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Abstract: The most reliable methods for pregnancy diagnosis in dairy herds include rectal palpation,
ultrasound examination, and evaluation of plasma progesterone concentrations. However, these
methods are expensive, labor-intensive, and invasive. Thus, there is a need to develop a practical,
non-invasive, cost-effective method that can be implemented on the farm to detect pregnancy. This
study suggests employing microwave dielectric spectroscopy (MDS, 0.5–40 GHz) as a method to
evaluate reproduction events in dairy cows. The approach involves the integration of MDS data with
information on milk solids to detect pregnancy and identify early embryonic loss in dairy cows. To
test the ability to predict pregnancy according to these measurements, milk samples were collected
from (i) pregnant and non-pregnant randomly selected cows, (ii) weekly from selected cows (n = 12)
before insemination until a positive pregnancy test, and (iii) daily from selected cows (n = 10) prior to
insemination until a positive pregnancy test. The results indicated that the dielectric strength of ∆ε

and the relaxation time, τ, exhibited reduced variability in the case of a positive pregnancy diagnosis.
Using principal component analysis (PCA), a clear distinction between pregnancy and nonpregnancy
status was observed, with improved differentiation upon a higher sampling frequency. Additionally,
a neural network machine learning technique was employed to develop a prediction algorithm with
an accuracy of 73%. These findings demonstrate that MDS can be used to detect changes in milk upon
pregnancy. The developed machine learning provides a broad classification that could be further
enhanced with additional data.

Keywords: microwave dielectric spectroscopy; bovine milk; water; non-invasive pregnancy detection

1. Introduction

Milk is a complex biosystem that consists of 87% water [1]. Water is considered an
integral component of biomolecular systems, moreover, the properties of water depend
on the structure and dielectric character of the materials in its proximity [2,3]. In bio-
logical systems, water is typically categorized into hydration (bound) water, found near
biomolecular surfaces, and bulk water [4]. The dynamic properties of bulk and bound
water are strikingly different [5]. Accordingly, it has been suggested that variations in solid
compositions or macromolecular structures in milk could be reflected by alterations in the
dynamics and structure of bulk water [6,7]. Microwave dielectric spectroscopy (MDS) is a
powerful tool for studying water dynamics in complex materials [8]. For instance, using
MDS on contaminated bovine milk enables evaluation of the milk quality and identification
of whether the cow is unhealthy (i.e., having mastitis) or healthy (clean) [7].

The specific architecture of a water molecule can be geometrically represented by an
almost regular tetrahedron with the heavy oxygen in its center, the two light hydrogens at
two of the vertices, and the lone pair electrons occupying both other vertices (Figure 1) [9].

Sensors 2024, 24, 2742. https://doi.org/10.3390/s24092742 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24092742
https://doi.org/10.3390/s24092742
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9491-4801
https://doi.org/10.3390/s24092742
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24092742?type=check_update&version=3


Sensors 2024, 24, 2742 2 of 16

Sensors 2024, 24, x FOR PEER REVIEW 2 of 18 
 

 

MDS on contaminated bovine milk enables evaluation of the milk quality and identifica-
tion of whether the cow is unhealthy (i.e., having mastitis) or healthy (clean) [7]. 

The specific architecture of a water molecule can be geometrically represented by an 
almost regular tetrahedron with the heavy oxygen in its center, the two light hydrogens 
at two of the vertices, and the lone pair electrons occupying both other vertices (Figure 1) 
[9].  

 
Figure 1. Tetrahedral structure of a water molecule. 

The electric charges in this structure are not evenly spread, leading to two important 
features that are primarily investigated using relaxation techniques such as MDS [9]:  

(a) Water molecules possess a permanent dipole moment (μd = 1.84 ± 0.02 D) 
(b) Water molecules can form hydrogen bonds between different molecules. 

The permanent dipole moment leads to the possibility of the water molecule coupling 
to external applied electric fields and can be used as a naturally present marker of the 
molecular orientation [9]. The second property leads to interactions between the positive 
hydrogen atom site and a lone pair electron site of another molecule, forming a dimer. 
The most stable configuration of a hydrogen bond corresponds to a linear H–O…H struc-
ture. Since water molecules are each able to form four hydrogen bonds, with a symmetric 
distribution of two proton-donating and two proton-accepting sites, a three-dimensional 
hydrogen bond network (water cluster) develops in the condensed phases [9–11]. 

When a microwave alternating electric field interacts with a complex material such 
as milk, where water is the major component, the charge distributions and polarization of 
the system are changed. The induced motions and reorientations result in the dissipation 
of energy. In the MDS technique, the response of the particular material to the applied 
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Figure 1. Tetrahedral structure of a water molecule.

The electric charges in this structure are not evenly spread, leading to two important
features that are primarily investigated using relaxation techniques such as MDS [9]:

(a) Water molecules possess a permanent dipole moment (µd = 1.84 ± 0.02 D)
(b) Water molecules can form hydrogen bonds between different molecules.

