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Abstract: This study presents a novel audio compression technique, tailored for environmental
monitoring within multi-modal data processing pipelines. Considering the crucial role that audio
data play in environmental evaluations, particularly in contexts with extreme resource limitations,
our strategy substantially decreases bit rates to facilitate efficient data transfer and storage. This is
accomplished without undermining the accuracy necessary for trustworthy air pollution analysis
while simultaneously minimizing processing expenses. More specifically, our approach fuses a
Deep-Learning-based model, optimized for edge devices, along with a conventional coding schema
for audio compression. Once transmitted to the cloud, the compressed data undergo a decoding
process, leveraging vast cloud computing resources for accurate reconstruction and classification.
The experimental results indicate that our approach leads to a relatively minor decrease in accuracy,
even at notably low bit rates, and demonstrates strong robustness in identifying data from labels not
included in our training dataset.

Keywords: deep learning; environmental sound classification; audio encoding; Internet of Things;
multi-modal sensing; resource-constrained environments; environmental monitoring

1. Introduction

The integration of Internet of Things (IoT) and Artificial Intelligence (AI) technolo-
gies into environmental monitoring has proclaimed a new era, transforming traditional
approaches regarding smart city development and smart agriculture while enhancing
sustainability and efficiency. In environmental monitoring, Smart Environment Monitoring
(SEM) systems utilize IoT and modern sensors, along with machine learning techniques,
for precise monitoring and effective management of both air and water quality, radiation
pollution, and agricultural conditions [1]. For smart cities, IoT and AI technologies optimize
urban operations, improving sustainability, productivity, and quality of life by analyzing
extensive data generated from interconnected devices [2]. Additionally, this synergy plays a
crucial role in developing environmentally sustainable smart cities, leveraging data-driven
technologies alongside green strategies, to address urban environmental sustainability chal-
lenges [3]. In agriculture, the AIoT (convergence of AI and IoT) revolutionizes traditional
farming practices by addressing key challenges such as pest management and post-harvest
issues, making agriculture more efficient and resilient [4].

Building on these advancements, recent research has further validated the strengths
and has addressed the limitations of sensor technologies integral to these systems. For
instance, studies focusing on urban air quality monitoring in Lisbon [5] have revealed the
capacity of sensor technologies to pinpoint pollution sources with high precision, confirm-
ing the crucial role of human activity in shaping environmental health [6–8]. Similarly,
innovative deployments underscore both the adaptability and potential of sensor technolo-
gies to gather high-quality data across various domains, e.g., healthcare [9]. However, the
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deployment and maintenance of these technologies pose challenges, notably with regard
to calibration and data integrity, necessitating frequent calibration and robust validation
processes to ensure reliability [10]. Despite these limitations, the evolving landscape of
sensor technology, supported by rigorous research, continues to drive progress in IoT and
AI applications, promising more sustainable and efficient solutions across environmental
monitoring, smart cities, and agriculture.

Incorporating mobile sensor technologies into IoT- and AI-powered systems can en-
gage citizens in the process of data collection. Initiatives in IoT applications have pivoted
towards enhancing community engagement [11] in tracking air pollution, introducing a
model where citizens, armed with affordable sensor technology, play a crucial role in the
data collection process [12]. This model not only democratizes the monitoring of air quality,
but also boosts the diversity of the data collected, covering a wider geographic area and
capturing more frequent updates. To further boost participation, the introduction of gamifi-
cation techniques has been explored, leveraging the motivating aspects seen in applications
within the Agri-Food sector focused on sustainability [13]. Fostering inclusive participa-
tion ensures that these environmental monitoring solutions are designed to be accessible
and engaging for the entire community, while highlighting a comprehensive approach
that merges technology with community action to promote environmental awareness and
behavioral change.

As far as air pollution and environmental monitoring are concerned, extensive research
to understand the relationship between air pollution and urban environmental factors has
been conducted. This has resulted in the development of methods that utilize Deep Neural
Networks (DNN) and Temporal Feature Integration (TFI) for accurate predictions regarding
the levels of air pollution [14]. Current approaches consider various data modalities with air
pollution information [15–17]. However, there is a noticeable gap in the collection and joint
analysis of environmental audiovisual content in natural settings alongside air pollution
data [18], or in combining such data with diverse modalities. Recent advancements in
environmental sound classification have shown promising results. These methods use
varied audio representations and DNN architectures, demonstrating their effectiveness in
classification tasks. For example, ref. [19] extracts air pollution information through audio
analysis. This process gathers audio through smartphones and conducts the environmental
sound classification by identifying sources of pollution. The Bee-Mate module [20] has been
implemented in mobile citizen science applications in order to address issues such as sensor
calibration, data enhancement, citizen engagement, and gamification. This module allows
citizens to capture audio–visual content with their smartphones. In order to identify the
level of pollution for specific locations, it further processes this multi-modal information by
engaging large audiences and capturing information for multiple sites. Bee-Mate exploits
the potential of a DNN-based image classifier and the aforementioned sound classifier to
conduct air pollution analysis.

