
Citation: Ulu, B.; Savaş, S.; Ergin, Ö.F.;

Ulu, B.; Kırnap, A.; Bingöl, M.S.;

Yıldırım, Ş. Tuning the

Proportional–Integral–Derivative

Control Parameters of Unmanned

Aerial Vehicles Using Artificial Neural

Networks for Point-to-Point Trajectory

Approach. Sensors 2024, 24, 2752.

https://doi.org/10.3390/s24092752

Academic Editor: Arturo de la

Escalera Hueso

Received: 12 February 2024

Revised: 15 March 2024

Accepted: 19 March 2024

Published: 26 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Tuning the Proportional–Integral–Derivative Control Parameters
of Unmanned Aerial Vehicles Using Artificial Neural Networks
for Point-to-Point Trajectory Approach
Burak Ulu 1 , Sertaç Savaş 1 , Ömer Faruk Ergin 2, Banu Ulu 3, Ahmet Kırnap 1,* , Mehmet Safa Bingöl 1,4

and Şahin Yıldırım 1

1 Department of Mechatronics Engineering, Erciyes University, 38039 Kayseri, Turkey;
burakulu@erciyes.edu.tr (B.U.); sertacsavas@erciyes.edu.tr (S.S.); msbingol@ohu.edu.tr (M.S.B.);
sahiny@erciyes.edu.tr (Ş.Y.)

2 Department of Mechanical Engineering, Erciyes University, 38039 Kayseri, Turkey; omer@erciyes.edu.tr
3 Department of Software Engineering, Kayseri University, 38030 Kayseri, Turkey; banuulu@kayseri.edu.tr
4 Department of Mechatronics Engineering, Nigde Omer Halisdemir University, 51240 Nigde, Turkey
* Correspondence: ahmetkirnap@erciyes.edu.tr

Abstract: Nowadays, trajectory control is a significant issue for unmanned micro aerial vehicles
(MAVs) due to large disturbances such as wind and storms. Trajectory control is typically imple-
mented using a proportional–integral–derivative (PID) controller. In order to achieve high accuracy
in trajectory tracking, it is essential to set the PID gain parameters to optimum values. For this
reason, separate gain values are set for roll, pitch and yaw movements before autonomous flight
in quadrotor systems. Traditionally, this adjustment is performed manually or automatically in
autotune mode. Given the constraints of narrow orchard corridors, the use of manual or autotune
mode is neither practical nor effective, as the quadrotor system has to fly in narrow apple orchard
corridors covered with hail nets. These reasons require the development of an innovative solu-
tion specific to quadrotor vehicles designed for constrained areas such as apple orchards. This
paper recognizes the need for effective trajectory control in quadrotors and proposes a novel neural
network-based approach to tuning the optimal PID control parameters. This new approach not only
improves trajectory control efficiency but also addresses the unique challenges posed by environments
with constrained locational characteristics. Flight simulations using the proposed neural network
models have demonstrated successful trajectory tracking performance and highlighted the superior-
ity of the feed-forward back propagation network (FFBPN), especially in latitude tracking within
7.52745 × 10−5 RMSE trajectory error. Simulation results support the high performance of the
proposed approach for the development of automatic flight capabilities in challenging environments.

Keywords: neural networks; trajectory control; unmanned aerial vehicles; autonomous navigation;
agricultural technologies

1. Introduction

In recent years, autonomous unmanned aerial vehicles (UAVs) have been given sig-
nificant attention due to their enormous potential applications in civil and military fields.
UAVs appear as micro-aerial robots that support a sustainable environment, offer a con-
tactless delivery option, or can be used for hobby purposes [1–5]. In addition, aerial robots
can be used autonomously in many applications with cameras and equipment mounted on
them, such as increasing agriculture productivity, determining product maturity, detecting
diseases and agricultural spraying [6]. Autonomous aerial robots should use a robust
controller to perform assigned tasks with higher accuracy on specified trajectories. Many
different methods are applied to control autonomous aerial robots. Masse et al. used the
linear quadratic regulator (LQR) method and structured an H∞ synthesis method for aerial

Sensors 2024, 24, 2752. https://doi.org/10.3390/s24092752 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24092752
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2526-2483
https://orcid.org/0000-0001-8096-1140
https://orcid.org/0000-0002-7685-5297
https://orcid.org/0000-0002-7149-3274
https://doi.org/10.3390/s24092752
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24092752?type=check_update&version=1

Sensors 2024, 24, 2752 2 of 18

robot control. The results show that the H∞ method performs better than the LQR method
in windy conditions. However, it presented an overview based on mathematical models
and the section on actual working conditions is not mentioned [7]. Perozzi et al. utilized
sliding mode control for trajectory tracking of a quadrotor. Results of numerical exper-
iments confirmed the sliding mode control’s success in stabilizing the quadrotor under
varying wind. Their study aimed to develop a control structure based on predicted wind;
however, the variable conditions in the real environment were not taken into account [8].
Celen and Oniz used fuzzy logic and neural network controllers for trajectory tracking for
a quadcopter. The results show that artificial neural networks (ANNs) provide stability
and robustness to the drone system [9]. In addition to the mentioned control methods,
control models such as model predictive control, backstepping control and model reference
adaptive control are also used [10,11]. Another popular method used for drone control is
the proportional–integral–derivative (PID) controller [12]. Tuning the gain parameters of
the PID controller is important, although the most commonly used method for tuning these
parameters is trial and error. This method is time consuming as Lee and Peng pointed out
in their study. Therefore, different methods are needed for tuning parameters [13].

The importance of PID control lies in its simplicity, efficiency, and above all, how
easy it is to implement. There are many PID control studies in the literature developed
for trajectory control in UAVs [14]. In these studies, many of the solutions given in terms
of PID control are created temporarily, meaning that priority is given to solving the task
rather than providing an analysis that will reveal the limitations and advantages of the
control strategy. Independent of these studies, the number of ANN-based approaches that
have increased their effectiveness has been increasing rapidly, especially in recent years.

Wang et al. used RBF (radial basis function) neural network to tune the autonomous
flight PID controller parameters of UAVs in adapting to different environments [15].
Gao et al. used NN-PID to control the attitude and position of a quadrotor. Simulation
results show that their NN-PID algorithm is more robust than the PID algorithm [16]. In
many studies, quadrotors exhibit complex nonlinear dynamics resulting from complex
interactions between multiple rotors and their effects on both translational and rotational
motion. PID controllers designed by classical methods for linear systems have difficulty
in accurately modeling and handling the nonlinear behavior of quadrotors. Therefore,
superior methods such as artificial intelligence are needed for tuning PID parameters.

In this study, an ANN-based PID control parameter adjustment method is proposed
for the autonomous flying robot system developed to determine the yield in an apple
orchard where autotune mode is not possible [17]. This system is controlled with three
different PID control structures for roll, pitch and yaw movements. Thus, the adaptation
of the quadrotor to linear PID parameters is facilitated by using nonlinear behavioral
parameters in ANN training. For this purpose, the flying robot system, which has a script
coded in Python, performed flight simulations with 200 different randomly determined
PID parameter combinations in the Mission Planner simulation environment to which
it is connected via SITL, and a data set with position data as input and PID parameters
as output is created. Simulations performed on the trajectory used as a reference while
creating the data set show that changing the PID parameters of the yaw control does not
cause a significant change in the trajectory error. Therefore, a neural network predictor
model for yaw control is not developed in this study. The data set obtained for roll and
pitch controllers is used for models developed with three different ANN algorithms. As
a result, test flights are carried out in the Mission Planner simulation environment of the
quadrotor system with the PID gain parameters estimated by three different ANN models,
and the performance and error values of the estimated PID parameters were observed.
Simulation results are presented comparatively in tables and graphics.

Sensors 2024, 24, 2752 3 of 18

2. Methodology

Using the conventional approach of autotune mode to establish control parameters
for the quadrotor robotic system is deemed unsuitable, particularly in an apple orchard’s
narrow and sparsely covered corridors, as illustrated in Figure 1. Autotune mode is
frequently used in studies to determine PID control parameters. Mini aerial vehicles using
this mode automatically determine the optimum Kp, Ki and Kd gain parameters in large
and open areas, with movements similar to the dance of bees in the air. However, it is not
possible to apply the method in the apple orchard where the study will be carried out to
determine the yield since the apple orchards have narrow corridors and the upper parts are
covered with thin cover. For this reason, in this study, the Kp, Kd and Ki gain parameters
are determined with artificial intelligence methods in the determined trajectories and
the system performance is evaluated. In the study, the determination of Kp, Kd and Ki
gain parameters is carried out in a simulation environment, and the trajectory tracking
performance of the quadrotor system is examined with the obtained gain parameters.