The permanent dipole moment leads to the possibility of the water molecule coupling
to external applied electric fields and can be used as a naturally present marker of the
molecular orientation [9]. The second property leads to interactions between the positive
hydrogen atom site and a lone pair electron site of another molecule, forming a dimer. The
most stable configuration of a hydrogen bond corresponds to a linear H–O. . .H structure.
Since water molecules are each able to form four hydrogen bonds, with a symmetric
distribution of two proton-donating and two proton-accepting sites, a three-dimensional
hydrogen bond network (water cluster) develops in the condensed phases [9–11].

When a microwave alternating electric field interacts with a complex material such as
milk, where water is the major component, the charge distributions and polarization of the
system are changed. The induced motions and reorientations result in the dissipation of
energy. In the MDS technique, the response of the particular material to the applied field
can be characterized by measuring the complex dielectric permittivity [12].

The complex dielectric permittivity of pure water exhibits a peak of dielectric relaxation
at 25 ◦C in the microwave frequency band (0.5 to 40 GHz) (Figure 2). The dielectric
dispersion of water in milk is very well described by Equation (1).

ε(ω) = ε∞ +
∆ε

1 + (iωτ)α +
σdc

iωε0
+A(iω)n−1 (1)
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Figure 2. Microwave dielectric spectra of double-distilled water compared to raw milk at 25 ◦C and
frequencies ranging from 0.5 to 40 GHz. Milk is characterized by a lower static permittivity (real (ε′)
part). In the imaginary part (ε′′) of the milk spectrum, the conductivity tail at lower frequencies and
the broadening of the main dispersion peak can be observed.
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Here, ε∞ + ∆ε
1+(iωτ)α is the Cole–Cole function (CC) [7] and is associated with the

relaxation of bulk water in milk. The CC function includes the time necessary for the
material to reach equilibrium, also known as τ; the relaxation time (i.e., τ = 1

2π fmax
); ∆ε,

the dielectric strength; and α, referred to as a measure of symmetrical broadening of the
dielectric relaxation peak. ε∞ is the high-frequency limit of the dielectric permittivity, and
ε0 ∼= 8.85 × 10−12 F/m is the vacuum permittivity. In the second term, ( σdc

iωε0
) represents the

dc conductivity generated by the mobility of ions. The last term is the left Jonscher function,
A(iω)n−1, which represents the tail of the lower frequency process.

Based on infrared examination, it has been reported that the pregnancy state in cows
induces changes in bovine milk such as altered milk yield, fat, and protein content [13]. As
a biological fluid that may reflect reproductive events in dairy animals, milk is an easily
accessible fluid that contains key information about a cow’s reproductive status [13,14].

Reproductive performance plays a pivotal role in the profitability of a dairy herd.
Inefficient reproductive management, in particular, false-negative or false-positive preg-
nancy diagnosis, might cause substantial economic loss depending on the availability of
replacement heifers, average herd lactation, milk production level, and calving interval [15].
Early identification of nonpregnant cows after insemination is therefore crucial and might
shorten the time to the next insemination, thereby shortening the time that the cow is not
pregnant and improving the farms’ profitability. Furthermore, it is estimated that about
20% of embryos are lost at an early stage of pregnancy [16]; therefore, timely identification
of the pregnancy status is highly important for the proper reproductive planning of the
herd and to maximize the production efficiency of the herd.

To detect pregnancy in dairy cows, a physical examination using transrectal palpation,
conducted at 42 days after artificial insemination (AI), is commonly used in Israel. An
earlier diagnosis can be performed using ultrasound. Alternatively, evaluating the proges-
terone concentration in the plasma or milk is an additional approach used for pregnancy
diagnosis [17]. Progesterone is the main steroid hormone in bovine that is secreted by the
corpus luteum and placenta, with a high concentration in plasma throughout the pregnancy.
Nevertheless, this method is expensive and is labor-intensive and consequently rarely used.
Therefore, there is a need to develop non-invasive, high-throughput methods on farms to
enable the detection of reproductive events, particularly pregnancy.

Previously, we reported that the milk fat globule (MFG) size is associated with proges-
terone concentrations [14]. This study provided insight into the association between the
milk constituents and the animal reproductive status. More specifically, using an in vitro
model, it was shown that progesterone, a major reproductive hormone, affects the MFG size.
Moreover, changes in progesterone concentrations in plasma and milk during the estrous
cycle and the transition between non-pregnant, pregnant, and postpartum states may be
attributed to the change in MFG size recorded during the estrous cycle of dairy cows.

Here, we hypothesize that the changes caused in milk fat composition and structure
induced by changes in progesterone levels [14] due to reproductive events (i.e., pregnancy,
early embryonic loss, and abortion) have a significant effect on the balance of bound/bulk
water and can be identified using MDS.

The primary aim of this study was to observe the alterations in the Cole–Cole (CC)
fitting parameters of the complex dielectric permittivity spectra of raw bovine milk caused
by reproductive events to explore the potential for developing a non-invasive approach
for early pregnancy prediction. The microwave dielectric fitting parameters have been
statistically analyzed using principal component analysis (PCA). Additionally, we suggest
the use of an artificial neural network (ANN) that could predict pregnancy in a faster
period than traditional methods.