However, these models often consist of a large number of parameters [21], posing a
challenge in terms of implementation in edge devices due to their complexity and size.
Moreover, and specifically for audio processing models, they usually receive spectral
representations as inputs (i.e., spectrograms, mel spectrograms, etc.) [22]. This process not
only adds overhead with respect to memory consumption, but also increases the processing
costs. Therefore, instead of performing on-device downstream tasks, information can be
gathered through edge devices and transferred to the resourceful cloud. Approaches such
as those described in [23,24] are used to conduct on-device data gathering and transfer this
information to powerful computational systems in order to perform downstream tasks.
The current research focuses on increasing the feasibility and efficiency of audio-driven
(indirect) air pollution monitoring (causing zero discomfort), thus making it available to
broad audiences through citizen science models, with minimum intervention in terms of
equipment and human effort requirements.

In this study, we propose a system to efficiently transmit and classify urban environ-
mental audio samples, as depicted in Figure 1. Within this context, the system receives
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audio through smartphones and encodes it into a smaller representation. This representa-
tion is transferred to the cloud, where it is decoded so that robust DNN-based classifiers
conduct environmental analysis. The key contributions of this study are as follows:

• A DNN-based model is used to encode audio. The result of this process undergoes
further encoding/decoding by exploiting traditional lossy and contemporary lossless
encoding techniques.

• The compression method employs a minimal number of parameters, facilitating its
implementation on devices with limited processing capabilities.

• The system is optimized for extremely low bit rate transmission to the cloud.
• The process allows for various classification tasks to be performed with the encoded

and decoded audio, without any significant loss in accuracy.
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Figure 1. High-level representation of our proposed approach. Edge devices of an IoT network
gather data, perform on-device coding, and transmit the information to the cloud. Powerful machines
decode the gathered information and exploit large DNN-based models for downstream tasks.

In addition to enhancing citizen engagement in data collection processes, our proposed
solution offers notable advantages for a wide range of applications that process audio data.
By optimizing the encoding and transmission of audio samples, our approach not only
minimizes associated costs, but also substantially reduces the storage requirements for
maintaining this information. This optimization has far-reaching implications, potentially
transforming practices in various sectors, such as traffic monitoring and industrial mon-
itoring to name a few. Consequently, the broader adoption of our solution could lead to
substantial cost savings and efficiency improvements across these diverse fields.

The paper is structured as follows. In Section 2, related work on environmental data
analysis is referenced, in Section 3 the methodology, dataset preparation, architecture, and
technical details of the proposed method are introduced, in Section 4 the experimental
results are presented, in Section 5 the results are discussed and analyzed, and, in Section 6,
the research is summarized and concluded.
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2. Related Work

Since our method proposes a system that combines audio encoding and classification,
it was considered essential that the current status of the literature concerning both scientific
fields should be presented. Classification in the context of machine learning is a process
where a model is trained to categorize data into predefined classes or labels. This is
achieved by learning from a dataset that contains examples of different categories. The
model, typically a form of a neural network or a statistical algorithm, learns to recognize
patterns or characteristics that are indicative of each class. Once trained, the model can then
be used to classify new, unseen data, assigning them to one of the learned categories. This
technique is widely used in various fields, from image and speech recognition to medical
diagnosis, where it aids in identifying and categorizing data based on learned patterns,
thereby facilitating decision-making processes and predictive analyses.

Ref. [25] employed a technique that merged a substantial volume of unlabeled audio
and visual data to generate embeddings, which were then used to train a classifier on a
minimal dataset of labeled samples. This method integrates L3 embeddings [26] into a
single vector using the x-vector approach [27]. This not only categorizes environmental
sounds, but also identifies samples outside this category. Another study [28] devised a
strategy for multi-channel audio analysis. This method uses raw, harmonic, and percussive
log-mel spectrogram features and leverages models pre-trained on ImageNet for feature
extraction in environmental sound classification. Ref. [29] introduced an approach that
employs a pre-trained network for end-to-end audio embeddings generation through raw
audio data. They also used transfer learning techniques for audio classification. Lastly,
Ref. [30] utilizes a vision transformer pre-trained on ImageNet, applying transfer learning
to environmental sound classification. In this approach, the raw audio input is transformed
into a spectrogram representation by computing log mel-filterbank features. Specifically for
environmental sound classification on edge devices, ACDNet [31] has been proposed as a
lightweight DNN-based model that receives input raw audio, minimizing processing costs
and memory consumption. The model is composed of two blocks: the Spectral Features
Extraction Block (SFEB) and the Temporal Features Extraction Block (TFEB). Authors of
ACDNet have also proposed a pipeline for compressing the model to fit in extremely
resource-constrained environments, with a relative accuracy drop of 7%, while the relative
drop in parameters is ~97.2%.