Sensors 2024, 24, x FOR PEER REVIEW 3 of 19

2. Methodology
Using the conventional approach of autotune mode to establish control parameters

for the quadrotor robotic system is deemed unsuitable, particularly in an apple orchard’s
narrow and sparsely covered corridors, as illustrated in Figure 1. Autotune mode is fre-
quently used in studies to determine PID control parameters. Mini aerial vehicles using
this mode automatically determine the optimum Kp, Ki and Kd gain parameters in large
and open areas, with movements similar to the dance of bees in the air. However, it is not
possible to apply the method in the apple orchard where the study will be carried out to
determine the yield since the apple orchards have narrow corridors and the upper parts
are covered with thin cover. For this reason, in this study, the Kp, Kd and Ki gain parame-
ters are determined with artificial intelligence methods in the determined trajectories and
the system performance is evaluated. In the study, the determination of Kp, Kd and Ki gain
parameters is carried out in a simulation environment, and the trajectory tracking perfor-
mance of the quadrotor system is examined with the obtained gain parameters.

Figure 1. Apple orchard where flying robotic system is used, Yeşilhisar, Kayseri, Turkey.

This section describes the developed system with a broad explanation. Firstly, soft-
ware specifications are outlined in detail. The modified standard PID controller is de-
scribed with tuned gain parameters. The general methodology of this article is given in
Figure 2. The study, seen in Figure 2, consists of four basic stages.

Figure 2. Flow chart description of the proposed methodology.

2.1. Software Specifications
Ardupilot software (Copter-4.4.0) is embedded in the controller to run flight com-

mands and manage the flight. Through this software, precise control of the quadrotor can

Figure 1. Apple orchard where flying robotic system is used, Yeşilhisar, Kayseri, Turkey.

This section describes the developed system with a broad explanation. Firstly, software
specifications are outlined in detail. The modified standard PID controller is described with
tuned gain parameters. The general methodology of this article is given in Figure 2. The
study, seen in Figure 2, consists of four basic stages.

Sensors 2024, 24, x FOR PEER REVIEW 3 of 19

2. Methodology
Using the conventional approach of autotune mode to establish control parameters

for the quadrotor robotic system is deemed unsuitable, particularly in an apple orchard’s
narrow and sparsely covered corridors, as illustrated in Figure 1. Autotune mode is fre-
quently used in studies to determine PID control parameters. Mini aerial vehicles using
this mode automatically determine the optimum Kp, Ki and Kd gain parameters in large
and open areas, with movements similar to the dance of bees in the air. However, it is not
possible to apply the method in the apple orchard where the study will be carried out to
determine the yield since the apple orchards have narrow corridors and the upper parts
are covered with thin cover. For this reason, in this study, the Kp, Kd and Ki gain parame-
ters are determined with artificial intelligence methods in the determined trajectories and
the system performance is evaluated. In the study, the determination of Kp, Kd and Ki gain
parameters is carried out in a simulation environment, and the trajectory tracking perfor-
mance of the quadrotor system is examined with the obtained gain parameters.

Figure 1. Apple orchard where flying robotic system is used, Yeşilhisar, Kayseri, Turkey.

This section describes the developed system with a broad explanation. Firstly, soft-
ware specifications are outlined in detail. The modified standard PID controller is de-
scribed with tuned gain parameters. The general methodology of this article is given in
Figure 2. The study, seen in Figure 2, consists of four basic stages.

Figure 2. Flow chart description of the proposed methodology.

2.1. Software Specifications
Ardupilot software (Copter-4.4.0) is embedded in the controller to run flight com-

mands and manage the flight. Through this software, precise control of the quadrotor can

Figure 2. Flow chart description of the proposed methodology.

2.1. Software Specifications

Ardupilot software (Copter-4.4.0) is embedded in the controller to run flight commands
and manage the flight. Through this software, precise control of the quadrotor can be
achieved with PID control parameters determined through the flight planning program.

Sensors 2024, 24, 2752 4 of 18

The high accuracy of the simulation software is demonstrated by comparing simulated and
experimental trajectories for three different UAVs [18]. In this study, Mission Planner is used
as the flight planning and simulation program. Furthermore, the quadrotor dynamics [19]
required for flight are provided by embedded libraries in the Mission Planner open source
software [20].

In addition to referenced studies, flight trajectory is created for simulation to compare
trajectory tracking performances with different Kp, Ki and Kd parameters. For the quadrotor
to track this trajectory, which is similar to the corridors in the apple orchard, a mission
program is coded in Python using the Dronekit library. Software in the Loop (SITL) is
used to simulate systems operating in real time [21]. Using this program, each simulation
flight performed with different parameters is tracked on the map as shown in Figure 3,
and location data is recorded. These data are then processed and a data set is created for
training the neural network model.

Sensors 2024, 24, x FOR PEER REVIEW 4 of 19

be achieved with PID control parameters determined through the flight planning pro-
gram. The high accuracy of the simulation software is demonstrated by comparing simu-
lated and experimental trajectories for three different UAVs [18]. In this study, Mission
Planner is used as the flight planning and simulation program. Furthermore, the quad-
rotor dynamics [19] required for flight are provided by embedded libraries in the Mission
Planner open source software [20].

In addition to referenced studies, flight trajectory is created for simulation to compare
trajectory tracking performances with different Kp, Ki and Kd parameters. For the quad-
rotor to track this trajectory, which is similar to the corridors in the apple orchard, a mis-
sion program is coded in Python using the Dronekit library. Software in the Loop (SITL)
is used to simulate systems operating in real time [21]. Using this program, each simula-
tion flight performed with different parameters is tracked on the map as shown in Figure
3, and location data is recorded. These data are then processed and a data set is created
for training the neural network model.

Figure 3. View of one of the simulation flights on the map.

2.2. Standard PID Controller System
PID controllers have been used for a wide variety of systems. Today, PID control is

also used in many drone studies [22]. The continuous time PID controller is defined by
Equation (1) [23]. To drive a plant output y(t), towards a reference signal r(t), the control
input u(t), is calculated by a closed loop PID controller, which uses the error in the output,
that is, e(t) = r(t) − y(t) [24]. In Equation (1), Kp is the proportional gain, Ki is the integral
gain and Kd is the derivative gain.

𝑢(𝑡) = 𝐾௣ · 𝑒(𝑡) + 𝐾௜ · ׬ 𝑒(𝑡)𝑑𝑡 + 𝐾ௗ · ௗௗ௧ 𝑒(𝑡) (1)

Appropriate coefficient values must be adjusted for the PID controller parameter to
operate correctly. Although the Ziegler Nichols method [25] is the most widely used
method for tuning these parameters in many systems, it is not easy to apply in such unique
systems. Due to the high degree of non-linearity in these systems, it is difficult to modify
the PID controller’s gain parameters when there are external disturbances or the system
parameters are changing. As a result, the PID controller’s performance is reduced [26].

MAVs perform their flights according to specific modes. This study uses Auto and
Guided modes for the quadrotor to perform the task fully autonomously. Auto mode is
used when the flight program is uploaded to the controller, and Guided mode is used
when it is managed externally through the program written with Dronekit. In both modes,
position errors must be minimized by continuous monitoring of a controller so the quad-
rotor system can follow the determined trajectory. This system is controlled by three dif-
ferent PID control structures for roll, pitch and yaw movements. The PID control model
of UAVs is shown schematically in Figure 4 for UAV movements.

Figure 3. View of one of the simulation flights on the map.

2.2. Standard PID Controller System

PID controllers have been used for a wide variety of systems. Today, PID control is
also used in many drone studies [22]. The continuous time PID controller is defined by
Equation (1) [23]. To drive a plant output y(t), towards a reference signal r(t), the control
input u(t), is calculated by a closed loop PID controller, which uses the error in the output,
that is, e(t) = r(t) − y(t) [24]. In Equation (1), Kp is the proportional gain, Ki is the integral
gain and Kd is the derivative gain.

u(t) = Kp·e(t) + Ki·
∫

e(t)dt + Kd·
d
dt

e(t) (1)

Appropriate coefficient values must be adjusted for the PID controller parameter
to operate correctly. Although the Ziegler Nichols method [25] is the most widely used
method for tuning these parameters in many systems, it is not easy to apply in such unique
systems. Due to the high degree of non-linearity in these systems, it is difficult to modify
the PID controller’s gain parameters when there are external disturbances or the system
parameters are changing. As a result, the PID controller’s performance is reduced [26].

MAVs perform their flights according to specific modes. This study uses Auto and
Guided modes for the quadrotor to perform the task fully autonomously. Auto mode is used
when the flight program is uploaded to the controller, and Guided mode is used when it is
managed externally through the program written with Dronekit. In both modes, position
errors must be minimized by continuous monitoring of a controller so the quadrotor system
can follow the determined trajectory. This system is controlled by three different PID
control structures for roll, pitch and yaw movements. The PID control model of UAVs is
shown schematically in Figure 4 for UAV movements.

Sensors 2024, 24, 2752 5 of 18
Sensors 2024, 24, x FOR PEER REVIEW 5 of 19

Figure 4. Standard PID control system.