2. Materials and Methods
2.1. Materials: Milk Provision

This work has been divided into three different sampling protocols: the first two
protocols involved weekly and daily sampling from individual cows. While the weekly
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measurements offered insights into the dependence of the milk composition and dielectric
properties on the pregnancy status, potential trends and patterns became more evident with
daily sampling due to the higher frequency of data collection. The third sampling protocol
was the collection of milk samples from randomly selected pregnant cows at various stages
of pregnancy (first, second, and third trimester) and non-pregnant cows. This protocol was
conducted to generate a larger number of samples required for the machine learning phase.

2.1.1. Weekly Samples

Raw milk samples were collected from Israeli Holstein lactating cows (n = 12) at the
Beit Dagan Farm, Israel. Holstein cows in their first to fifth lactation were used. Cows were
kept in an open field and fed ad libitum a total mixed ration containing 1.75 Mcal of NEL/Kg
dry matter and 17% protein, which is the standard ration in Israel. Cows were milked three
times daily. The samples were taken at seven-day intervals at the first milking (3:00 a.m.),
divided into aliquots, and transported at 4 ◦C to the Center of Electromagnetic Research
and Characterization (CERC; The Hebrew University of Jerusalem) for MDS measurements
and milk solids measurements. The study lasted 8 months; for each examined cow, the
sampling started while the cow was empty (i.e., not pregnant), then was performed before
and after insemination until a positive pregnancy test. Once a cow was confirmed as
pregnant, it was excluded from the study and replaced by a new nonpregnant cow. The
concentration of milk solids (fat, protein, and lactose) was measured using the infrared
methodology (Lactoscan; Miltkotronic, Nova Zagora, Bulgaria). Data on the somatic cell
count (SCC) and days in milk were recorded by the online system (Afilab, ZHM Afikim,
Israel) and the herd management software, respectively. The detailed data can be found in
Supporting Information 1 (Table S1A).

2.1.2. Daily On-Farm Measurements

Raw milk samples (10 mL/per sample) from 10 cows were collected daily from the
Volcani Center dairy farm (Beit Dagan, Israel). Dielectric measurements were performed
on site in a portable laboratory to avoid long handling and transportation times. Milk
was collected using an automated sampling device, which collects milk throughout the
milking session. Milk samples were stored on ice until milk from all the experimental cows
was collected. Before analysis, the samples were allowed to reach a room temperature of
25 ◦C. Cows were selected before insemination according to their postpartum reproductive
status and whether they exhibited standing estrus according to their pedometric activity
(using NOA, The Israeli Dairy Herd Management Software, developed by the Israel Cattle
Breeders Association-ICBA since 2000). Cows were sampled until a positive pregnancy test
determined by palpation by the herd’s veterinarian, typically 42 days post-insemination.
Overall, the study lasted for 65 days and was performed from January to March to avoid
summer periods when the cows undergo heat stress. The concentration of milk solids
(fat, protein, and lactose) was measured as detailed above. The activity peak (pedometric
activity) and days in milk were recorded on the farm on the day of sampling. The detailed
data can be found in Supporting Information 2 (Table S2A).

2.1.3. Measurements on Randomly Selected Pregnant and Non-Pregnant Cows

Raw milk samples were collected every week from randomly selected pregnant and
non-pregnant cows at the Beit Dagan Farm in Israel. The samples were obtained from
the first milking, which took place at 3:00 a.m., to ensure consistency. Subsequently, the
samples were promptly divided into aliquots and transported at a temperature of 4 ◦C to
the Faculty of Agriculture, Hebrew University of Jerusalem for milk solids measurements,
as well as to the Center of Electromagnetic Research and Characterization (CERC) at The
Hebrew University of Jerusalem to undergo MDS measurements.

The study was conducted for three months, specifically from December to March, to
avoid the summer season when cows may experience heat stress. During this period, a total
of 117 milk samples were collected. Out of these, 50 samples corresponded to pregnant
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cows, while the remaining 67 samples were from non-pregnant cows. The concentration of
milk solids (fat, protein, and lactose) was measured as described above. The somatic cell
count (SCC) in milk was recorded as described above. The detailed data can be found in
Supporting Information 3 (Table S3A).

2.2. Methods: Microwave Dielectric Spectroscopy Measurements

Dielectric measurements were made using a PNA Network Analyzer (N523B PNA-L)
in the frequency range from 500 MHz to 40 GHz. The PNA was connected to a Keysight
N1501A dielectric kit, including a performance coaxial probe. The system was calibrated
using three standards: air, short, and double-distilled water at 25 ◦C. Precision in the
calibration was achieved using an N4694-60001 two-port microwave electronic calibration
module (Ecal). A special stand for the performance probe was designed and combined with
the sample cell for the milk samples (total volume—7.8 mL). For dielectric measurements in
the CERC, the temperature was controlled using a thermal jacket attached to a Julabo C-41
oil-based heat circulatory system. The cell was held at 25 ◦C with temperature fluctuations
less than 0.5 ◦C. The whole experimental setup is presented in Figure 3.
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Regarding the dielectric measurements on the Beit Dagan Farm, the whole measuring
station was placed in an air-conditioned room at 25 ± 1 ◦C. The sample temperature was
controlled by placing a thermometer inside the sample. Each sample was measured at
least three times; before each measurement, the coaxial probe was removed and cleaned
with double-distilled water to avoid the formation of fat layers. Moreover, the sample
was mixed using clean pipettes. The real and imaginary parts of the complex dielectric
permittivity were obtained using the Keysight Materials Measurement Suite 2018 [18] with
an accuracy of ∆ε′/ε = 0.05, ∆ε′′/ε = 0.05.