On the other hand, most DNN-based architectures receive a processed represen-
tation of the raw audio, usually in the form of spectrograms or mel-spectrograms, as
input. Apart from increasing the processing costs, this step relies on larger audio chunks
(5–10 s long) [32–34] and produces a combination of spectro-temporal representations with
different window lengths and hop sizes, further increasing memory consumption. On
top of that, the aforementioned methods rely on a vast number of parameters to provide
high accuracy [31], representing a constraint on edge devices. Specifically, for applications
that rely on multiple modalities for decision making (e.g., audio–visual content as in L3),
the high computational demand and memory requirements can significantly hinder the
deployment of these DNN-based systems. This is particularly challenging in scenarios
where real-time processing is crucial, such as in interactive applications or those requiring
immediate response. The integration of multiple data streams, such as audio and visual
inputs, not only compounds the computational load but also necessitates sophisticated
algorithms capable of efficiently synchronizing and interpreting these diverse data types.
Consequently, there is a growing need for optimized models that balance accuracy with
computational efficiency, especially for use in edge computing devices where resources
are limited. Specifically, for IoT-based applications, Stamatiadou et al. [19] proposed a
solution that involves a 1-D CNN-based classifier that reveals the relation of the gathered
audio with air pollution. This system involves 1 s long audio chunks sampled at 22.05 kHz.
Combined with the simplistic classifier, the proposed system does not increase processing
costs nor memory consumption.
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Compression [35] involves the act of diminishing the size of a sample to make it more
manageable for storage, transmission, or presentation. Compression algorithms fall into
two primary categories: lossless and lossy. Lossless algorithms are capable of compressing
and reconstructing the original sequence without any errors, whereas lossy algorithms
introduce errors during the reconstruction process. Perceptual audio coding endeavors to
blend elements of both lossless and lossy techniques, taking into account human perception
to minimize the impact of information loss.

Advances in Artificial Intelligence have shown the potential of Neural Networks
toward compression and reconstruction. Currently, developed speech-based DNNs com-
press the original audio while maintaining the overall quality on significantly low bit rates.
The employment of loss functions based on psychoacoustic models [36] or based on the
utilization of GAN-based architectures [37] has been proven capable of producing content
distortion imperceptible to the human ear. Nevertheless, they typically comprise millions
of parameters, presenting difficulties with respect to deployment in resource-constrained
environments. With regard to audio coding on edge devices, Emvoliadis et al. [38] pro-
posed a system that gathers environmental audio on edge devices that are equipped with
a lightweight audio encoding method. The processed information is transferred to the
resourceful cloud to reconstruct the original signal and perform classification. This work is
built upon this system and extends it by minimizing the achieved bit rates using a two-stage
audio coding scheme. The transferred information is either classified as it is or it is used
to reconstruct the original signal. Finally, the method exploits an ensemble of pre-trained
Computer Vision (CV) models [31] to perform multi-label classification.

Deep Learning has seen successful applications in the realms of audio compression and
classification, yet there remains a notable void in fine-tuning audio encoding techniques for
subsequent analytical tasks. Traditional and modern approaches to audio encoding have
been tailored, predominantly, to human listeners, diverging from the needs of automated
machine-learning-based audio classification. Our study seeks to fill this void by introducing
a method specifically designed to encode and decode audio tailored to machine analysis
rather than human ears. While current solutions for audio encoding rely on Deep Neural
Network (DNN) architectures characterized by their extensive parameter counts, our
approach utilizes a streamlined DNN model for the encoding and decoding processes.
This model is then integrated with a traditional data compression scheme to achieve even
greater compression rates, marking a significant advancement in the field.

3. Materials and Methods

This section describes the two-stage environmental sound compression and classifi-
cation method. Each module is trained separately upon the same dataset, using different
augmentation methods to increase the amount of training data. The proposed method
is split into three mechanisms: data preparation, sound encoding–decoding, and sound
classification mechanism.

