
Citation: Huang, M.; Fernandez-

Beltran, R.; García-Mateos, G. A

Comparative Study of Physically

Accurate Synthetic Shadow Datasets

in Agricultural Settings with Human

Activity. Sensors 2024, 24, 2737.

https://doi.org/10.3390/s24092737

Academic Editor: Yongwha Chung

Received: 29 March 2024

Revised: 20 April 2024

Accepted: 23 April 2024

Published: 25 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Comparative Study of Physically Accurate Synthetic Shadow
Datasets in Agricultural Settings with Human Activity
Mengchen Huang , Ruben Fernandez-Beltran and Ginés García-Mateos *

Department of Computer Science and Systems, University of Murcia, 30100 Murcia, Spain;
mengchen.huang@um.es (M.H.); rufernan@um.es (R.F.-B.)
* Correspondence: ginesgm@um.es

Abstract: Shadow, a natural phenomenon resulting from the absence of light, plays a pivotal role
in agriculture, particularly in processes such as photosynthesis in plants. Despite the availability
of generic shadow datasets, many suffer from annotation errors and lack detailed representations
of agricultural shadows with possible human activity inside, excluding those derived from satellite
or drone views. In this paper, we present an evaluation of a synthetically generated top-down
shadow segmentation dataset characterized by photorealistic rendering and accurate shadow masks.
We aim to determine its efficacy compared to real-world datasets and assess how factors such as
annotation quality and image domain influence neural network model training. To establish a
baseline, we trained numerous baseline architectures and subsequently explored transfer learning
using various freely available shadow datasets. We further evaluated the out-of-domain performance
compared to the training set of other shadow datasets. Our findings suggest that AgroSegNet
demonstrates competitive performance and is effective for transfer learning, particularly in domains
similar to agriculture.

Keywords: shadow segmentation; synthetic dataset; transfer learning; out of domain; computer vision

1. Introduction

In the realm of computer vision, extensive research has been devoted to the challenge
of shadow detection and segmentation, which holds significant utility for various tasks.
One such task is shadow removal, which streamlines numerous other computer vision
problems. Equally compelling is the detection of scenarios where the absence of shadows
is of interest, particularly in determining whether a specific area in an image is directly
illuminated, often by the sun in outdoor settings. This capability proves valuable in
applications such as the positioning of photovoltaic panels, where shadows can diminish
the efficiency of solar modules, potentially leading to temperature-induced damage known
as hot spots [1]. Additionally, it finds relevance in monitoring solar radiation for crop
health, ensuring that plants receive adequate sunlight for photosynthesis, a crucial aspect
of plant well-being. Thus, the broader implications of shadow detection extend beyond
mere image processing, offering solutions to real-world challenges in diverse domains.

Shadow datasets serve various purposes. For general applications, they are utilized
in tasks such as shadow segmentation, which aids in identifying shadows and image
manipulation. Shadow removal is another common use, particularly valuable for image
processing tasks. For example, removing shadows can enhance the performance of object
detection models and augmented reality applications, allowing for the realism of virtual
objects by overlaying and compositing shadows in software, thereby improving immersion.

Aerial satellite imagery shadow datasets have specific applications in urban planning,
such as roof solar panel planning [2], analyzing the impact of buildings and structures on the
surrounding environment and sunlight exposure. Remote sensing is another application,
useful for terrain mapping by estimating the height of terrain through shadow analysis.
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Vegetation analysis is also facilitated by aerial shadow datasets, providing information
about the density of vegetation cover by analyzing the uniformity of shadows.

Lastly, agricultural shadow datasets are valuable for crop monitoring through remote
sensing to determine whether plants receive sufficient sunlight, which can affect parameters
such as the Normalized Difference Vegetation Index (NDVI) [3], widely used for plant
health monitoring.