Kp, Ki and Kd parameters must be tuned for each control model before the flight. This
tuning can be performed by the trial-and-error method based on experience or adjusted
autonomously in autotune mode, a mode developed for this type of MAV. If there is a
suitable and sufficient area for flight, automatically tuning the PID controller gain param-
eters gives a more effective result. In this mode, the UAV moves autonomously in a wide-
area trajectory, similar to the dance of bees, according to a determined algorithm. During
this movement, Kp, Ki and Kd parameters are tuned in the most optimal way.

However, it is not possible to use the autotune mode because the micro-UAV de-
signed in this study will perform its movement in a narrow and covered environment
among trees. For this reason, an artificial neural network (ANN) model has been devel-
oped to determine the Kp, Ki and Kd parameters.

In the simulation environment, a trajectory was determined by reference to the row
size of the tree array where the experimental study will be carried out. This trajectory is
autonomously followed with datasets consisting of 100 different Kp, Ki and Kd parameters
determined separately for the roll and pitch control models. During the sample prepara-
tion, it is experienced that 100 samples in the dataset are sufficient to extract the charac-
teristics between the position-PID parameters. Changing the PID parameters of the yaw
control does not cause a significant change in the trajectory error. Therefore, there is no
need for an optimization for the yaw control model in the simulation flights, and the de-
fault values are used in all flights. The default values for the gain parameters are 0.2 for
Kp, 0.02 for Ki and 0.002 for Kd.

In this method, 200 flight simulations are performed according to the parameter
changes in two different control models. The Kp, Ki and Kd parameters adjusted in each
simulation are used as output values for the samples in the training of the ANN model.
These values are determined randomly through the program and the Kp, Ki and Kd pa-
rameters of one of the roll and pitch control models were changed while the others were
kept constant. In this way, it is aimed to determine the optimum Kp, Ki and Kd control
parameters for each movement type.

2.3. Proposed Artificial Neural Network (ANN)
For tuning PID parameters, several offline methods are available. In this section, the

critical ideas of ANN, supervised learning and system identification methodologies are
introduced and analyzed in relation to the theoretical development and applications of
optimal PID controllers [27]. ANNs can offer flexible solutions to non-linear problems
with their structure similar to the human brain.

ANNs where data flow only in the forward direction are feed-forward networks.
ANNs with connections that allow data to flow both forward and backward are called
feedback neural networks. One of the network structures used in this study is the feed-
forward back propagation network (FFBPN). The FFBPN is a method of supervised learn-
ing. Radial basis neural network (RBNN) and cascade forward back propagation network
(CFBPN), other network structures used in the study, are also supervised learning meth-
ods.

Figure 4. Standard PID control system.

Kp, Ki and Kd parameters must be tuned for each control model before the flight. This
tuning can be performed by the trial-and-error method based on experience or adjusted
autonomously in autotune mode, a mode developed for this type of MAV. If there is a suit-
able and sufficient area for flight, automatically tuning the PID controller gain parameters
gives a more effective result. In this mode, the UAV moves autonomously in a wide-area
trajectory, similar to the dance of bees, according to a determined algorithm. During this
movement, Kp, Ki and Kd parameters are tuned in the most optimal way.

However, it is not possible to use the autotune mode because the micro-UAV designed
in this study will perform its movement in a narrow and covered environment among trees.
For this reason, an artificial neural network (ANN) model has been developed to determine
the Kp, Ki and Kd parameters.

In the simulation environment, a trajectory was determined by reference to the row
size of the tree array where the experimental study will be carried out. This trajectory is
autonomously followed with datasets consisting of 100 different Kp, Ki and Kd parameters
determined separately for the roll and pitch control models. During the sample preparation,
it is experienced that 100 samples in the dataset are sufficient to extract the characteristics
between the position-PID parameters. Changing the PID parameters of the yaw control
does not cause a significant change in the trajectory error. Therefore, there is no need for an
optimization for the yaw control model in the simulation flights, and the default values are
used in all flights. The default values for the gain parameters are 0.2 for Kp, 0.02 for Ki and
0.002 for Kd.

In this method, 200 flight simulations are performed according to the parameter
changes in two different control models. The Kp, Ki and Kd parameters adjusted in
each simulation are used as output values for the samples in the training of the ANN
model. These values are determined randomly through the program and the Kp, Ki and Kd
parameters of one of the roll and pitch control models were changed while the others were
kept constant. In this way, it is aimed to determine the optimum Kp, Ki and Kd control
parameters for each movement type.

2.3. Proposed Artificial Neural Network (ANN)

For tuning PID parameters, several offline methods are available. In this section, the
critical ideas of ANN, supervised learning and system identification methodologies are
introduced and analyzed in relation to the theoretical development and applications of
optimal PID controllers [27]. ANNs can offer flexible solutions to non-linear problems with
their structure similar to the human brain.

ANNs where data flow only in the forward direction are feed-forward networks.
ANNs with connections that allow data to flow both forward and backward are called
feedback neural networks. One of the network structures used in this study is the feed-
forward back propagation network (FFBPN). The FFBPN is a method of supervised learning.
Radial basis neural network (RBNN) and cascade forward back propagation network
(CFBPN), other network structures used in the study, are also supervised learning methods.

The schematic representation of the ANN model trained to estimate the Kp, Ki and Kd
parameters for the FFBPN model is given in Figure 5.

Sensors 2024, 24, 2752 6 of 18

Sensors 2024, 24, x FOR PEER REVIEW 6 of 19

The schematic representation of the ANN model trained to estimate the Kp, Ki and
Kd parameters for the FFBPN model is given in Figure 5.

Figure 5. The schematic representation of the FFBPN model with signal flow direction.

The weights between input and hidden layers are updated as Equation (2) in FFBPN,
where η is the learning rate and α is the momentum term. E2(t) is the propagation error
between hidden and input layers. E1(t) is the error between experimental and neural net-
work output signals [28,29]. ∆ 𝑊௜௝(𝑡) = −𝜂 డாమ(௧)డௐ೔ೕ + 𝛼∆𝑊௜௝(𝑡 − 1) (2)

The weights between the hidden and output layers are updated as Equation (3). ∆ 𝑊௝௡(𝑡) = −𝜂 డாభ(௧)డௐೕ೙ + 𝛼∆𝑊௝௡(𝑡 − 1) (3)

The CFBPN model is similar to a FFBPN model in using the backpropagation algo-
rithm for weight updating. However, a fundamental characteristic of this network is that
every layer of neurons is associated with all preceding layers of neurons. As other feed-
forward networks, CFBPN has one or more interconnected hidden layers and activation
functions. Each neuron has a bias of its own and each connection has a specific weight
[30,31]. The schematic representation of the CFBPN model is given in Figure 6.

Figure 5. The schematic representation of the FFBPN model with signal flow direction.

The weights between input and hidden layers are updated as Equation (2) in FFBPN,
where η is the learning rate and α is the momentum term. E2(t) is the propagation error
between hidden and input layers. E1(t) is the error between experimental and neural
network output signals [28,29].

∆ Wij(t) = −η
∂E2(t)
∂Wij

+ α∆Wij(t − 1) (2)

The weights between the hidden and output layers are updated as Equation (3).

∆ Wjn(t) = −η
∂E1(t)
∂Wjn

+ α∆Wjn(t − 1) (3)

The CFBPN model is similar to a FFBPN model in using the backpropagation algorithm
for weight updating. However, a fundamental characteristic of this network is that every
layer of neurons is associated with all preceding layers of neurons. As other feed-forward
networks, CFBPN has one or more interconnected hidden layers and activation functions.
Each neuron has a bias of its own and each connection has a specific weight [30,31]. The
schematic representation of the CFBPN model is given in Figure 6.

Each combination in the CFBPN learning sample (pq, dq) is calculated as follows [32]:
pq inputs are propagated forward through the layers of the m-layer neural network by

Equation (4):
a0 = pq; ak = f k

(
Wkak−1 − bk

)
, k = 1, . . . , M (4)

where pq is input, a is cell output, b is bias and w is weight.
Back propagate the sensitivities through the layers by Equation (5):

δM = −2F′M
(

nM
)(

dq − aM
)

; δk = −F′k
(

nk
)(

Wk+1T
)

δk+1, k = M − 1, . . . , 1 (5)

Modify the biases and weights by Equations (6) and (7), respectively:

∆bk = ηδk, k = 1, . . . , M (6)

∆Wk = −ηδk(ak−1)
T

, k = 1, . . . , M (7)

Sensors 2024, 24, 2752 7 of 18

These steps continue until the stopping criterion is reached.
The nonparametric estimation of multidimensional functions using sparse amounts of

training data is a common application for RBNN. Fast and thorough training of RBNNs
makes them effective [33,34]. RBNNs have many benefits, including strong global approx-
imation ability, no local minimum difficulties and fast learning speed [35]. FFBPNs can
have one or multiple hidden layers, while RBNNs have only one. The input layer, which is
the first layer of the RBNN, just serves to transfer information and does not process the
input data in any way. The second layer is a hidden layer. The third layer is the output
layer, which will linearly transform the input data and then the output [36]. The schematic
representation of the RBNN model is given in Figure 7.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 19

Figure 6. The schematic representation of the CFBPN model.