3.1. Data Preparation

This subsection describes in detail the strategy for data gathering and preparation.
Since our method refers to environmental monitoring applications, we exploited the ESC-
50 [39] dataset, a labeled collection of 2000 audio chunks of 5 s each. These samples
are organized into 50 semantic classes, each consisting of 40 samples. These classes are
loosely arranged into five major categories:Animals, Natural Sounds, Human non-speech
sound, Interior/domestic sounds, and Exterior/urban noises. From this collection, we
defined as classes of interest the 22 that refer to urban environmental audio [34]. From
these, we formed a binary taxonomy that generated distinct classes of sounds that are
Pollution-Related (PR) and Non-Pollution Related (NPR).

For the final dataset, we performed downsampling from 44.1 kHz to 22.05 kHz in
order to decrease memory consumption costs in real-world scenarios. To avoid further
increase in processing costs, the input to each model consisted of the raw audio waveform
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instead of the frequently used spectral representations. In addition, we exploited the PERSA
framework [40] as a data preprocessing step in order to remove noisy and silent segments.
Finally, we introduced a sliding window technique for data augmentation, with a window
length of 25 ms, applied to each sample in the aforementioned dataset.

3.2. Sound Encoding–Decoding Mechanism

This subsection describes the sound encoding–decoding mechanism. As previously
said, this mechanism is composed of a DNN model along with a conventional audio coding
methodology, leading to a two-stage audio coding pipeline. Hence, this methodology is
split into the DNN-based encoding and the conventional coding.

The Auto-Encoders (AEs) are commonly used algorithms from the field of Deep
Learning (DL) for data compression that are able to capture complex structures. AEs
are composed of two sub-networks, jointly trained: the encoder and the decoder. The
encoder compresses the input sequence into a latent vector and the decoder, given this
vector, reconstructs the original sequence. AEs are lossy algorithms, meaning that the
reconstruction step will produce a sequence very close to the original one, yet not identical.
Our proposed methodology fuses an AE with traditional compression schemas based on
both lossy and lossless compression techniques, forming a two-stage compression and
decompression approach. The first stage produces a compressed sequence via the encoder.
Conventional compression schemas are applied to this output for further compression. The
inverse process is followed to reconstruct the original signal.

3.2.1. DNN-Based Encoding

AEs and their variations [41,42] have been widely studied in fields such as denoising,
detection of anomalies, and data compression [43–45]. The main focus of this paper is data
compression. Considering an input vector x of length L, AE compresses and reconstructs
the input with the following operations.

zc = h(x; ϑE) (1)

y = g(zc; ϑD) (2)

In Equations (1) and (2), the variable zc signifies the compressed representation re-
sulting from the encoder. The symbols ϑE and ϑD represent the parameters linked to the
encoder and the decoder, respectively. The functions h and g stand for the encoding and
decoding operations. Additionally, x and y correspond to the original and reconstructed sig-
nals, respectively. For our experiments, we considered a three-convolutional-layer encoder,
a dense layer to form the compressed representation, and a three-Transposed-Convolutional
(TC)-layer decoder.

Convolutional layer: each convolutional layer was configured with a kernel of size 7
and had 32 k filters, where k represents the number of layers. Bias was introduced and a
dropout layer (p = 0.2) followed to avoid overfitting. We employed the hyperbolic tangent
(tanh) as the activation function to ensure that the output of each block contained both
positive and negative values similar to the network input. Finally, downsampling was
performed via average pooling layers.

Dense layer: the compressed representation was produced using a dense layer, which
gets, as input, an xin ∈ RN×Lc tensor and, as output, a xout ∈ R1×Lc . Therefore, the result
was a non-linear mixing of the N filter outputs. This one-dimensional representation can
be further compressed by an ordinary audio compression scheme formulated by lossy and
lossless methods which will be described shortly.

TC layer: the compressed representation was fed into the decoder that consisted of
TC layers. Each layer was configured so that its output matched the input of the mirrored
encoder layer. Upsampling was performed by setting the stride of each TC layer to 2, while
the activation function remained the same as in the convolutional layers and a dropout
layer followed.



Sensors 2024, 24, 2755 7 of 18

The abovementioned pipeline achieved a compression ratio of Fs × T × Lc, where
Fs is the sampling frequency of the original input, T corresponds to the signal duration
in seconds, and Lc is the length of the bottleneck representation. The decoder received
the bottleneck output and was dedicated to generating a sequence nearly identical to
the encoder input. The model was trained in the PR class. The data augmentation step
involved a sliding window technique of 20 ms. The model was trained for 70 epochs using
Adam optimizer with a learning rate of 0.0001, minimizing the Mean Squared Error (MSE)
between original and reconstructed signals.