In the context of our intended use case, also known as agrophotovoltaics [4,5], a field
is equipped with motorized photovoltaic panels and cameras mounted on a support
structure at approximately 3 m in height. Our primary objective is to balance the utilization
of both solar radiation and crop growth simultaneously. This involves ensuring that
plants receive sufficient sunlight for photosynthesis while harnessing excess sunlight
for photovoltaic energy production. In some cases, introducing shade when plants are
saturated with sunlight can improve crop yield, as demonstrated in studies [6]. We aim
to achieve this balance through the detection of shadows using cameras, enabling us to
adjust the position of motorized photovoltaic panels in future iterations to optimize solar
radiation distribution.

To initiate data collection without the need to physically construct the system in an
actual field, saving both time and costs, we suggest creating a virtual representation. This
involves modeling a simulated field in 3D modeling software, providing greater flexibility
compared to the real world. This virtual approach enables us to easily adjust lighting
parameters and simulate various seasons and times, facilitating a more efficient analysis
and more accurate ground truth data.

The challenges of shadow detection and removal have been extensively studied,
with notable standard datasets contributing to the research. For shadow detection, the SBU
dataset [7] is widely recognized, comprising approximately 5000 images featuring shadows
across diverse scenes and photo types. Despite its significance, the dataset suffers from
noisy annotations. Another prominent dataset is ISTD [8], addressing both shadow detec-
tion and removal, consisting of around 2000 images with cleaner annotations. However,
the limitation of ISTD lies in its use of hand-taken photos and simpler environmental
settings. More recently, the CUHK-Shadow dataset [9] has emerged, aiming to capture the
complexity of shadows in the real world with more challenging environments, though it
has copyright issues and gated access. Moreover, there is the Aerial Imagery Dataset for
Shadow Detection (AISD) [10], which provides a unique perspective, particularly rele-
vant for aerial imagery applications such as remote sensing. However, compared to other
generic shadow datasets, the macroscale results in a different level of detail, which might
not be desired for the intended application. AISD consists of around 500 pairs of top-down
aerial images with manually labeled shadow masks. These masks are created by first
selecting and filtering regions with clearly defined shadows from the source dataset, such
as buildings and trees. The AISD is based on the Inria Aerial Image Labeling Dataset.

In the realm of synthetic datasets, the GTAV Shadow Removal Dataset [11] stands
out as particularly notable. It leverages existing scenes from a video game, thereby saving
time on modeling the environment. Another similarly innovative dataset is the Rendered
Shadow Generation Dataset (RdSOBA) [12], which comprises a vast collection of shadow-
object pairs constructed directly from a game engine, providing greater control over scenes.
Both datasets employ a rendering technique based on rasterization, commonly used in
video games due to its superior performance compared to ray tracing, which aims to
simulate the realistic behavior of light rays. This approach sacrifices rendering speed
for accuracy and realism in lighting. To obtain the ground truth data for shadow masks,
the rendering pipeline is adjusted to disable shadows.

Moreover, works such as SynShadow [13] take a different approach by utilizing
composite shadows. This method enables the generation of datasets on the fly by overlaying
predefined shadow masks with shadow-free images from another dataset, such as USR [14].

Motivated by the observations above, we propose to advance shadow detection within
specific domains, such as agricultural images, in contrast to shadow detection in images
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from different domains. This will be achieved by comparing the performance of baseline
models and utilizing transfer learning across different datasets. Our work contributes to
the field in two primary aspects.

First, we introduce AgroSegNet [15], an agricultural shadow detection dataset gen-
erated from a virtual scene, aimed at rectifying several deficiencies inherent in existing
shadow datasets within the agricultural domain. These include the absence of datasets
captured from a top-down camera perspective distinct from UAV or satellite views, scarcity
of scenes featuring a camera positioned between crops and shadow-casting obstacles to
simulate scenarios like PhotoVoltaic (PV) panels, inclusion of both self-shadows from
plants and externally cast shadows, and the lack of high-accuracy shadow masks attributed
to the challenge of annotating transparency in plant structures. This dataset comprises
50,000 top-down images along with corresponding masks generated by a ray-tracing ren-
derer, ensuring the inclusion of physically accurate shadow masks. The scene includes the
possible appearance of people, simulating workers doing their activity in the field. This
allows its use in human activity detection and recognition systems.