2.3. Milk Composition Data

The composition of milk solids, including fat, protein, and lactose percentages, was
determined on the same day as milk collection using a near-infrared scanning device
(Miltkotronic, Nova Zagora, Bulgaria) according to our previous study [19]. Briefly, milk
samples were stained with fluorescence dye (Nile red, Sigma Aldrich, Rehovot, Israel), and
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lipid droplets were visualized under a fluorescence microscope. Images were analyzed
using ImageJ to determine the milk fat globule average diameter in each milk sample.

2.4. Microwave Dielectric Spectra Fitting

The complex dielectric spectra were fitted using an in-house MATLAB-developed pro-
gram, DATAMA [20]. The standard deviation (SD) of each fitting parameter (Equation (1))
from at least three measurements for each sample was calculated.

2.5. Machine Learning

The artificial neural network (ANN) algorithm utilized in this study was the self-
normalizing network (SNN) algorithm [21]. The SNN method has been shown to outper-
form other fully connected networks for a variety of classification and regression tasks
concerning numeric data [21]. This class of models provides optimal propagation of activa-
tions that are close to zero mean and unit variance across many layers. This is achieved
using a special activation function known as the scaled exponential linear unit (SELU) and
a special type of dropout named Alpha Dropout [21]. The SNN architecture consisted of
eight scaled exponential linear snits (SELUs), each with a width of 50 neurons. To mitigate
overfitting, we applied a dropout probability of 0.01 to each layer.

The dielectric and physiological measurements were classified as “PREGNANT” and
“NONPREGNANT” to construct a training algorithm with a reasonably large data set. For
that, we used the data obtained from the daily and weekly samples as well as data from
milk collected from random cows. No individual cows were considered. The total number
of points used to build the algorithm was equal for pregnant and nonpregnant cows. The
measurements were selected from a pool of 168 measurements of milk from pregnant cows
and 642 measurements of milk from nonpregnant cows. As the datasets are biased toward
nonpregnant features, the nonpregnant features were randomly down-sampled to match
the number of pregnant features in each set. In our case, the input layer was composed of
four dielectric parameters.

After each update during training, the model underwent evaluation on both the train-
ing dataset and a separate validation dataset using a hold-out technique. This technique
involved splitting the original dataset into two sets: a “train” set and a “test” set. We
employed a 90/10 split, where 90% of the data was allocated to the training set and the
remaining 10% to the test set. The model was trained on the training set, while the test set
served as a benchmark to assess the model’s performance on unseen data. Learning curves
depicting the measured performance were generated to illustrate the model’s progress.
For our experimental setup, we preprocessed the dataset comprising 302 train points and
30 test points. The test points were randomly selected, with 15 true (pregnant) and 15 false
(non-pregnant) labels, ensuring an unbiased evaluation. Each point was scaled to an order
of 1.

The model training was conducted using the ADAM optimizer with specific hyperpa-
rameters including a Beta 1 = 0.9, Beta 2 = 0.999, and stability parameter Epsilon = 0.00001.
The training process consisted of 20 epochs.

To evaluate the model, we utilized the cross-entropy (binary) loss function [22]. The
entire analysis was conducted in Mathematica version 13.0.

2.6. Statistics

The statistical analysis includes monitoring the variability in dielectric parameters,
generating Pearson correlation matrices, and conducting principal component analysis
(PCA). All statistical analyses were performed at the Center of Electromagnetic Research
and Characterization (CERC) using OriginPro software, version 2022.
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3. Results and Discussion
3.1. The Dielectric Spectrum of Water and Milk

Milk is a complex colloidal system that is primarily composed of water (~87%), along-
side other constituents such as lactose, fat, proteins, and inorganic components. The mean
values of certain solid components in milk from the three studied groups were determined
with their respective standard deviations: fat (3.37 ± 0.54%), protein (3.36 ± 0.09%), and
lactose (4.74 ± 0.11%). Remarkably, this data closely aligns with the values reported in the
literature [1]. The significant portion occupied by water is of particular interest. Water is
considered an integral component of biomolecular systems [23]. It is involved in deter-
mining the macromolecules’ functional and structural properties and their interactions [4].
Therefore, variations in milk solids are expected to change the properties of the water
fraction in milk.