3.2.2. Conventional Coding

The second stage compression employed a transformation to obtain the signal fre-
quency components. These components were quantized and transformed into a byte
sequence. The latter was further compressed using lossless compression schemas. As a
first step, we applied a Discrete Cosine Transformation (DCT) [46] to the bottleneck output.
DCT is a mathematical transformation, formulated in Equation (3), that analyzes signals
with respect to their frequency components and is commonly used for audiovisual content
compression. The result of this transformation underwent quantization via multiplication
with 2N , where N represents the quantization level, and was then rounded down to the
nearest integer. This series of steps generated a sequence of integer values. Subsequently,
we created a byte-based representation of the integer sequence. This aimed at leveraging
state-of-the-art lossless compression algorithms. Lossless compression identifies and ex-
ploits repetitions or similarities and patterns present in the original sequence. An example
of a traditional lossless compression algorithm is Lempel–Ziv–Welch (LZW) [47]:

Xk = ∑N−1
n=0 xncos[π/N(n + 0.5)k], k = 0, 1, . . . , N (3)

LZW replaces repetitive data with references to earlier instances of the same data. It
employs a fixed-length sliding window and a lookahead buffer to scan input data. At each
buffer position, it searches for the longest matching sequence within the sliding window. It
then encodes the pair (L, D), where L represents the match length and D is the backward
offset from the current position to the start of the matched data in the sliding window.
During decoding, a sliding window and a buffer store the decompressed sequence. If a
match is found, the algorithm reads and transfers data from the sliding window, otherwise
it copies a literal character.

Brotli [48] and Zstandard (Zstd) [49] are SOTA lossless compression algorithms devel-
oped by Google and Facebook, respectively. Brotli combines LZW, Huffman coding, and
second-order context modeling [50], leading to faster encoding and improved compression
ratios than traditional methods. Brotli utilizes a predefined dictionary of 120 kB in size.
Zstd also relies on the LZW approach and combines it with finite state entropy [51] and
Huffman. Similar to Brotli, Zstd uses a dictionary-based approach. Lastly, Zstd provides
a learning dictionary method that efficiently compresses various data types. In our pro-
posed approach, unlike VQ-VAE [41] which relies on a predefined dictionary and increases
memory consumption, both Brotli and Zstd are able to dynamically encode data with-
out the need for a pre-defined dictionary, thereby maintaining memory consumption at
feasible levels.

The overall encoding pipeline is depicted in Figure 2. Captured audio was the input
to our model. The encoder was applied as the first compression stage and was followed
by DCT to obtain the backbone frequency components. This sequence, given a level, was
quantized and floored. The output was transformed into a list of bytes that was further
compressed via the aforementioned lossless compression algorithms in a Variable Bit Rate
(VBR) fashion. For our experiments, we considered the DCT type II and the quantization
levels range between 4 and 6.
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Figure 2. The two-stage encoding method. The encoder output is processed through DCT. The
extracted frequency components are quantized and encoded by Brotli or Zstd.

3.3. Classification Mechanism

The ESC-50 dataset was processed to generate a new taxonomy that included sounds
either related or not related to pollution. Since our approach involves audio processing
in IoT-based applications, we also deal with the whole ESC-50 taxonomy and the super
categories into which these classes are loosely arranged.

The former classification mechanism concerns the ACDNet. ACDNet has also been
exploited in a pipeline for compressing and deploying the model into extremely resource-
constrained environments. In addition, we exploited the classifier proposed in [34]. For
this specific classifier, we considered two topologies: one that received the reconstructed
signal, containing a larger number of parameters, and one that classified the encoded audio,
which is composed of fewer parameters. Each classifier was trained as proposed in [30] for
reproducibility purposes.

Regarding the latter classification mechanism, the outcome of the two-stage audio
coding method was transferred to the cloud and was used to reconstruct the original
signal. This information was utilized to generate spectral representations as in [31]. These
representations were fused and served as input to an ensemble of fine-tuned CV pre-trained
models. This scheme aimed to perform classification over the total classes and their super
categories. The rationale behind this mechanism was to evaluate the potential of our method
to examine whether it is possible to achieve extremely low bit rates regarding on-device
audio coding and perform classification on the cloud without sacrificing accuracy. By this,
we aimed to minimize the computational costs on the Device Layer and the transferring
costs to the Server Layer. The latter is equipped with very large models that have shown
their potential on heavy classification tasks, while their size is a major constraint when
deploying them on low-cost sensors. The training process and hyper-parameters were the
same as those described in [31].