Second, we establish a baseline evaluation model for AgroSegNet and provide a
benchmark for assessing performance. Additionally, we explore the efficacy of simple
transfer learning techniques between models trained on AgroSegNet and those generated
from other datasets.

2. Materials and Methods

A large-scale dataset plays a crucial role in training a high-performance deep learning
model. However, in our specific domain of shadow detection in agricultural settings
with a top-down facing camera, there is a notable absence of a domain-specific shadow
dataset. Therefore, we have chosen to investigate the utilization of a syntactical dataset.
This approach aims to both save time and enhance annotation quality compared to using a
traditional dataset.

2.1. Synthetic vs. Traditional

In contrast to the traditional method of manually capturing photos on-site, which
poses challenges in terms of planning the location, timing, and obtaining permissions,
a virtual approach streamlines the process. It involves modeling the scene using 3D
computer graphics software, eliminating the need for physical setups and overcoming
limitations associated with weather conditions and location restrictions. This includes
factors like preparing equipment (e.g., tripod and camera) for stable angles. Moreover,
considerations for weather, season, and time of day are crucial for real-life photography
as they significantly impact lighting, shadows, and overall composition. The duration of
the virtual approach varies based on scene complexity and the modeling software, ranging
from a few days to several months, depending on whether an existing model is reused or
created from scratch.

2.2. Preparing the Virtual Scene

For our virtual scene created for AgroSegNet, we utilized the powerful 3D modeling
and rendering software Blender 3.6.4 (Blender Foundation, Amsterdam, Netherlands) [16].
The scene was meticulously crafted from scratch, integrating textures and models sourced
from various online repositories. We carefully curated a selection of 7 plant models and
21 distractor models, including rocks, logs, shoes, bottles, and more. These elements
were procedurally instanced and distributed in a grid pattern across a terrain sculpted to
resemble a groove-like form. This deliberate arrangement aimed to infuse the scene with
diversity and vibrant colors.

Furthermore, to imbue the environment with a sense of vitality, we incorporated 5 hu-
man models, each adopting randomized poses drawn from a pool of 14 predefined stances.

To enhance realism and simulate the interplay of light and shadow, we introduced a
collection of obstacles representing external shadow casters. These obstacles, constructed
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from basic primitive shapes such as cubes, cones, honeycombs, and tori, were procedurally
instanced and scattered beyond the camera’s view, positioned above the terrain shown in
Figure 1. This technique simulated the presence of objects like clouds, poles, structures,
and solar panels, enriching the visual complexity of the scene, as illustrated in Figure 2.

Figure 1. Shadow-caster obstacles positioned directly above the scene and camera.

Figure 2. Preview render of the virtual scene in Blender. The dark spots are shadows cast by external
shadow casters.

2.3. Lighting Setup

For realistic lighting with accurate shadow and bounces, we opted for Cycle, a ray-
tracing renderer, instead of Eevee, a rasterization renderer in Blender. This choice enabled
better environment lighting. We utilized a sky texture generated with the Nishita [17–19]
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algorithm to simulate the colors of the sky, adjusting the color based on atmospheric
parameters such as density of air molecules (Air), density of dust molecules and water
droplets (Dust), and density of the ozone layer (Ozone) to simulate different atmospheric
conditions. Additionally, we employed a plugin in Blender called “Sun Position" to simulate
the rotation of the sun based on the timestamp and geolocation on Earth, using the Earth
System Research Laboratory’s solar calculator [20]. This allowed us to control the sun
disc on the Nishita sky texture, resulting in a procedural scene with realistic lighting,
as illustrated in Figure 3.

(a) 8 a.m. (b) 10 a.m. (c) 12 a.m.

(d) 1 p.m. (e) 4 p.m. (f) 7 p.m.