Compared with double-distilled water, the interactions between the different compo-
nents of milk and water induce changes in the dielectric spectrum, such as a smaller static
permittivity, a lower characteristic relaxation frequency, the broadening of the relaxation
peak, and DC conductivity (Figure 2). Accordingly, a change in the static permittivity,
broadening, and position of the main dispersion peak is related to the state of bulk water in
the system.

3.2. MDS Is Sensitive to the Changes in Bovine Milk Caused by Pregnancy

The CC fitting parameters ∆ε, τ, α, and σdc (Equation (1)) were used to track the
changes in the dielectric response of bulk water in milk before and after insemination.
All of the fitting parameters (∆ε, σdcα, τ) had a significant decrease in variability after the
first two weeks of successful insemination (i.e., an insemination followed by a positive
pregnancy diagnosis). Figure 4 depicts the transition to pregnancy status in terms of
the fitting parameters in five cows confirmed as pregnant. A significant reduction in the
variability in CC data can be observed during the transition, divided into three stages,
(1) beginning with a nonpregnancy condition, (2) progressing to 15 days of pregnancy, and
then (3) continuing to the 16th day. The first state had 66 nonpregnancy points, the second
state had 8, and the final state had 14 points. All points in each state were arranged in a
single column.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 18 
 

 

with a nonpregnancy condition, (2) progressing to 15 days of pregnancy, and then (3) 
continuing to the 16th day. The first state had 66 nonpregnancy points, the second state 
had 8, and the final state had 14 points. All points in each state were arranged in a single 
column. 

 
Figure 4. CC parameters of milk from confirmed pregnant cows. The variability in the fitting pa-
rameters significantly reduces when artificial insemination is successful. A more substantial reduc-
tion in variability is observed after the 16th day of pregnancy. 

The standard deviation for Δε was 0.3; for τ it was 0.6 (ps); for α it was 0.002; and for 
σ it was 0.01 (S/m). 

On the other side, confirmed nonpregnant cows (n = 7) (Figure 5) did not exhibit such 
a reduction in variability. 139 nonpregnancy points were separated into two groups: be-
fore and after insemination. The first group received 70 nonpregnancy points, while the 
second received 69. The separation was determined when the first artificial insemination 
failed. In Figures 4 and 5, the most noteworthy difference between nonpregnant and preg-
nant cows is in Δ𝜀, where there is a 44% drop in variability compared to a 3.26% drop in 
nonpregnant cows. 

  

Figure 4. Cont.



Sensors 2024, 24, 2742 8 of 16

Sensors 2024, 24, x FOR PEER REVIEW 8 of 18 
 

 

with a nonpregnancy condition, (2) progressing to 15 days of pregnancy, and then (3) 
continuing to the 16th day. The first state had 66 nonpregnancy points, the second state 
had 8, and the final state had 14 points. All points in each state were arranged in a single 
column. 

 
Figure 4. CC parameters of milk from confirmed pregnant cows. The variability in the fitting pa-
rameters significantly reduces when artificial insemination is successful. A more substantial reduc-
tion in variability is observed after the 16th day of pregnancy. 

The standard deviation for Δε was 0.3; for τ it was 0.6 (ps); for α it was 0.002; and for 
σ it was 0.01 (S/m). 

On the other side, confirmed nonpregnant cows (n = 7) (Figure 5) did not exhibit such 
a reduction in variability. 139 nonpregnancy points were separated into two groups: be-
fore and after insemination. The first group received 70 nonpregnancy points, while the 
second received 69. The separation was determined when the first artificial insemination 
failed. In Figures 4 and 5, the most noteworthy difference between nonpregnant and preg-
nant cows is in Δ𝜀, where there is a 44% drop in variability compared to a 3.26% drop in 
nonpregnant cows. 

  

Figure 4. CC parameters of milk from confirmed pregnant cows. The variability in the fitting
parameters significantly reduces when artificial insemination is successful. A more substantial
reduction in variability is observed after the 16th day of pregnancy.

The standard deviation for ∆ε was 0.3; for τ it was 0.6 (ps); for α it was 0.002; and for
σ it was 0.01 (S/m).

On the other side, confirmed nonpregnant cows (n = 7) (Figure 5) did not exhibit
such a reduction in variability. 139 nonpregnancy points were separated into two groups:
before and after insemination. The first group received 70 nonpregnancy points, while the
second received 69. The separation was determined when the first artificial insemination
failed. In Figures 4 and 5, the most noteworthy difference between nonpregnant and
pregnant cows is in ∆ε, where there is a 44% drop in variability compared to a 3.26% drop
in nonpregnant cows.
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Figure 5. CC parameters of milk from confirmed nonpregnant cows. The variability in the fitting
parameters has no significant change before and after artificial insemination. The post-insemination
period after insemination is calculated starting from the exact day of insemination.

3.2.1. Pearson Correlation Matrix

The correlation matrix was calculated and includes the fitting parameters of complex
dielectric spectra with the composition of milk solids (Table 1).

Table 1. Pearson correlation matrix between CC fitting and physiological parameters for seven
pregnant cows.