Each combination in the CFBPN learning sample (pq, dq) is calculated as follows [32]:
pq inputs are propagated forward through the layers of the m-layer neural network

by Equation (4): 𝑎଴ = 𝑝௤; 𝑎௞ = 𝑓௞(𝑊௞𝑎௞ିଵ − 𝑏௞), 𝑘 = 1, … , 𝑀 (4)

where pq is input, a is cell output, b is bias and w is weight.
Back propagate the sensitivities through the layers by Equation (5): 𝛿ெ = −2𝐹ᇱெ(𝑛ெ)൫𝑑௤ − 𝑎ெ൯; 𝛿௞ = −𝐹ᇱ௞(𝑛௞)൫𝑊௞ାଵ೅൯𝛿௞ାଵ, 𝑘 = 𝑀 − 1, … ,1 (5)

Modify the biases and weights by Equations (6) and (7), respectively: 𝛥𝑏௞ = 𝜂𝛿௞, 𝑘 = 1, … , 𝑀 (6)

𝛥𝑊௞ = −𝜂𝛿௞(𝑎௞ିଵ)், 𝑘 = 1, … , 𝑀 (7)

These steps continue until the stopping criterion is reached.
The nonparametric estimation of multidimensional functions using sparse amounts

of training data is a common application for RBNN. Fast and thorough training of RBNNs
makes them effective [33,34]. RBNNs have many benefits, including strong global approx-
imation ability, no local minimum difficulties and fast learning speed [35]. FFBPNs can
have one or multiple hidden layers, while RBNNs have only one. The input layer, which
is the first layer of the RBNN, just serves to transfer information and does not process the
input data in any way. The second layer is a hidden layer. The third layer is the output
layer, which will linearly transform the input data and then the output [36]. The schematic
representation of the RBNN model is given in Figure 7.

Figure 6. The schematic representation of the CFBPN model.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 19

Figure 7. The schematic representation of the RBNN model.

The objective function in RBNN can be defined by Equation (8), where hi is the height
value of sample i [37].

𝐸 = ଵଶ ∑ (ℎ௜ − 𝑓(𝑥௜)ଶ)௡௜ୀଵ (8)

The f(x) given in Equation (8) can be defined as in Equation (9). 𝑓(𝑥) = ∑ 𝜔௜𝜙(∥ 𝑥 − 𝑐௜ ∥)௡௜ୀଵ (9)

where 𝒏 is the number of neurons in the hidden layer, 𝜔௜ ∈ W is the weight of neuron i
in the linear output neuron, ci denotes the center vector of the neuron i, 𝜙 (.) denotes the
nonlinear function that is a multiquadratic function in Equation (10). 𝜙(𝑟) = 𝑟ඥ1 + 𝜉ଶ (10)

where r denotes the distance between unknown and known data, and ξ is a smoothing
factor between 0 and 1. As a result, the formula used to calculate the weights in the net-
work structure is given in Equation (11).

𝑊(𝑡 + 1) = 𝑊(𝑡) − 𝜂 · డாడௐ = 𝑊(𝑡) + 𝜂 · ∑ (ℎ௜ − 𝑓(𝑥௜))𝜙(∥ 𝑥 − 𝑐௜ ∥)௡௜ୀଵ (11)

The latitude and longitude values (12 pieces) of the corner points determined from
the position data recorded at 2 s intervals during the flight are used as input in the training
of the ANN model. The output of the ANN model is the parameters Kp, Ki and Kd. The
performance of the ANN models for the roll and pitch control models are examined in
detail in the Results section.

Figure 7. The schematic representation of the RBNN model.

Sensors 2024, 24, 2752 8 of 18

The objective function in RBNN can be defined by Equation (8), where hi is the height
value of sample i [37].

E =
1
2∑n

i=1 (hi − f (xi)
2) (8)

The f (x) given in Equation (8) can be defined as in Equation (9).

f (x) = ∑n
i=1 ωiϕ(∥ x − ci ∥) (9)

where n is the number of neurons in the hidden layer, ωi ∈ W is the weight of neuron i
in the linear output neuron, ci denotes the center vector of the neuron i, ϕ (.) denotes the
nonlinear function that is a multiquadratic function in Equation (10).

ϕ(r) = r
√

1 + ξ2 (10)

where r denotes the distance between unknown and known data, and ξ is a smoothing
factor between 0 and 1. As a result, the formula used to calculate the weights in the network
structure is given in Equation (11).

W(t + 1) = W(t)− η· ∂E
∂W

= W(t) + η·∑n
i=1 (hi − f (xi))ϕ(∥ x − ci ∥) (11)

The latitude and longitude values (12 pieces) of the corner points determined from the
position data recorded at 2 s intervals during the flight are used as input in the training
of the ANN model. The output of the ANN model is the parameters Kp, Ki and Kd. The
performance of the ANN models for the roll and pitch control models are examined in
detail in the Results section.

3. Simulation Results
3.1. Estimation of PID Parameters

In the study, three different artificial neural network models, namely feed-forward
back propagation neural network, cascade-forward back propagation neural network and
radial basis neural network, are designed to determine the PID control parameters of
the flying robot system. The designed models are trained with the trajectory points-PID
gain values data set obtained in the Mission Planner simulation environment. Z-score
normalization is applied to the entire data set for the training process. PID parameters for
the reference trajectory are estimated with the trained artificial neural network models. The
data set allocated for 100 rolling and 100 pitching values is divided into three groups as
70% train, 15% test and 15% validation for FFBPN and CFBPNN. This separation is per-
formed randomly among the data. Then, flight tests are carried out in the same simulation
environment with the obtained parameters and flight performances are compared in terms
of latitude, longitude and altitude.

FFBPN and CFBPN artificial neural network models are designed as twelve inputs,
three outputs and two hidden layers with eight neurons each. In the training process of
both models, three training algorithms, the Levenberg–Marquart (trainlm), scaled conju-
gate gradient (trainscg) and BFGS quasi-newton (trainbfg), and three activation functions
(logsig, radbas and tansig) are used. The training algorithm and activation function that
gave the lowest training error are determined by the grid search method to be used in
performance tests. Training parameters of artificial neural network models are given
in Table 1. MSE values of FFBPN models and estimated PID parameters for the rolling
and pitching controllers are given in Table 2. Figure 8 shows the performance plots of
FFBPN neural network models with the best training MSE values for rolling and pitching
control, respectively.

MSE values of CFBPN models and estimated PID parameters for the rolling and
pitching controllers are given in Table 3. Figure 9 shows the performance plots of CFBPN
neural network models with the best training MSE values for rolling and pitching control.

Sensors 2024, 24, 2752 9 of 18

Finally, the RBNN model is designed and training procedures are carried out to
determine the control parameters of both control approaches. Although this artificial neural
network model also has twelve inputs and three outputs, it has 100 neurons in its single
hidden layer. The spread value of the model is selected as 0.1. Training MSE values and
control gain values estimated with the trained network are given in Table 4. Additionally,
the training performance graphs of RBNN network trained for rolling and pitching control
are shown in Figure 10.

Table 1. FFBPN and CFBPN training parameters.

Performance Function MSE

Maximum Number of Iterations (Epochs) 1000

Minimum Gradient 10−6

Damping Factor (mu) (trainlm) 0.15

Table 2. MSE values of FFBPN models and estimated PID parameters for the rolling and pitching
controllers.

Control
Type Training Algorithm Activation

Function MSE Kp Ki Kd

Rolling
Control

Levenberg–Marquardt

tansig 0.9077 2.1101 2.0188 0.5137

radbas 0.8778 2.8903 1.9165 0.7645

logsig 0.9184 2.0596 2.0874 0.5805

Scaled Conjugate Gradient

tansig 0.9051 2.2497 1.3240 0.4064

radbas 1.3643 1.9666 2.3850 0.2320

logsig 0.9533 2.0811 1.8916 0.5350

BFGS Quasi-Newton

tansig 0.9735 2.1330 2.0543 0.4461

radbas 0.8526 2.0328 2.2562 0.7115

logsig 0.9740 2.4656 2.3052 0.5739

Pitching
Control

Levenberg–Marquardt

tansig 0.6101 2.4077 1.8095 0.6013

radbas 0.7179 3.5663 2.0397 1.3567

logsig 0.6539 1.9875 2.6991 0.8251

Scaled Conjugate Gradient

tansig 0.9665 1.7854 2.2571 0.4842

radbas 0.5881 2.7480 2.2292 0.8836

logsig 0.7993 2.8513 2.4859 0.4041

BFGS Quasi-Newton

tansig 0.7017 2.4867 2.4330 1.1562

radbas 0.6019 1.4790 2.5836 0.5073

logsig 0.9760 2.3690 2.2313 0.7147

Table 3. MSE values of CFBPN models and estimated PID parameters for the rolling and pitching
controllers.

Control
Type Training Algorithm Activation

Function MSE Kp Ki Kd

Roll
Control

Levenberg–Marquardt

tansig 0.6911 1.7155 0.6107 1.1281

radbas 0.9593 2.8376 1.3909 0.8655

logsig 0.8521 2.5103 1.0876 0.6433

Sensors 2024, 24, 2752 10 of 18

Table 3. Cont.