Figure 3. Example render of the same scene and camera position, but with varying times of day from
8 a.m. to 7 p.m., showcasing the differences in lighting conditions throughout the day.

2.4. Render Optimization

When capturing images in the physical world, the primary cost per image, excluding
initial setup expenses, is attributed to human time. On the contrary, synthetic images
generated in a 3D environment incur hardware-related costs, which translate to electricity
expenses and equipment costs if computing hardware is rented. However, due to recent ad-
vances in denoising models in ray tracing, the time to render each image can be significantly
reduced by decreasing the number of samples per render and utilizing a denoiser algo-
rithm such as OpenImageDenoise [21]. This approach turns out to be more cost-efficient
than relying solely on human labor, thereby enabling the collection of significantly larger
datasets by another order of magnitude.

2.5. Calculating the Shadow Mask

The next step after acquiring the source image is annotating the shadow mask. This
process replaces manual labeling of the dataset by hand or using tool-assisted methods,
or applying heuristics to post-process the shadow mask [7]. In synthetic datasets, shadow
masks are generated by adjusting lighting parameters, such as increasing the strength of the
primary direct light source, typically representing the sun, while disabling environmental
and indirect lighting (shown in Figure 4b). To convert these masks into binary form, further
post-processing is conducted. This includes filtering contours with small areas to eliminate
rendering artifacts caused by extreme lighting conditions, followed by applying a threshold
to convert overexposed renders into shadow masks (illustrated in Figure 4c).
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(a) Rendered (b) Over-exposed (c) Shadow mask

Figure 4. (a) Standard rendered image with realistic lighting. (b) Over-exposed version of (a),
achieved by increasing the brightness of the sun and removing indirect lighting. (c) Shadow mask
generated by post-processing (b), involving filtering to remove small contours and applying a
threshold to convert the image into a binary mask.

2.6. Procedural Generation

Moreover, a script has been developed utilizing Blender’s API to efficiently generate
batches of datasets. To enhance diversity, the script dynamically adjusts the seed used for
random procedural placement of plants, distractors, and obstacles. Furthermore, it modifies
atmospheric settings such as air, dust, and ozone used by the Nishita algorithm. The script
also randomizes location and temporal data for calculating the sun’s position, camera’s
position, focal length (between 47 and 53 mm), and rotation. Additionally, it dynamically
generates terrain textures by compositing multiple textures with various Perlin noises.

2.7. Evaluation Methods

To evaluate our dataset, we employed multiple baseline models using commonly
utilized encoders such as ResNet50 [22] and EfficientNet_B5 [23], along with segmentation
decoders like U-Net [24], U-Net++ [25], and PSPNet [26]. These models were trained to
establish a baseline performance.

Following the establishment of the baseline, we conducted a benchmarking exercise to
measure the dissimilarity between our dataset and others. This involved initially training
the models using the training set of our source dataset, and subsequently testing them
against the test sets of other datasets.

To assess the performance of our models, we chose to employ widely recognized
metrics commonly used in machine learning. These include Dice Loss, measuring the
similarity and F-score (F1), which represents the harmonic mean of precision and recall,
ranging from 0 to 1 where 1.0 signifies perfect precision and recall. Additionally, we
utilized metrics commonly employed in segmentation tasks, such as Intersection over
Union (IoU, also known as Jaccard’s Index). Lastly, we evaluated using Balanced Error
Rate (BER), a widely used metric for shadow detection [7–9], where lower values denote
superior performance.

Dice Loss(A, B) = 1 − 2 · |A ∩ B|
|A|+ |B| (1)

F1 = 2 · precision · recall
precision + recall

=
2 · TP

2 · TP + FP + FN
(2)

IoU(A, B) =
|A ∩ B|
|A ∪ B| (3)

For the specific scenario of binary classification, the Intersection over Union (IoU)
metric can be defined as
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IoU =
TP

TP + FN + FP
(4)

BER =

(
1 − 1

2

(
TP

TP + FN
+

TN
TN + FP

))
· 100 (5)

Finally, to assess the potential for utilizing our dataset as a base weight for transfer
learning to expedite learning in the early epochs, we conducted a simple transfer learning
experiment, without freezing any layers, with the different datasets mentioned before.