3.4. Overall Pipeline

The previous sections describe the proposed methodology. In real-world applications,
the Device Layer is equipped with the AE encoder and the conventional encoding algorithm.
This cascaded compression scheme achieves significantly low bit rates, indicating that the
encoded audio can be easily transferred. Server Layer received the processed information
and reconstructed the originally received audio. Either the reconstructed or the compressed
signal can be used for downstream tasks. The overall pipeline is depicted in Figure 3.
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Figure 3. The proposed methodology. The Device Layer is equipped with the two-stage encoding
algorithm. The output of this process is transmitted and decoded in the cloud. Downstream tasks
could now be performed through large DNN-based models on the auto-encoder’s reconstructed
latent vector (second-stage decoding) or the reconstructed signal.

4. Results

Due to the combination of an audio encoding–decoding process and a classification
process that our approach exploits, the performance metrics should not only refer to the
classification task, but also should consider the quality of the reconstructed signal. That is
why we evaluate the potential of the proposed encoding–decoding scheme under essential
metrics for signal reconstruction. The first sub-section provides information about the
quality of the reconstructed signal utilizing objective metrics gathered from the literature.
The second provides insights into the classification mechanisms. These refer to both binary
and multi-label classification tasks. Binary classification involves the ACDNet and two
conventional 1-D CNN classifiers, which receive as input either the reconstructed or the
compressed signal. On the other hand, the multi-class classification task refers to the
50-class classification and the soundscape classification problem (five-class classification).
These classification schemas involve an ensemble of pre-trained CV models, assuming that
the encoder and its output can be deployed and transferred through resource-constrained
environments. Finally, we have conducted five-fold cross-validation as suggested by the
dataset’s developers.

4.1. Audio Reconstruction

As discussed in Section 3.2.1, the utilized DNN model is relatively simple, incorpo-
rating convolutional and transposed convolutional layers. It is worth noting that the AE
model was trained upon samples that exist in the PR class in order to evaluate its robustness
on samples that do not exist in the training set (e.g., samples from the NPR class). The plain
deep encoder received as input a vector of length 22,050 while outputting a vector of length
2751, leading to a compression ratio of ~8 utilizing approximately 50 k parameters. The
final bit rate was computed by transforming the second stage output from a list of bytes
to a sequence of bits. To investigate the representations learned by the deep encoder, we
retrieved the time-domain filters produced during training (Figure 4). These filters reveal a
functionality similar to that of low-pass filters. The first layer consists of parabolic filters,
the second layer generates ramp-like filters, while the last layer introduces more complex,
similar to triangular, filters. Each one of the developed filters generates an output with
a decreased dynamic range. Examining the log-power spectrograms of the original and
reconstructed audio (Figure 5), we observe that the backbone low-frequency characteristics
are captured precisely. However, our method fails to capture high-frequency components
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and inserts clicks. This can be verified by examining the differences between the two
spectrograms. While being unable to preserve high-frequency components, traditional
audio codecs introduce noise in the low-frequency ones.
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Figure 5. Examples of log-power spectrograms regarding the original (top), Opus operating at
6 kbps (middle), and the proposed codec (bottom) operating at 3.3 kbps (AE + Brotli, N = 4). Both
Opus and the proposed method insert noise in low frequencies and cannot capture higher frequency
components. On the other hand, Opus seems to be noisier than the proposed approach.
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Here, we compare the proposed method against Opus [52] conventional codec. In
order to assess the efficacy of the proposed approach, we measured the performance of
three key metrics: Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Metric
(SSIM) [53], and Perceptual Evaluation of Audio Quality (PEAQ) [54]. To calculate PSNR,
we extracted the squared dynamic range of the original signal and divided it by the Mean
Squared Error (MSE) between the original and reconstructed signals. For SSIM and PEAQ,
signal normalization within the range between 0 and 1 was executed. Specifically for
PEAQ, we performed downsampling to 16 kHz to match the requirements of the used
software. A comprehensive comparison between different configurations and Opus codec
is presented in Table 1. There, it can be observed that the reconstructed signal slightly
degraded from the AE output, even for significantly low bit rates. Both compression
formats show similar performance, with Zstd being faster while Brotli achieved lower bit
rates. Using a predetermined dictionary was not found to enhance performance, whereas
employing an empty dictionary was found to prevent additional memory usage.

Table 1. Evaluation results relative to the PR class regarding the quality of the reconstructed signal.
* implies the usage of a predefined dictionary.