∆ε τ α σdc

weather
temperature 0.11 0.21 −0.21 0.26

p-value 0.03 0.002 0.002 <0.001

Fat % −0.66 −0.01 −0.08 −0.34

p-value <0.001 0.004 0.49 0.015

Density % 0.16 0.19 0.05 −0.04

p-value 0.95 0.99 0.036 0.91

Lactose % −0.21 0.21 0.004 −0.26

p-value <0.001 0.05 0.06 0.08

SNF
(solids-not-fat) % −0.23 0.21 0.002 −0.25

p-value 0.01 0.03 0.16 0.01

Protein% −0.18 0.11 −0.03 −0.18

p-value 0.015 0.005 0.003 0.008

Accordingly, it was observed that in the seven pregnant cows (five pregnant cows
from the weekly experiment and two pregnant cows from the daily experiments), the fitting
parameter ∆ε has a moderate negative correlation with the fat percentage in milk; the low
p-value indicates that this correlation is statistically significant. The negative correlation
suggests that a rise in fat percentage results in a reduction in ∆ε. All of the other parameters
have a negligible or weak correlation. For the correlation of dielectric parameters and
weather, only daily measurements were employed.

A moderate negative correlation between fat and dielectric strength (∆ε) indicates that
fat may play a significant role in influencing the sensitivity of microwave dielectric spec-
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troscopy to variations in milk composition related to pregnancy status. Bovine milk’s fat
component primarily consist of triacylglycerols (98%), along with some minor constituents
such as diacylglycerols, monoacylglycerols, free fatty acids, phospholipids, and choles-
terol [24]. Furthermore, triacylglycerols are structured as oil-in-water emulsions, commonly
known as fat globules, which are surrounded by a unique complex layer called the milk fat
globule membrane (MFGM) [24]. The MFGM contains an outer phospholipid bilayer where
the most abundant phospholipids are phosphatidylcholine, phosphatidylethanolamine,
and sphingomyelin [24]. Phospholipids and sphingolipids are renowned for their am-
phiphilic nature, the polar head groups contain phosphates and glycerol molecules capable
of establishing hydrophilic interactions with surrounding water, thus forming hydration
shells [25].

Consequently, any increase or decrease in the number of milk fat globules will alter
the equilibrium between bulk and bound water within the entire system. Specifically, if the
number of water molecules migrating to the hydration shells of milk fat globules increases
due to an increase in their quantity or surface area, the number of water molecules in the
bulk, which can respond to an external applied electric field in the microwave frequency
range, will decrease. This reduction in bulk water molecules that can respond leads to a
decrease in dielectric strength [9].

3.2.2. Evaluation of CC Fitting Parameters Using Principal Component Analysis (PCA)

In order to achieve better accuracy in pregnancy detection, it was necessary to use
other visualization techniques. Figures 6 and 7 display the transformed data obtained
from a single cow by projecting the complete set of CC fitting parameters (∆ε, τ, α, and σ)
into a reduced dimensional space using the first two principal components (PCs) derived
from principal component analysis (PCA). PCA enables the representation of multiple
interrelated variables through a smaller set of variables. Additionally, this reduced set of
variables captures a significant portion of the variability present in the original data [26].

We used PCA to study the clustering of samples collected from pregnant and non-
pregnant cows in the weekly and daily measurements. Using PCA, it was possible to
identify three out of five pregnant cows in the weekly experiments. Regarding daily
experiments, which allow better detection of changes due to greater sampling frequency,
two out of two pregnant cows from total of ten cows were identified. In Figure 6, cows
A & B represent two pregnant cows that belong to the weekly and daily experiments,
respectively. In addition, in the case of daily measurements, the first 15 days of pregnancy
have been labeled with a number. By detecting a clustering and a shift between the states in
these cows’ biplots, it was feasible to differentiate between pregnancy and nonpregnancy.

Interestingly, the variability reduction presented in the previous section was also clear
in the PCA for cow B (Figure 6), which contains the daily measurement results. The points
in the biplot seem to form a smaller cluster after the 15th day of pregnancy (blue points).
Moreover, the PCA plots of nonpregnant cows show a random distribution of points before
and after insemination (Figure 7). Remarkably, in the case of confirmed pregnant cows
(Figure 6), a clear distinction can be made between the nonpregnancy and the insemination
states. Such clusterization is not clear in the case of nonpregnant cows (Figure 7).
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Figure 6. PCA biplot of the data corresponding to confirmed pregnant cows. The nonpregnant state
has been marked as red N and pregnant as blue P. For cow B, the first 15 days of pregnancy have
been labeled with the corresponding number in green. Cow A was measured weekly for 27 weeks,
and cow B was measured daily for 52 days.
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Figure 7. PCA biplot of the data corresponding to non-pregnant cows. The non-pregnant state has
been marked as red NP” and the inseminated state as blue i. Cow C was measured weekly for
19 weeks, while cow D was measured daily for 65 days. The number of inseminations is presented as
the number 1, 2 or 3 standing beside the letter i.
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3.2.3. Artificial Neural Network (ANN). A Machine Learning Approach for Early
Pregnancy Detection in Cows

The above-mentioned results confirmed that the changes in the balance between
bound and bulk water in milk are affected by the reproductive state and have the potential
to distinguish between pregnant and non-pregnant cows and be utilized for pregnancy
detection. We were able to identify such changes using traditional statistics tools that are
limited by human efforts. Moreover, these approaches require sequential measurements
and are dependent on frequent measurements throughout a prolonged period to receive
a change in the clustering of data points. Thus, a machine-learning approach known as
artificial neural networks (ANNs) was used to distinguish between the two states more
precisely. One of the ANN outputs is a plot called the learning curve, which displays the
performance plot over time. Learning curves are a standard diagnostic tool in machine
learning for algorithms that learn progressively from a training dataset.