The final dataset generated, AgroSegNet (previewed in Figure 5), consists of 50,000 pairs
of images, comprising rendered images and shadow masks. These were divided into
40,000 pairs for the training set and the remaining 10,000 pairs for the test set. Due to the
large volume of data (>25 GiB), Hugging Face was selected as the data repository, due
to its unlimited storage, fast upload/download speeds, streamlined Python data loader,
and built-in data viewer, which allows for previewing the dataset directly on the website
without the need to download the entire dataset. Furthermore, a smaller version containing
125,000 image pairs is also available for experimentation.

The dataset is available at: https://www.doi.org/10.57967/hf/1652 (accessed on
4 February) [15].

Figure 5. Preview of AgroSegNet shadow dataset.

3. Results

In this section, first, we present baseline results for AgroSegNet by training with
different architecture by combining different backbones and segmentation heads, continued
with a cross-dataset evaluation by testing models trained by each dataset with other datasets.
Finally, we discuss the potential impact of transfer learning.

3.1. Baseline Model for AgroSegNet

The training of various backbone architectures and segmentation heads to establish a
baseline was conducted over 30 epochs. We used a batch size of eight, an initial learning

https://www.doi.org/10.57967/hf/1652
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rate of 0.0001, which was decreased to 0.00001 after 25 epochs, the Adam optimizer, and
sigmoid activation. The evaluation of the models from the last epoch is also presented in
Table 1, which contains additional metrics at epoch 30, such as Dice Loss, which is mainly
used as a loss function in training that focuses on the similarity between the two masks,
penalizing dissimilarities, while IoU measures the ratio of intersection to union, giving a
sense of how much the predicted mask covers the ground truth mask. In contrast to Dice
Loss and IoU, which are unbalanced metrics, both F-score and Balanced Error Rate (BER)
are balanced, where F-score focuses on recall and precision and BER instead focuses on
false positives and false negatives. Figure 6 illustrates the training process.

0 5 10 15 20 25 30
Epochs

5

6

7

8

BE
R 

(B
al

an
ce

d 
Er

ro
r R

at
e)

BER Over Epochs
Model

Unet_resnet50
Unet_efficientnet-b5
UnetPlusPlus_resnet50
UnetPlusPlus_efficientnet-b5
PSPNet_efficientnet-b5
PSPNet_resnet50

Figure 6. Plot illustrating test error (measured in Balanced Error Rate, BER) across 30 epochs for
different models on AgroSegNet.

Table 1. Performance comparison of different architectures after 30 training epochs using AgroSeg-
Net dataset.

Encoder Models Dice Loss@30 IoU@30 F1@30 BER@30

ResNet50 Unet 0.051757 0.907921 0.948176 4.979060
EfficientNet-b5 0.045990 0.917021 0.953940 4.408404

ResNet50 Unet++ 0.049745 0.911195 0.950185 4.764656
EfficientNet-b5 0.045523 0.917817 0.954407 4.379995

ResNet50 PSPNet 0.460912 0.887085 0.935562 5.545524
EfficientNet-b5 0.460150 0.893096 0.940081 5.181897

Best performers are highlighted in bold.

3.2. Cross-Dataset Evaluation

In order to evaluate the similarity between the datasets, multiple models were trained
from scratch with different collections. For each model, Unet++ and EfficientNet-b5 archi-
tectures were utilized, together with a batch size of eight with a 0.0001 learning rate, and the
Adam optimizer with a sigmoid activation for 20 epochs. Then, cross-evaluations between
different datasets and models trained over each collection were zero-shot tested with sev-
eral metrics, shown in Figure 7 for BER and Figure 8 for IoU, which can be interpreted as
the ratio of overlap between prediction mask and ground truth. For datasets with irregular
image dimensions, a preprocessing of cropping and padding to a size of 512 × 512 facili-
tated batch training. To measure the dataset and model’s overall performance, Table 2 was
created, where the mean metrics for each row or column of Figures 7 and 8 are displayed.

