system is in a state of periodic
motion, and when 0 < Ke < +∞, the system is in a chaotic state. This method elimi-
nates the need for reconstructing the phase space, thereby improving the efficiency of
calculating Kolmogorov entropy.

3. An electromagnetic transducer was designed that can achieve unidirectional excitation
for UGWs at the rail base and rail head. Amplification in the forward direction and
suppression in the backward direction of guided-wave signals was achieved though
the arrangement of two meander coils spaced apart from each other and fed with
electrical pulses with a time delay.The distance between adjacent wires of the coil
was λ/2, so that the UGW generated by each wire gained each other. The distance
between coil 1 and coil 2 was λ/4, and a reverse current was applied with a time delay
of T/4 to achieve amplification of the forward guided wave signal and suppression of
the reverse signal. Experimental verification confirmed the effectiveness of the EMAT
in producing the desired effects mentioned above;

4. The experimental results indicated the challenge in effectively identifying the weak
UGW echoes caused by small sized damage using time-domain signals. Although the
traditional signal processing method based on wavelet transform showed improved
denoising capabilities, it continued to struggle in effectively distinguishing the weak
UGW signals.

5. The width of notches at both the rail base and rail head were directly proportional
to the Ke, hence Kolmogorov entropy can serve as a quantitative characterization
index of rail damage. The experimental results demonstrated the effectiveness of
the detection system based on a chaotic oscillator in detecting weak UGW signals.
Specifically, the Duffing oscillator system was capable of detecting a 0.46 mm notch at
the rail base and a 1.78 mm notch at the rail head.

In summary, this study proposed a method for detecting rail flaws using the Kol-
mogorov entropy of a chaotic oscillator based on UGWs. This method aims to accurately
locate and quantitatively characterize defects at the rail base and rail head to enhance the
sensitivity of rail flaw detection. However, in engineering applications, the method de-
scribed above may encounter limitations, particularly when dealing with large rail damage.
In such cases, the guided wave within the damaged area may undergo mode conversion.
The presence of multiple damages on the rail further complicates the situation, making it
challenging to differentiate between the modal conversion signal of the initial damage and
the reflection signal produced by subsequent damages. Hence, the study of the specific
interaction between rail flaws and UGWs remains a key research direction for the future
application of the method proposed in this paper.
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