Control
Type Training Algorithm Activation

Function MSE Kp Ki Kd

Roll
Control

Scaled Conjugate Gradient

tansig 0.9067 2.6215 1.5810 0.6680

radbas 0.8592 2.4244 2.3351 0.6117

logsig 0.9466 1.9622 2.2506 0.4117

BFGS Quasi-Newton

tansig 0.8748 2.3739 1.5228 1.2769

radbas 0.9827 1.6846 1.3402 0.4403

logsig 0.9478 2.4340 1.1644 0.5635

Pitch
Control

Levenberg–Marquardt
tansig 0.6539 2.5264 1.9099 1.7538

radbas 0.4553 2.0911 2.5904 1.1806

logsig 0.6549 1.4632 1.3870 1.1121

Scaled Conjugate Gradient

tansig 0.5553 1.5742 2.1896 0.7747

radbas 0.7048 2.3274 3.4386 1.7152

logsig 0.6983 2.4532 1.6562 2.3723

BFGS Quasi-Newton

tansig 0.3947 1.2427 0.6283 0.7927

radbas 0.6913 2.5531 1.9590 1.2485

logsig 0.7019 1.9238 1.2242 0.0080

Table 4. MSE values of RBNN model and estimated PID parameters for the roll and pitch controllers.

Control Type MSE Kp Ki Kd

Rolling Control 0.0070 2.8264 3.2051 0.8674

Pitching Control 1.2665 × 10−30 0.7937 1.7214 0.0803

Sensors 2024, 24, x FOR PEER REVIEW 10 of 19

logsig 0.9760 2.3690 2.2313 0.7147

(a)

(b)

Figure 8. Training performance graphs of FFBPN models giving the best training results used to
estimate PID parameters of the controllers for (a) rolling and (b) pitching.

MSE values of CFBPN models and estimated PID parameters for the rolling and
pitching controllers are given in Table 3. Figure 9 shows the performance plots of CFBPN
neural network models with the best training MSE values for rolling and pitching control.

Table 3. MSE values of CFBPN models and estimated PID parameters for the rolling and pitching
controllers.

Control
Type

Training Algorithm Activation
Function

MSE Kp Ki Kd

Roll
Control

Levenberg–Marquardt
tansig 0.6911 1.7155 0.6107 1.1281
radbas 0.9593 2.8376 1.3909 0.8655
logsig 0.8521 2.5103 1.0876 0.6433

Scaled Conjugate Gradient
tansig 0.9067 2.6215 1.5810 0.6680
radbas 0.8592 2.4244 2.3351 0.6117
logsig 0.9466 1.9622 2.2506 0.4117

BFGS Quasi-Newton
tansig 0.8748 2.3739 1.5228 1.2769
radbas 0.9827 1.6846 1.3402 0.4403
logsig 0.9478 2.4340 1.1644 0.5635

Pitch
Control

Levenberg–Marquardt
tansig 0.6539 2.5264 1.9099 1.7538
radbas 0.4553 2.0911 2.5904 1.1806
logsig 0.6549 1.4632 1.3870 1.1121

Scaled Conjugate Gradient
tansig 0.5553 1.5742 2.1896 0.7747
radbas 0.7048 2.3274 3.4386 1.7152
logsig 0.6983 2.4532 1.6562 2.3723

BFGS Quasi-Newton
tansig 0.3947 1.2427 0.6283 0.7927
radbas 0.6913 2.5531 1.9590 1.2485
logsig 0.7019 1.9238 1.2242 0.0080

Figure 8. Training performance graphs of FFBPN models giving the best training results used to
estimate PID parameters of the controllers for (a) rolling and (b) pitching.

Sensors 2024, 24, 2752 11 of 18Sensors 2024, 24, x FOR PEER REVIEW 11 of 19

(a)

(b)

Figure 9. Training performance graphs of CFBPN models giving the best training results used to
estimate PID parameters of the controllers for (a) roll control and (b) pitch control.

Finally, the RBNN model is designed and training procedures are carried out to de-
termine the control parameters of both control approaches. Although this artificial neural
network model also has twelve inputs and three outputs, it has 100 neurons in its single
hidden layer. The spread value of the model is selected as 0.1. Training MSE values and
control gain values estimated with the trained network are given in Table 4. Additionally,
the training performance graphs of RBNN network trained for rolling and pitching con-
trol are shown in Figure 10.

Table 4. MSE values of RBNN model and estimated PID parameters for the roll and pitch control-
lers.

Control Type MSE Kp Ki Kd
Rolling Control 0.0070 2.8264 3.2051 0.8674
Pitching Control 1.2665 × 10−30 0.7937 1.7214 0.0803

(a)

Figure 9. Training performance graphs of CFBPN models giving the best training results used to
estimate PID parameters of the controllers for (a) roll control and (b) pitch control.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 19

(a)

(b)

Figure 9. Training performance graphs of CFBPN models giving the best training results used to
estimate PID parameters of the controllers for (a) roll control and (b) pitch control.

Finally, the RBNN model is designed and training procedures are carried out to de-
termine the control parameters of both control approaches. Although this artificial neural
network model also has twelve inputs and three outputs, it has 100 neurons in its single
hidden layer. The spread value of the model is selected as 0.1. Training MSE values and
control gain values estimated with the trained network are given in Table 4. Additionally,
the training performance graphs of RBNN network trained for rolling and pitching con-
trol are shown in Figure 10.

Table 4. MSE values of RBNN model and estimated PID parameters for the roll and pitch control-
lers.

Control Type MSE Kp Ki Kd
Rolling Control 0.0070 2.8264 3.2051 0.8674
Pitching Control 1.2665 × 10−30 0.7937 1.7214 0.0803

(a)

Sensors 2024, 24, x FOR PEER REVIEW 12 of 19

(b)

Figure 10. Training performance graphs of RBNN model used to estimate PID parameters of the
controllers for (a) rolling and (b) pitching.

3.2. Flight Performance Tests
A reference flight trajectory is designed in the Mission Planner program to analyze

the performance of PID control gain parameters obtained with artificial neural network
models in roll and pitch control. Flights are carried out with each PID value and the track-
ing performance of the reference latitude, longitude and altitude values are analyzed with
four error metrics. The mathematical expressions of the error metrics RMSE (root mean
square error), MSE (mean square error), MAE (mean absolute error) and MAPE (mean
absolute percentage error) used for this purpose are given in Equations (12)–(15). RMSE
(root mean square error) is the square root of the mean of the squares of the differences
between the actual and reference values, giving greater weight to larger errors. MSE
(mean squared error) is the average of the squares of the differences between the actual
and reference values, providing an average value according to the error squares. MAE
weights all errors equally by averaging the absolute values of the error amounts, thus
reducing the weight of larger errors. MAPE evaluates the relative accuracy of actual val-
ues relative to the reference by providing a percentage measure of errors, making it easier
to compare data at different scales.

𝑅𝑀𝑆𝐸 = ටଵ௡ ∑ (𝑦௜ − 𝑟௜)ଶ௡௜ୀଵ (12)

𝑀𝑆𝐸 = ଵ௡ ∑ (𝑦௜ − 𝑟௜)ଶ௡௜ୀଵ (13)

𝑀𝐴𝐸 = ଵ௡ ∑ |𝑦௜ − 𝑟௜|௡௜ୀଵ (14)

𝑀𝐴𝑃𝐸 = ଵ௡ ∑ ቚ௬೔ି௥೔௬೔ ቚ௡௜ୀଵ ∙ 100 (15)

In the equations, n is the number of samples, yi is the ith actual output value, and ri
is the ith reference value. The reference trajectory points determined for the performance
test are given in Table 5 and the reference trajectory is given in Figure 11. Additionally,
rolling and pitching PID controller gain values are given in Table 6 for all artificial neural
network models.

Figure 10. Training performance graphs of RBNN model used to estimate PID parameters of the
controllers for (a) rolling and (b) pitching.

3.2. Flight Performance Tests

A reference flight trajectory is designed in the Mission Planner program to analyze the
performance of PID control gain parameters obtained with artificial neural network models
in roll and pitch control. Flights are carried out with each PID value and the tracking
performance of the reference latitude, longitude and altitude values are analyzed with four
error metrics. The mathematical expressions of the error metrics RMSE (root mean square

Sensors 2024, 24, 2752 12 of 18

error), MSE (mean square error), MAE (mean absolute error) and MAPE (mean absolute
percentage error) used for this purpose are given in Equations (12)–(15). RMSE (root mean
square error) is the square root of the mean of the squares of the differences between the
actual and reference values, giving greater weight to larger errors. MSE (mean squared
error) is the average of the squares of the differences between the actual and reference
values, providing an average value according to the error squares. MAE weights all errors
equally by averaging the absolute values of the error amounts, thus reducing the weight
of larger errors. MAPE evaluates the relative accuracy of actual values relative to the
reference by providing a percentage measure of errors, making it easier to compare data at
different scales.