To further explore the results visually, we generated Figure 9 by randomly selecting
two images from each dataset. Each row in the figure depicts the predictions generated by
the respective models.
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AISD AgroSegNet ISTD SBU
Dataset

AISD_UnetPlusPlus-efficientnet-b5

AgroSegNet_UnetPlusPlus_efficientnet-b5

ISTD_UnetPlusPlus_efficientnet-b5

SBU_UnetPlusPlus_efficientnet-b5

M
od

el

4.4 48 21 17

24 4.2 20 25

32 28 1.8 12

19 31 7.3 7.5

BER Test Evaluation Across Various Datasets and Model

0
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Figure 7. Balanced Error Rates (BER) across various datasets and models.

AISD AgroSegNet ISTD SBU
Dataset

AISD_UnetPlusPlus-efficientnet-b5

AgroSegNet_UnetPlusPlus_efficientnet-b5

ISTD_UnetPlusPlus_efficientnet-b5

SBU_UnetPlusPlus_efficientnet-b5

M
od

el

0.79 0.08 0.54 0.51

0.37 0.92 0.41 0.39

0.34 0.44 0.92 0.62

0.6 0.4 0.82 0.82

IoU Test Evaluation Across Various Datasets and Model

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8. IoU across various datasets and models.

Table 2. Mean BER and IoU for each dataset and model. The best-performing model is highlighted in
bold, while the most challenging dataset is denoted in bold.

Type Dataset Mean BER Mean IoU

Model

AISD 22.565771 0.480851
AgroSegNet 18.380684 0.521470

ISTD 18.408633 0.579932
SBU 16.299331 0.659962

Dataset

AISD 19.929658 0.524968
AgroSegNet 22.304499 0.459299

ISTD 12.655474 0.672963
SBU 15.314512 0.584985

3.3. Transfer Learning

A simple transfer learning experiment was conducted to examine whether a synthetic
dataset could be utilized as a base for other shadow datasets. The base model was trained
for 20 epochs, with both the settings for the base model and the dataset preprocessing
identical to those described in Sention 3.2. For the transfer learning phase, the base model
was further trained using novel datasets without freezing any layers, employing a learning
rate of 0.0002 for an additional 20 epochs. Subsequently, it was tested against the same
novel dataset. The results are depicted in Figure 10 for SBU, Figure 11 for ISTD, and
Figures 12 and 13 for AISD. Figure 13 starts at epoch 6 with a narrower y-axis range for
better visualization. A table with the numerical results at epochs 5 and 20 is shown at
Table 3.
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Figure 9. Comparison of predictions by different models on various datasets.
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Figure 10. Comparing test evaluation across epochs: transfer learning vs. standard training on
SBU dataset.
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Figure 11. Comparing test evaluation across epochs: transfer learning vs. standard training on
ISTD dataset.
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Figure 12. Comparing test evaluation across epochs: transfer learning vs. standard training on
AISD dataset.

Table 3. Comparison of test evaluation metrics at two epochs (5 and 20) for various datasets using
transfer learning and training from scratch.

Dataset Method BER@5 IoU@5 BER@20 IoU@20

SBU with transfer learning 5.367644 0.775531 5.257161 0.791660
from scratch 6.788574 0.781911 5.592205 0.794267

ISTD with transfer learning 4.929123 0.764420 3.792633 0.811411
from scratch 4.039957 0.828133 2.452189 0.890311

AISD with transfer learning 4.599337 0.779643 4.393424 0.804452
from scratch 22.304499 0.523356 4.620904 0.810667

Best performers are highlighted in bold.
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6 7 8 9 10 11 12 13 14 15 16 17 18 19
Epoch

4.4

4.6

4.8

5.0

5.2

5.4

BE
R

Test BER for AISD dataset
Name

Trained with AgroSegNet weight
Trained from scratch

Figure 13. Same plot as Figure 12, but zoomed in starting from epoch 6.