Method Level (N) Bit Rate (kbps) PEAQ SSIM PSNR
(dB)

AE —- 44 3.34 0.84 29.8

AE + Brotli *

6 8.9 3.26 0.83 28.9

5 5.9 3.07 0.82 27.6

4 3.3 2.79 0.80 25.5

AE + Brotli

6 8.9 3.26 0.83 28.9

5 5.9 3.07 0.82 27.6

4 3.3 2.79 0.80 25.5

AE + Zstd *

6 9.2 3.26 0.83 28.9

5 6.1 3.07 0.82 27.6

4 3.4 2.79 0.80 25.5

AE + Zstd

6 9.2 3.26 0.83 28.9

5 6.1 3.07 0.82 27.6

4 3.4 2.79 0.80 25.5

Opus

—- 44 4.16 0.92 34.1

—- 12 3.26 0.80 28.6

—- 6 2.41 0.68 24.7

Finally, we evaluated our method’s performance on signal reconstruction with respect
to the NPR class at significantly low bit rates. This experiment allowed us to examine the
level of generalizability of the proposed method and the results are presented in Table 2.

Table 2. Evaluation results relative to the NPR class regarding the quality of the reconstructed signal
at significantly low bit rates.

Method Level (N) Bit Rate (kbps) PEAQ SSIM PSNR
(dB)

AE —- 44 3.08 0.82 29.0

AE + Brotli 4 2.6 2.58 0.79 25.0

AE + Zstd 4 2.8 2.58 0.79 25.0

Opus 4 6 2.46 0.70 24.7
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4.2. Audio Classification

In this part of the experiment, we evaluated the performance of our approach regarding
the classification task using frequently used classification metrics. Precision is defined as
the ratio between the number of True Positives (TP) and the total number of TP and False
Positives (FP). Recall is defined as the ratio between the number of TP and the total number
of TP and False Negatives (FN). F1-score is an informative metric used for imbalanced
classification problems and is defined as the harmonic mean between precision and recall.
Finally, accuracy is defined as the ratio between the total number of TP and True Negatives
(TN) and the total number of samples in the set.

4.2.1. Binary Classification

For the binary classification task, at first, we examined the behavior of a SoA classifier
and two 1-D CNN-based classifiers. For the latter, each classifier received the reconstructed
and compressed signal, accordingly. This step allowed to:

(1) Examine the behavior of each classifier with respect to each representation.
(2) Conduct a fair comparison.

In addition, we accounted for the complexity of each classifier. ACDNet is composed
of roughly 4.7 M parameters. On the other hand, the 1-D CNN classifier that receives
the reconstructed and original signals includes ~100 k parameters and the classifier that
receives the compressed representation as input includes ~80 k parameters. Table 3 summa-
rizes the classification results regarding each classifier and each representation regarding
our pipeline.

Table 3. Classification results regarding the original and reconstructed representations of the plain
AE for different classification models. Names in parentheses indicate the input to each model.

Model Precision Recall F1-Score Accuracy

ACDNet (original) 90.04% (4.01) 90.27% (3.27) 90.24% (3.34) 91.47% (4.34)

1D-CNN (original) 73.27% (6.52) 74.42% (5.86) 73.63% (5.12) 74.25% (5.16)

ACDNet (reconstructed) 89.00% (6.23) 89.81% (4.62) 88.87% (1.53) 89.25% (1.69)

1D-CNN (reconstructed) 81.77% (8.68) 82.26% (6.12) 80.63% (5.34) 80.75% (5.16)

1D-CNN (compressed) 86.22% (4.32) 86.07% (3.73) 85.91% (2.56) 85.75% (2.91)

From Table 3, it can be observed that ACDNet outperformed any other model with
respect to the binary classification setup. The 1D-CNN that received the original input
showed poor performance as it performed slightly better than a random classifier. On the
other hand, there was a relatively low drop in terms of relative accuracy with respect to
the ACDNet for both original and reconstructed signals. The conventional 1D-CNN model
showed a better performance when receiving the reconstructed signal as input instead
of the original audio. Lastly, the compressed representation was found to be more easily
classified by such a model, compared to the original and reconstructed signals.

The above results refer to classification mechanisms that received the original and
compressed or reconstructed signals that the plain AE had generated. Following intro-
duction of the second stage audio coding scheme, the bit rate experienced a reduction,
while the produced signal did not degrade a lot compared to the reconstructed signal that
the plain AE had produced, as Table 1 presents. Given these results, we further exploited
the ACDNet architecture along with different quantization levels to classify between PR
and NPR classes, achieving significantly low bit rates. This task employed both Brotli
and Zstd lossless algorithms to evaluate the potential of the proposed two-stage audio
encoding–decoding methodology.