Figure 8a represents the loss plot. The loss plot indicates the difference between
prediction and truth. Hence, a machine learning algorithm’s purpose is to reduce the loss.
In a good model, training and validation finally converge.

Processing the data of the present study revealed that the training data is lower than the
validation data, suggesting that the information between training and validation is unrepresen-
tative. This implies that there is slightly different behavior in training and a small overfit in the
validation data; further, the validation error is greater than the training error. This phenomenon
is expected when the model has more capacity than is necessary for the problem, resulting in
too much flexibility. It can also happen if the model is trained for an extended period. The
model is somewhat overfitting in this situation, indicating that it is not sufficiently generalized.

In this study, validation and training data did not converge into one. However,
considering the small data pool used to build this algorithm, these results demonstrate that
a more extended model can be developed using our four dielectric parameters and the milk
composition data provided by the farm. Additionally, the accuracy plot (Figure 8b) helps
to determine the quality of a model during the training. High accuracy is reached when the
number of epochs increases (the number of times data is given to the neural network). The
results show a 73% accuracy.
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Figure 8. Generated learning curves from ANNs trained with an equal number of microwave
dielectric milk measurements from pregnant and nonpregnant cows. (a) Loss plot, (b) accuracy plot.

4. Conclusions

The present study aims to detect changes in the reproductive state of dairy cows after
insemination in a high-throughput, non-invasive automated system. This approach was
developed based on previous findings showing a change in the MFG size during the estrous
cycle in vivo [14] and based on previous studies that showed a positive correlation between
MFG size and milk fat content [27].

Moreover, in vitro, it was demonstrated that the progesterone concentration plays a
central role in the change in MFG size [14]. Since these changes in the structural composition
of milk fat may affect the water properties of milk, we decided to study how events that
change the progesterone concentration (pregnancy, early embryonic loss) are manifested in
milk water properties. Furthermore, we integrated this information into a process that will
enable automated detection of the cows’ reproductive events.

The microwave dielectric measurements of milk confirmed that MDS is a potential
method for early pregnancy detection in cows. The sensitivity is based on the reduction in
the variability in the CC parameter: dielectric strength, ∆ε. After daily measurements, a
reduction in variability of 44% was observed during the first 16 days of pregnancy. Such a
reduction in variability was not evident in the case of nonpregnant cows. Using PCA, a clear
distinction between pregnancy and nonpregnancy status was seen in the case of successful
inseminations. However, the clustering was not apparent in the case of nonpregnant
cows. Finally, using a machine learning method known as artificial neural networks, we
demonstrated that the classification of pregnancy can be based on ∆ε, τ, α, and σdc dielectric
parameters. The system expressed 73% accuracy in predicting pregnancy. Nevertheless,
additional data is required to generalize a more accurate model. Data on physiological
parameters of milk such as solids concentrations, and especially milk fat concentrations,
can contribute to the accuracy of the system, as they are associated with MFG size. MFG
size was previously shown to be affected by progesterone concentrations which is the
major hormone that changes due to reproductive events; moreover, inclusion of the milk
fat concentration can contribute to the prediction system. Unlike laboratory progesterone
tests, we suggest consequent sampling of milk and using dielectric properties which might
provide us information about pregnancy and early embryonic loss. More frequent data
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collection can also enhance the accuracy of the model, and this can be easily achieved in
commercial dairy farms since, in most of the modern farms in Israel, milking occurs three
times daily. Thereby, a 99% accuracy may be achieved in training the machine learning
algorithm. The method that has been developed in the current project is remarkable because
it can be used on any farm without the need for prior information about the local cows.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s24092742/s1, Table S1A: Physiological parameters (Somatic cell
count -SCC, Fat %, protein%, lactose% and Milk Fat Globule Average diameter) measured weekly for
n = 12 different cows at different reproductive states (Non-pregnant-NP, during inseminations and
during confirmed pregnancy). The not measured days correspond mostly to Saturdays, an official
holiday in Israel. Table S1B: Microwave Dielectric fitting parameters (Cole-Cole: dielectric strength-
∆ε, relaxation time τ(s), broadening parameter-α, and conductivity-σ(Siemens/m) measured weekly
for n = 12 different cows at different reproductive states (Non-pregnant-NP, during inseminations and
during confirmed pregnancy). The not measured days correspond mostly to Saturdays, an official
holiday in Israel. Table S2A: Physiological parameters (fat %, density %, lactose%, solid non-fat
(SNF%), and protein%) as well as weather temperature on the day of sample collection measured
daily for n = 10 different cows at different reproductive states (Non-pregnant-NP, Inseminations and
during confirmed pregnancy). The not measured days correspond mostly to Saturdays, an official
holiday in Israel. Table S2B: Microwave Dielectric fitting parameters (Cole-Cole: dielectric strength-
∆ε, relaxation time τ(s), broadening parameter-α, and conductivity-σ(Siemens/m) measured weekly
for 10 different cows at different reproductive states (Non-pregnant-NP, during inseminations and
during confirmed pregnancy). The not measured days correspond mostly to Saturdays, an official
holiday in Israel. Table S3A: Physiological parameters (Somatic cell count -SCC, Fat %, protein%,
lactose%, and Milk Fat Globule Average diameter) and Microwave Dielectric parameters (Cole-Cole:
dielectric strength- ∆ε, relaxation time τ(s), broadening parameter-α, and conductivity-σ(Siemens/m)
of milk from randomly selected pregnant cows. Each measurement corresponds to a different date.
Table S3B: Physiological parameters (Somatic cell count -SCC, Fat %, protein%, lactose%, and Milk Fat
Globule Average diameter) and Microwave Dielectric parameters (Cole-Cole: dielectric strength- ∆ε,
relaxation time τ(s), broadening parameter-α, and conductivity-σ(Siemens/m) of milk from randomly
selected non- pregnant cows. Each measurement corresponds to a different date.
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Molecular Structure and Energies. Chem. Rev. 2017, 117, 12385–12414. [CrossRef] [PubMed]