4. Discussion
4.1. Baseline Model for AgroSegNet

Based on the results depicted in Figure 6 to establish a baseline, several conclusions can
be drawn. Firstly, there was a significant variance between backbones, with EfficientNet-b5
demonstrating notably superior performance compared to resnet50. Moreover, the disparity
between Unet and Unet++ was marginal. Surprisingly, the performance of PSPNet, even
with a superior backbone, was inferior to that of Unet with a less advanced backbone.
Viewing Table 1, which contains an additional metric at epoch 30, such Dice Loss was
mainly used as a loss function for training that focused on the similarity between the
two masks, penalizing dissimilarities, while IoU measured the ratio of intersection to
union, giving a sense of how much the predicted mask covered the ground truth mask.
Additionally, even without fine-tuning, the models exhibited a reasonable performance of
approximately 4.37 BER.

4.2. Cross-Dataset Evaluation

Followed the analysis of Figures 7 and 8 to examine the similarity and difference
between datasets, it is evident that ISTD and SBU share some similarities, showing less
evaluation error between them compared to other datasets. However, SBU poses greater
challenges, indicated by a significantly higher evaluation error of 7.5 BER along the diagonal
(reflecting evaluation using the same dataset used in training), in contrast to the lower
error of 1.8 BER observed in ISTD. This variance could potentially be attributed to SBU’s
noisier and more diverse shadow masks compared to those of ISTD. Similarly, AgroSegNet
and AISD display comparable behaviors, albeit with higher error rates. Intriguingly, when
trained with ISTD, AgroSegNet performed more poorly than AISD, whereas with SBU,
the opposite was observed, indicating better performance with AISD than AgroSegNet.

In Figure 7, which displays the Balanced Error Rate (BER) across different datasets and
models, a BER below 25 suggests some correlation, while a BER below 12.5 indicates good
performance. A BER below 5 indicates a very strong correlation. Notably, state-of-the-art
models tailored for shadow detection typically achieve a BER around 3 for SBU [27–29] and
between 1 and 2 for ISTD [27–29]. Despite not being specifically designed for shadow de-
tection, our choice of architecture, UnetPlusPlus and EfficientNet-b5, performed reasonably
well, particularly achieving a BER of 1.8 for ISTD.

Moving on to Figure 8, which presents Intersection over Union (IoU) across various
datasets and models, IoU greater than 0.5 suggests some correlation, while IoU greater
than 0.75 indicates strong correlation. Very strong correlation is inferred when IoU exceeds
0.9. It is worth noting that IoU is not a balanced metric; it heavily depends on the shadow



Sensors 2024, 24, 2737 13 of 15

ratio of the dataset. This dependency makes it less comparable between different datasets.
However, IoU’s advantage lies in its straightforward interpretation: it measures the overlap
ratio between prediction masks and ground truth.

In retrospect, models trained with AgroSegNet may seem inferior to those trained
with ISTD or SBU, due to higher error. However, this is attributed to the close domain
alignment between ISTD and SBU, both serving as general-purpose shadow datasets, while
AISD and AgroSegNet are more domain-specific, tailored for aerial satellite imagery and
top-down agriculture settings, respectively. Referring to Table 2, it is evident that for
model evaluation, the AISD-trained model exhibits the poorest performance, possibly due
to AISD’s distinct bias as the most domain-specific dataset, while SBU demonstrates the
highest adaptivity among the four models, with AgroSegNet and ISTD falling in between.

Regarding the mean metrics shown in Table 2, the results indicate varying difficulty
levels, with ISTD being the easiest and AgroSegNet the most challenging. This discrepancy
can be attributed to factors such as differences in shadow detail levels and the quantity
of shadow present. Notably, ISTD mainly comprises single or two large shadow patches,
whereas AgroSegNet features much more complex shadows. Additionally, variations in
shadow mask criteria contribute to the difficulty, as AgroSegNet considers soft shadows as
valid, adding complexity.