RMSE =

√
1
n∑n

i=1(yi − ri)
2 (12)

MSE =
1
n∑n

i=1(yi − ri)
2 (13)

MAE =
1
n∑n

i=1|yi − ri| (14)

MAPE =
1
n∑n

i=1

∣∣∣∣yi − ri
yi

∣∣∣∣·100 (15)

In the equations, n is the number of samples, yi is the ith actual output value, and ri
is the ith reference value. The reference trajectory points determined for the performance
test are given in Table 5 and the reference trajectory is given in Figure 11. Additionally,
rolling and pitching PID controller gain values are given in Table 6 for all artificial neural
network models.

Table 5. Latitude, longitude and altitude values of the reference trajectory points to be used for
performance testing.

P1 P2 P3 P4 P5 P6

Latitude (◦) −35.363157 −35.362557 −35.362557 −35.363157 −35.363157 −35.362557

Longitude (◦) 149.163687 149.163687 149.162939 149.162938 149.162191 149.162190

Altitude (m) 3 3 3 3 3 3

Sensors 2024, 24, x FOR PEER REVIEW 13 of 19

Table 5. Latitude, longitude and altitude values of the reference trajectory points to be used for
performance testing.

 P1 P2 P3 P4 P5 P6
Latitude (°) −35.363157 −35.362557 −35.362557 −35.363157 −35.363157 −35.362557
Longitude (°) 149.163687 149.163687 149.162939 149.162938 149.162191 149.162190
Altitude (m) 3 3 3 3 3 3

Figure 11. Reference trajectory and corner points (P1: Start point, P2 - P5: Trajectory points and P6:
End point) to be used for performance testing.

Table 6. Roll and pitch PID controller gain values for all artificial neural network models.

Roll Control Pitch Control

Kp Ki Kd Kp Ki Kd
FFBPN 2.0328 2.2562 0.7115 2.7480 2.2292 0.8836
CFBPN 1.7155 0.6107 1.1281 1.2427 0.6283 0.7927
RBNN 2.8264 3.2051 0.8674 0.7937 1.7214 0.0803

The actual and reference trajectories of the flight realized with PID parameters
estimated with FFBPN are given in Figure 12, CFBPN in Figure 13, RBNN in Figure 14. In
addition, error metrics for latitude, longitude and altitude values, which are position
information for each flight, are given in Table 7.

Figure 12. The actual and reference trajectory variations of the flight performed with PID parameters
estimated with FFBPN.

Figure 11. Reference trajectory and corner points (P1: Start point, P2–P5: Trajectory points and
P6: End point) to be used for performance testing.

Sensors 2024, 24, 2752 13 of 18

Table 6. Roll and pitch PID controller gain values for all artificial neural network models.

Roll Control Pitch Control

Kp Ki Kd Kp Ki Kd

FFBPN 2.0328 2.2562 0.7115 2.7480 2.2292 0.8836

CFBPN 1.7155 0.6107 1.1281 1.2427 0.6283 0.7927

RBNN 2.8264 3.2051 0.8674 0.7937 1.7214 0.0803

The actual and reference trajectories of the flight realized with PID parameters es-
timated with FFBPN are given in Figure 12, CFBPN in Figure 13, RBNN in Figure 14.
In addition, error metrics for latitude, longitude and altitude values, which are position
information for each flight, are given in Table 7.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 19

Table 5. Latitude, longitude and altitude values of the reference trajectory points to be used for
performance testing.

 P1 P2 P3 P4 P5 P6
Latitude (°) −35.363157 −35.362557 −35.362557 −35.363157 −35.363157 −35.362557
Longitude (°) 149.163687 149.163687 149.162939 149.162938 149.162191 149.162190
Altitude (m) 3 3 3 3 3 3

Figure 11. Reference trajectory and corner points (P1: Start point, P2 - P5: Trajectory points and P6:
End point) to be used for performance testing.

Table 6. Roll and pitch PID controller gain values for all artificial neural network models.

Roll Control Pitch Control

Kp Ki Kd Kp Ki Kd
FFBPN 2.0328 2.2562 0.7115 2.7480 2.2292 0.8836
CFBPN 1.7155 0.6107 1.1281 1.2427 0.6283 0.7927
RBNN 2.8264 3.2051 0.8674 0.7937 1.7214 0.0803

The actual and reference trajectories of the flight realized with PID parameters
estimated with FFBPN are given in Figure 12, CFBPN in Figure 13, RBNN in Figure 14. In
addition, error metrics for latitude, longitude and altitude values, which are position
information for each flight, are given in Table 7.

Figure 12. The actual and reference trajectory variations of the flight performed with PID parameters
estimated with FFBPN.
Figure 12. The actual and reference trajectory variations of the flight performed with PID parameters
estimated with FFBPN.

Sensors 2024, 24, x FOR PEER REVIEW 14 of 19

Figure 13. The actual and reference trajectory variations of the flight performed with PID parame-
ters estimated with CFBPN.

Figure 14. The actual and reference trajectory variations of the flight performed with PID parame-
ters estimated with RBNN.

Table 7. Error metrics for latitude, longitude and altitude values.

NN Model Coordinate RMSE MSE MAE MAPE

FFBPN
Latitude 7.52745 × 10−5 5.66626 × 10−9 4.90424 × 10−5 8.16141 × 10−5

Longitude 0.00011 1.16874 × 10−8 6.04816 × 10−5 2.87345 × 10−5
Altitude 0.01878 0.00035 0.01422 0.25593

CFBPN
Latitude 7.57585 × 10−5 5.73935 × 10−9 4.90346 × 10−5 6.97564 × 10−5

Longitude 0.00011 1.311565 × 10−8 6.43695 × 10−5 3.49091 × 10−5
Altitude 0.05800 0.003364 0.05081 0.10621

RBNN
Latitude 0.00013 1.658104 × 10−8 8.98963 × 10−5 2.22769 × 10−5

Longitude 0.00014 1.823412 × 10−8 8.10415 × 10−5 3.63931 × 10−5
Altitude 0.20918 0.043756 0.14407 1.62034

The reference and actual latitude, longitude and altitude values for the flights per-
formed with all control parameters obtained with the three ANN models are shown in
Figure 15, and the RMSE error graphs of these coordinate values are shown in Figure 16.

Figure 13. The actual and reference trajectory variations of the flight performed with PID parameters
estimated with CFBPN.

Sensors 2024, 24, 2752 14 of 18

Sensors 2024, 24, x FOR PEER REVIEW 14 of 19

Figure 13. The actual and reference trajectory variations of the flight performed with PID parame-
ters estimated with CFBPN.

Figure 14. The actual and reference trajectory variations of the flight performed with PID parame-
ters estimated with RBNN.

Table 7. Error metrics for latitude, longitude and altitude values.

NN Model Coordinate RMSE MSE MAE MAPE

FFBPN
Latitude 7.52745 × 10−5 5.66626 × 10−9 4.90424 × 10−5 8.16141 × 10−5

Longitude 0.00011 1.16874 × 10−8 6.04816 × 10−5 2.87345 × 10−5
Altitude 0.01878 0.00035 0.01422 0.25593

CFBPN
Latitude 7.57585 × 10−5 5.73935 × 10−9 4.90346 × 10−5 6.97564 × 10−5

Longitude 0.00011 1.311565 × 10−8 6.43695 × 10−5 3.49091 × 10−5
Altitude 0.05800 0.003364 0.05081 0.10621

RBNN
Latitude 0.00013 1.658104 × 10−8 8.98963 × 10−5 2.22769 × 10−5

Longitude 0.00014 1.823412 × 10−8 8.10415 × 10−5 3.63931 × 10−5
Altitude 0.20918 0.043756 0.14407 1.62034

The reference and actual latitude, longitude and altitude values for the flights per-
formed with all control parameters obtained with the three ANN models are shown in
Figure 15, and the RMSE error graphs of these coordinate values are shown in Figure 16.

Figure 14. The actual and reference trajectory variations of the flight performed with PID parameters
estimated with RBNN.

Table 7. Error metrics for latitude, longitude and altitude values.

NN Model Coordinate RMSE MSE MAE MAPE

FFBPN

Latitude 7.52745 × 10−5 5.66626 × 10−9 4.90424 × 10−5 8.16141 × 10−5

Longitude 0.00011 1.16874 × 10−8 6.04816 × 10−5 2.87345 × 10−5

Altitude 0.01878 0.00035 0.01422 0.25593

CFBPN

Latitude 7.57585 × 10−5 5.73935 × 10−9 4.90346 × 10−5 6.97564 × 10−5

Longitude 0.00011 1.311565 × 10−8 6.43695 × 10−5 3.49091 × 10−5

Altitude 0.05800 0.003364 0.05081 0.10621

RBNN

Latitude 0.00013 1.658104 × 10−8 8.98963 × 10−5 2.22769 × 10−5

Longitude 0.00014 1.823412 × 10−8 8.10415 × 10−5 3.63931 × 10−5

Altitude 0.20918 0.043756 0.14407 1.62034

The reference and actual latitude, longitude and altitude values for the flights per-
formed with all control parameters obtained with the three ANN models are shown in
Figure 15, and the RMSE error graphs of these coordinate values are shown in Figure 16.