24. Singh, H. Symposium review: Fat globules in milk and their structural modifications during gastrointestinal digestion. J. Dairy
Sci. 2019, 102, 2749–2759. [CrossRef] [PubMed]

25. Xie, M. Phospholipids. In Encyclopedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., Eds.; Academic Press: Oxford, UK,
2019; pp. 214–217. [CrossRef]

26. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning with Applications in R; Springer: New York, NY,
USA, 2017.

27. Lars, W.; Stagsted, J.; Björck, L.; Nielsen, J. Milk fat globule size is affected by fat production in dairy cows. Int. Dairy J. 2004, 14,
909–913. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1088/0031-9155/35/12/006
https://www.ncbi.nlm.nih.gov/pubmed/2284336
https://doi.org/10.1007/s00396-014-3296-7
https://doi.org/10.1016/j.colsurfb.2016.01.031
https://www.ncbi.nlm.nih.gov/pubmed/26878290
https://doi.org/10.1016/j.colsurfb.2017.03.051
https://www.ncbi.nlm.nih.gov/pubmed/28384618
https://doi.org/10.1093/acprof:oso/9780199686513.001.0001
https://doi.org/10.1039/C5CP01871D
https://www.ncbi.nlm.nih.gov/pubmed/26008633
https://doi.org/10.1039/C6CP02195F
https://www.ncbi.nlm.nih.gov/pubmed/27148837
https://doi.org/10.3168/jds.2016-11736
https://www.ncbi.nlm.nih.gov/pubmed/28131584
https://doi.org/10.3389/fendo.2020.00596
https://doi.org/10.1590/S1806-92902015000600005
https://doi.org/10.3168/jds.S0022-0302(98)75790-X
https://doi.org/10.1016/j.theriogenology.2017.05.024
https://www.ncbi.nlm.nih.gov/pubmed/28759837
https://doi.org/10.1016/j.foodchem.2023.136730
https://www.ncbi.nlm.nih.gov/pubmed/37392632
https://doi.org/10.1088/0957-0233/15/4/020
https://reference.wolfram.com/language/ref/CrossEntropyLossLayer.html
https://reference.wolfram.com/language/ref/CrossEntropyLossLayer.html
https://doi.org/10.1021/acs.chemrev.7b00259
https://www.ncbi.nlm.nih.gov/pubmed/28949513
https://doi.org/10.3168/jds.2018-15507
https://www.ncbi.nlm.nih.gov/pubmed/30638994
https://doi.org/10.1016/B978-0-08-100596-5.21597-7
https://doi.org/10.1016/j.idairyj.2004.03.005

	Introduction 
	Materials and Methods 
	Materials: Milk Provision 
	Weekly Samples 
	Daily On-Farm Measurements 
	Measurements on Randomly Selected Pregnant and Non-Pregnant Cows 

	Methods: Microwave Dielectric Spectroscopy Measurements 
	Milk Composition Data 
	Microwave Dielectric Spectra Fitting 
	Machine Learning 
	Statistics 

	Results and Discussion 
	The Dielectric Spectrum of Water and Milk 
	MDS Is Sensitive to the Changes in Bovine Milk Caused by Pregnancy 
	Pearson Correlation Matrix 
	Evaluation of CC Fitting Parameters Using Principal Component Analysis (PCA) 
	Artificial Neural Network (ANN). A Machine Learning Approach for Early Pregnancy Detection in Cows 


	Conclusions 
	References