When examining Figure 9, we can discern the behavior of various datasets supporting
our findings. For instance, we note that the masks predicted by SBU and ISTD exhibit
remarkable similarity. However, they falter when applied to more intricate datasets like
AgroSegNet and AISD, as they tend to overlook finer details, as evidenced by the second
examples in both the AgroSegNet and AISD datasets. In contrast, models trained with
AgroSegNet and AISD data demonstrate a propensity for capturing these finer nuances.
This is evident in the first example of the ISTD dataset, where both the AgroSegNet and the
AISD models erroneously label the dark tile spacing as shadow. Notably, models trained
with datasets other than AgroSegNet struggled to approximate the intricacies of the second
example in the AgroSegNet dataset, with AISD-trained models performing particularly
poorly, failing even with the first example.

Despite being a fully synthetic dataset, AgroSegNet performs comparably to other
real-world datasets, with trained models exhibiting similar performance, on average.
However, it presents a greater challenge for models trained on other datasets, highlighting
its adaptability to unknown domains while posing increased complexity. This underscores
the significance of domain-specific datasets.

4.3. Transfer Learning

For the transfer learning experiment, Figure 10, depicts the testing error for SBU with
and without utilizing models trained with AgroSegNet as a base for transfer learning. It is
observed that utilizing AgroSegNet weights yielded significantly lower test errors before
epoch 5 compared to training from scratch. However, after epoch 5, the results for both
models become very similar and noisy, likely due to annotation errors in SBU’s masks,
leading to reduced confidence and sensitivity to minimal weight changes during training.

Similarly, in the experiment with ISTD shown in Figure 11, transfer learning resulted
in more stable and less noisy testing errors compared to training from scratch, although it
performed poorly compared to models without transfer learning. This is attributed to the
simplicity of shadows with straight edges present in ISTD, contrasting with the soft and
more complex shadow shapes of AgroSegNet.

Analyzing the results presented in Table 3 confirms that for the SBU and AISD datasets,
early epochs, such as epoch 5, demonstrate improved performance with transfer learning.
However, there is a minimal difference observed at later epochs, such as epoch 20.

Finally, concerning AISD, as depicted in Figure 12, a significant difference is observed
between training from scratch and utilizing transfer learning, particularly in the early
epochs. However, starting from epoch 6, both models begin to converge around 4.5 BER.
For a more detailed comparison, Figure 13 illustrates that the model with transfer learning
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consistently outperforms the model without transfer learning in all epochs. This is likely
due to the inherent similarities between AgroSegNet and AISD, both being top-down view
shadow datasets, sharing some inherent biases.

5. Conclusions

In summary, AgroSegNet is a large-scale, fully synthetic shadow segmentation dataset
designed specifically for agricultural settings with human activity. It features physically
accurate shadow masks generated through virtual scenes and 3D rendering, giving it a
competitive edge compared to other real-world shadow datasets. Taking into account the
differences in target domains, AgroSegNet is more similar to top-down shadow datasets
such as AISD than to general-purpose shadow datasets such as ISTD or SBU. This charac-
teristic makes it particularly useful for transfer learning, especially for applications that
involve analogous data. We anticipate that this adaptability will enhance shadow seg-
mentation models for agricultural applications, particularly through the incorporation of
real-field images and fine-tuning via transfer learning in future research endeavors.

Another avenue of exploration involves expanding our virtual scenes by incorporat-
ing additional plant types and ground layouts. This expansion aims to enhance dataset
diversity and generate masks with varying attributes such as depth, class, and instance
segmentation. Leveraging our virtual scene approach, incorporating these elements is
relatively straightforward. We believe that this extension will further enrich the dataset’s
utility and broaden its applicability in agricultural shadow segmentation tasks.
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