When the error metrics and graphs are examined, the results are quite close in flights
where PID parameters obtained with FFBPN and CFBPN models are used. However, the
performance of the parameters obtained with RBNN appears to be unsuccessful, especially
in terms of latitude and altitude values. Especially, fluctuations in the flying robot system’s
altitude values cannot be ignored. Although the training error of the RBNN model is
lower than the other two models, the fact that it is not successful in the test results reveals
the possibility of overfitting. Therefore, it is understood that it cannot produce a robust
response to external situations. This shows that the RBNN model is unsuitable for this
specific task compared to the other two.

When FFBPN and CFBPN are compared with each other, it is seen that FFBPN param-
eters provide more successful tracking. Again, although the train errors of these models
are quite close to each other, the test results reveal that the train performance should be
evaluated in terms of its own hyperparameters within each network model. When the
flight performance of the parameters estimated by the two models is examined, the models
do not reveal very different results in terms of latitude and longitude values. In contrast, in
the flight study conducted with CFBPN, it is observed that there is an increase in altitude
on long straight roads and a decrease in corner points. This shows that the FFBPN model is
more successful than others in predicting altitude changes.

Sensors 2024, 24, 2752 15 of 18

Additionally, feed-forward networks include only forward connections between layers,
whereas cascade-forward networks also have direct connections of the inputs and outputs
of each layer to subsequent layers. While this enables cascade-forward networks to model
more complex relationships by capturing longer-range dependencies in the data set, it may
cause undesirable lengths of training time and the risk of overfitting in non-complex data
sets. Therefore, it is necessary to consider each artificial neural network model by assessing
the nature and properties of the data set.

Sensors 2024, 24, x FOR PEER REVIEW 15 of 19

(a)

(b)

(c)

Figure 15. The reference and actual (a) latitude, (b) longitude and (c) altitude values.

(a)

Figure 15. The reference and actual (a) latitude, (b) longitude and (c) altitude values.

Sensors 2024, 24, x FOR PEER REVIEW 15 of 19

(a)

(b)

(c)

Figure 15. The reference and actual (a) latitude, (b) longitude and (c) altitude values.

(a)

Figure 16. Cont.

Sensors 2024, 24, 2752 16 of 18Sensors 2024, 24, x FOR PEER REVIEW 16 of 19

(b)

(c)

Figure 16. The RMSE error graphs of (a) latitude, (b) longitude and (c) altitude values.

When the error metrics and graphs are examined, the results are quite close in flights
where PID parameters obtained with FFBPN and CFBPN models are used. However, the
performance of the parameters obtained with RBNN appears to be unsuccessful, espe-
cially in terms of latitude and altitude values. Especially, fluctuations in the flying robot
system’s altitude values cannot be ignored. Although the training error of the RBNN
model is lower than the other two models, the fact that it is not successful in the test results
reveals the possibility of overfitting. Therefore, it is understood that it cannot produce a
robust response to external situations. This shows that the RBNN model is unsuitable for
this specific task compared to the other two.

When FFBPN and CFBPN are compared with each other, it is seen that FFBPN pa-
rameters provide more successful tracking. Again, although the train errors of these mod-
els are quite close to each other, the test results reveal that the train performance should
be evaluated in terms of its own hyperparameters within each network model. When the
flight performance of the parameters estimated by the two models is examined, the mod-
els do not reveal very different results in terms of latitude and longitude values. In con-
trast, in the flight study conducted with CFBPN, it is observed that there is an increase in
altitude on long straight roads and a decrease in corner points. This shows that the FFBPN
model is more successful than others in predicting altitude changes.

Additionally, feed-forward networks include only forward connections between lay-
ers, whereas cascade-forward networks also have direct connections of the inputs and
outputs of each layer to subsequent layers. While this enables cascade-forward networks
to model more complex relationships by capturing longer-range dependencies in the data
set, it may cause undesirable lengths of training time and the risk of overfitting in non-
complex data sets. Therefore, it is necessary to consider each artificial neural network
model by assessing the nature and properties of the data set.

Figure 16. The RMSE error graphs of (a) latitude, (b) longitude and (c) altitude values.

4. Discussion and Conclusions

In this study, the optimum PID gain parameters of the micro air vehicle planned to fly
in narrow apple orchard corridors are estimated with ANN. For this purpose, a data set is
created from latitude, longitude and altitude data of flights performed with PID parameters
randomly determined between significant lower and upper values. Since the realization of
flights with random PID parameters in the real environment involves high risks, the flights
are carried out in a simulation environment and artificial neural network models that make
predictions based on the position data followed by the micro aerial vehicle according to
parameter changes are developed with the obtained data set. Three different neural network
models are designed with FFBPN, CFBPN and RBNN architectures, which are frequently
used to determine the optimum PID gain parameters. The neural network models are
trained with different parameters and their performances are analyzed. The MSE values
obtained show significant differences between the models. In addition, in order to test the
success of the developed neural network models, simulation flights are performed using
the PID gain parameters obtained with the models showing the best training performance.
In the flight simulations, both FFBPN and CFBPN models exhibited successful trajectory
tracking performance in relation to their training performance, while FFBPN exhibited
superior altitude tracking capabilities. As a result, it has been demonstrated that the PID
parameters of a micro aerial vehicle can be tuned with artificial neural networks instead of
randomizing them and an alternative solution has been proposed for challenging conditions
where autotune mode cannot be used.

Author Contributions: B.U. (Burak Ulu) performed the simulation studies. S.S. and M.S.B. trained
artificial neural network models and analyzed the results. Ö.F.E. and Ş.Y. took part in the preparation
and evaluation of the data. B.U. (Banu Ulu) contributed to the development of the software used in
the study. A.K. led and guided the research in the evaluation and interpretation of the results. All
authors participated in the writing of the article. All authors have read and agreed to the published
version of the manuscript.

Sensors 2024, 24, 2752 17 of 18

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Almeida, D.R.A.; Broadbent, E.N.; Zambrano, A.M.A.; Wilkinson, B.E.; Ferreira, M.E.; Chazdon, R.; Meli, P.; Gorgens, E.B.; Silva,

C.A.; Stark, S.C.; et al. Monitoring the structure of forest restoration plantations with a drone-lidar system. Int. J. Appl. Earth Obs.
Geoinf. 2019, 79, 192–198. [CrossRef]

2. Mohsan, S.A.H.; Khan, M.A.; Noor, F.; Ullah, I.; Alsharif, M.H. Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive
Review. Drones 2022, 6, 147. [CrossRef]

3. Kim, I.-H.; Jeon, H.; Baek, S.-C.; Hong, W.-H.; Jung, H.-J. Application of Crack Identification Techniques for an Aging Concrete
Bridge Inspection Using an Unmanned Aerial Vehicle. Sensors 2018, 18, 1881. [CrossRef]

4. Chiang, W.-C.; Li, Y.; Shang, J.; Urban, T.L. Impact of drone delivery on sustainability and cost: Realizing the UAV potential
through vehicle routing optimization. Appl. Energy 2019, 242, 1164–1175. [CrossRef]

5. Foehn, P.; Brescianini, D.; Kaufmann, E.; Cieslewski, T.; Gehrig, M.; Muglikar, M.; Scaramuzza, D. AlphaPilot: Autonomous drone
racing. Auton. Robot. 2022, 46, 307–320. [CrossRef]

6. Tao, H.; Feng, H.; Xu, L.; Miao, M.; Long, H.; Yue, J.; Li, Z.; Yang, G.; Yang, X.; Fan, L. Estimation of Crop Growth Parameters
Using UAV-Based Hyperspectral Remote Sensing Data. Sensors 2020, 20, 1296. [CrossRef]

7. MassÉ, C.; Gougeon, O.; Nguyen, D.-T.; SaussiÉ, D. Modeling and Control of a Quadcopter Flying in a Wind Field: A Comparison
Between LQR and Structured H∞ Control Techniques. In Proceedings of the 2018 International Conference on Unmanned Aircraft
Systems (ICUAS), Dallas, TX, USA, 12–15 June 2018; pp. 1408–1417.

8. Perozzi, G.; Efimov, D.; Biannic, J.-M.; Planckaert, L. Trajectory tracking for a quadrotor under wind perturbations: Sliding mode
control with state-dependent gains. J. Frankl. Inst. 2018, 355, 4809–4838. [CrossRef]

9. Celen, B.; Oniz, Y. Trajectory Tracking of a Quadcopter Using Fuzzy Logic and Neural Network Controllers. In Proceedings of the
6th International Conference on Control Engineering & Information Technology (CEIT), Istanbul, Turkey, 25–27 October 2018;
pp. 1–6.

10. Wei, P.; Chan, S.N.; Lee, S.; Kong, Z. Mitigating ground effect on mini quadcopters with model reference adaptive control. Int. J.
Intell. Robot. Appl. 2019, 3, 283–297. [CrossRef]

11. Rothe, J.; Zevering, J.; Strohmeier, M.; Montenegro, S. A Modified Model Reference Adaptive Controller (M-MRAC) Using an
Updated MIT-Rule for the Altitude of a UAV. Electronics 2020, 9, 1104. [CrossRef]

12. Pérez, I.C.; Flores-Araiza, D.; Fortoul-Díaz, J.A.; Maximo, R.; Gonzalez-Hernandez, H.G. Identification and PID control for a
quadrocopter. In Proceedings of the International Conference on Electronics, Communications and Computers (CONIELECOMP),
Cholula, Mexico, 26–28 February 2014; pp. 77–82.

13. Lee, C.L.; Peng, C.C. Analytic Time Domain Specifications PID Controller Design for a Class of 2nd Order Linear Systems:
A Genetic Algorithm Method. IEEE Access 2021, 9, 99266–99275. [CrossRef]

14. Oersted, H.; Ma, Y. Review of PID Controller Applications for UAVs. arXiv 2023, arXiv:2311.06809. [CrossRef]
15. Wang, S.; Li, B.; Geng, Q. Research of RBF neural network PID control algorithm for longitudinal channel control of small UAV.

In Proceedings of the 10th IEEE International Conference on Control and Automation (ICCA), Hangzhou, China, 12–14 June
2013; pp. 1824–1827.

16. Gao, W.N.; Fan, J.L.; Li, Y.N. Research on Neural Network PID Control Algorithm for a Quadrotor. Appl. Mech. Mater. 2015,
719–720, 346–351. [CrossRef]

17. Yıldırım, Ş.; Ulu, B. Deep Learning Based Apples Counting for Yield Forecast Using Proposed Flying Robotic System. Sensors
2023, 23, 6171. [CrossRef]

18. Yıldırım, Ş.; Çabuk, N.; Bakırcıoğlu, V. Experimentally flight performances comparison of octocopter, decacopter and dodecacopter
using universal UAV. Measurement 2023, 213, 112689. [CrossRef]

19. Asadi, D. Partial engine fault detection and control of a Quadrotor considering model uncertainty. Turk. J. Eng. 2022, 6, 106–117.
[CrossRef]

20. Karachalios, T.; Moschos, P.; Orphanoudakis, T. Maritime Emission Monitoring: Development and Testing of a UAV-Based
Real-Time Wind Sensing Mission Planner Module. Sensors 2024, 24, 950. [CrossRef]

21. Khaneghaei, M.; Asadi, D.; Tutsoy, Ö. Software in the Loop (SIL) Simulation for an Autonomous Multirotor Flight Planning
and Landing with ROS and Gazebo. In Proceedings of the 7th International Symposium on Innovative Approaches in Smart
Technologies (ISAS), Istanbul, Turkey, 23–25 November 2023; pp. 1–10.

22. Noordin, A.; Mohd Basri, M.A.; Mohamed, Z. Real-Time Implementation of an Adaptive PID Controller for the Quadrotor MAV
Embedded Flight Control System. Aerospace 2023, 10, 59. [CrossRef]

https://doi.org/10.1016/j.jag.2019.03.014
https://doi.org/10.3390/drones6060147
https://doi.org/10.3390/s18061881
https://doi.org/10.1016/j.apenergy.2019.03.117
https://doi.org/10.1007/s10514-021-10011-y
https://doi.org/10.3390/s20051296
https://doi.org/10.1016/j.jfranklin.2018.04.042
https://doi.org/10.1007/s41315-019-00098-z
https://doi.org/10.3390/electronics9071104
https://doi.org/10.1109/ACCESS.2021.3093427
https://doi.org/10.48550/arXiv.2311.06809
https://doi.org/10.4028/www.scientific.net/AMM.719-720.346
https://doi.org/10.3390/s23136171
https://doi.org/10.1016/j.measurement.2023.112689
https://doi.org/10.31127/tuje.843607
https://doi.org/10.3390/s24030950
https://doi.org/10.3390/aerospace10010059

Sensors 2024, 24, 2752 18 of 18

23. Sánchez-Palma, J.; Ordoñez-Ávila, J.L. A PID Control Algorithm with Adaptive Tuning Using Continuous Artificial Hydrocarbon
Networks for a Two-Tank System. IEEE Access 2022, 10, 114694–114710. [CrossRef]

24. Pal, A.K.; Nestorović, T. Artificial Intelligence Neural Network Approach to Self Tuning of a Discrete-Time PID Control
System. In Proceedings of the 9th International Conference on Systems and Control (ICSC), Caen, France, 24–26 November 2021;
pp. 146–151.

25. Rodríguez-Abreo, O.; Rodríguez-Reséndiz, J.; Fuentes-Silva, C.; Hernández-Alvarado, R.; Falcón, M.D.C.P.T. Self-Tuning Neural
Network PID with Dynamic Response Control. IEEE Access 2021, 9, 65206–65215. [CrossRef]

26. Bari, S.; Hamdani, S.S.Z.; Khan, H.U.; Rehman, M.u.; Khan, H. Artificial Neural Network Based Self-Tuned PID Controller
for Flight Control of Quadcopter. In Proceedings of the International Conference on Engineering and Emerging Technologies
(ICEET), Lahore, Pakistan, 21–22 February 2019; pp. 1–5.

27. Gómez-Avila, J.; López-Franco, C.; Alanis, A.Y.; Arana-Daniel, N. Control of Quadrotor using a Neural Network based PID.
In Proceedings of the IEEE Latin American Conference on Computational Intelligence (LA-CCI), Gudalajara, Mexico, 7–9
November 2018; pp. 1–6.

28. Esim, E.; Yıldırım, Ş. Drilling performance analysis of drill column machine using proposed neural networks. Neural Comput.
Appl. 2017, 28, 79–90. [CrossRef]

29. Eski, I.; Erkaya, S.; Savas, S.; Yildirim, S. Fault detection on robot manipulators using artificial neural networks. Robot. Comput.-
Integr. Manuf. 2011, 27, 115–123. [CrossRef]

30. Jesus, O.D.; Hagan, M.T. Backpropagation Algorithms for a Broad Class of Dynamic Networks. IEEE Trans. Neural Netw. 2007, 18,
14–27. [CrossRef] [PubMed]

31. Shohda, A.M.A.; Ali, M.A.M.; Ren, G.; Kim, J.-G.; Mohamed, M.A.-E.-H. Application of Cascade Forward Backpropagation
Neural Networks for Selecting Mining Methods. Sustainability 2022, 14, 635. [CrossRef]

32. Tengeleng, S.; Armand, N. Performance of Using Cascade Forward Back Propagation Neural Networks for Estimating Rain
Parameters with Rain Drop Size Distribution. Atmosphere 2014, 5, 454–472. [CrossRef]

33. Loy, J. Neural Network Projects with Python: The Ultimate Guide to Using Python to Explore the True Power of Neural Networks through
Six Projects; Packt Publishing Ltd.: Birmingham, UK, 2019.

34. Sohrabi, P.; Jodeiri Shokri, B.; Dehghani, H. Predicting coal price using time series methods and combination of radial basis
function (RBF) neural network with time series. Miner. Econ. 2023, 36, 207–216. [CrossRef]

35. Deng, Y.; Zhou, X.; Shen, J.; Xiao, G.; Hong, H.; Lin, H.; Wu, F.; Liao, B.-Q. New methods based on back propagation (BP) and
radial basis function (RBF) artificial neural networks (ANNs) for predicting the occurrence of haloketones in tap water. Sci. Total
Environ. 2021, 772, 145534. [CrossRef]

36. Zhou, S.; Yang, C.; Su, Z.; Yu, P.; Jiao, J. An Aeromagnetic Compensation Algorithm Based on Radial Basis Function Artificial
Neural Network. Appl. Sci. 2023, 13, 136. [CrossRef]

37. He, H.; Yan, Y.; Chen, T.; Cheng, P. Tree Height Estimation of Forest Plantation in Mountainous Terrain from Bare-Earth Points
Using a DoG-Coupled Radial Basis Function Neural Network. Remote Sens. 2019, 11, 1271. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2022.3217209
https://doi.org/10.1109/ACCESS.2021.3075452
https://doi.org/10.1007/s00521-016-2322-8
https://doi.org/10.1016/j.rcim.2010.06.017
https://doi.org/10.1109/TNN.2006.882371
https://www.ncbi.nlm.nih.gov/pubmed/17278458
https://doi.org/10.3390/su14020635
https://doi.org/10.3390/atmos5020454
https://doi.org/10.1007/s13563-021-00286-z
https://doi.org/10.1016/j.scitotenv.2021.145534
https://doi.org/10.3390/app13010136
https://doi.org/10.3390/rs11111271

	Introduction
	Methodology
	Software Specifications
	Standard PID Controller System
	Proposed Artificial Neural Network (ANN)

	Simulation Results
	Estimation of PID Parameters
	Flight Performance Tests

	Discussion and Conclusions
	References