Table 4 shows that, while our approach was overtaken by Opus at low bit rates, it
tended to experience a rapid decline in classification performance as the bit rate dropped.
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Conversely, our method demonstrated noteworthy performance, particularly at remark-
ably low bit rates, and, despite the absence of high-frequency harmonics, outperformed
Opus when the latter operated at higher bit rates. Regarding the lossless state-of-the-
art algorithms that our method employs, both revealed their robustness in terms of
classification performance.

Table 4. Classification results of different audio coding configurations and the original audio that the
ACDNet classifier received as input.

Input Level (N) Bit Rate (kbps) Accuracy

Original —- 256 91.47%

AE (plain) —- 44 89.25%

AE + Brotli

4 3.3 87.97%

5 5.9 88.65%

6 8.9 90.88%

AE + Zstd

4 3.4 87.97%

5 6.1 88.65%

6 9.2 90.88%

Opus

—- 44 89.75%

—- 12 86.52%

—- 6 72.34%

4.2.2. Multi-Label Classification

As a final evaluation step, we followed the exact same approach proposed in [31],
which is a viable solution for our set-up. At first, the encoder network was lightweight,
consisting of less than 50 k parameters. Then, the achieved bit rates, the reconstructed
signal’s distortion, and the performance of a state-of-the-art classifier showed that a machine
is able to perform binary classification.

Therefore, we processed the whole ESC-50 taxonomy under the proposed two-stage
audio coding scheme and fine-tuned several pre-trained CV models. More specifically, this
approach split each 5 s sample into 1 s segments and passed these through the proposed
audio coding method. These segments were concatenated to form the original audio. We
generated three mel-scaled spectrograms with varying hop lengths and window sizes,
forming the input to each pre-trained CV model. For our experiments, we considered a
DenseNet [55], a ResNet [56], a ConvNext [57], an EfficientNet [58] and a Wide ResNet [59].

After evaluating each model individually, we built an ensemble of these models
and compared the results with a pre-trained ResNet-18, fine-tuned on the original audio
samples, following the exact same process. Finally, this experiment considered the total of
the 50-class classification and the five-class classification tasks.

By observing Table 5, it can be evinced that the ResNet-18 trained upon the original
audio signals delivered the best performance with respect to both classification experi-
ments. Models that received the reconstructed audio—encoded with significantly low bit
rates—as input failed to provide accurate results, especially for the 50-class classification
task. However, setting up an ensemble of models seemed to improve the performance.
Specifically for the five-class classification task, the ensemble achieved a relative accuracy
drop of 7.17 compared to the ReNet-18 that exploited the original audio.

In addition, ResNet-18 has a size of 44.7 MB, while the encoding method of our pro-
posed approach occupies 400kB of memory. The achieved bit rates reveal the potential of
the proposed method in real-world applications that relate to relatively simple problems,
such as the binary classification of PR and NPR and soundscape categorization. Neverthe-
less, the proposed approach failed to perform accurate classification in larger classification
tasks, probably due to the limited parameters and the significantly low bit rates.
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Table 5. Classification results with respect to pre-trained CV models. ResNet-18 was fine-tuned on
the original audio, while other models were fine-tuned using our method with Brotli at N = 4. The
50-class refers to the total ESC-50 classification. The five-class refers to ESC-50’s super categories
(Animals, Natural Sounds, Human non-speech sound, Interior/domestic sounds and Exterior/
urban noises).

Model 50-Class Accuracy 5-Class Accuracy

ResNet-18 (original) 84.25% (2.70) 89.85% (1.65)

ConvNext (3.3 kbps) 73.90% (3.28) 82.20% (4.19)

ResNet-50 (3.3 kbps) 73.20% (4.01) 81.75% (3.85)

DenseNet-101 (3.3 kbps) 73.15% (3.59) 82.70% (3.92)

Wide ResNet (3.3 kbps) 73.40% (3.22) 82.60% (4.06)

EfficientNet (3.3 kbps) 73.70% (3.12) 82.10% (3.28)

Ensemble (3.3 kbps) 74.60% (3.06) 83.40% (3.14)

5. Discussion

To summarize, the proposed method exploits a DNN-based auto-encoder model in
order to extract meaningful features for the classification task of environmental sounds.
Moreover, a second-stage compression scheme that exploits a traditional lossy compression
method (DCT) and a state-of-the-art lossless encoding algorithm (Brotli and Zstd) is intro-
duced for further bit rate reduction. The overall pipeline has been validated against three
classification tasks: a binary classification between sounds that are related to pollution and
those that are not, a five-class classification task regarding the super categories defined in
the ESC-50, and the overall 50-class classification.

The suggested approach demonstrates that achieving very low bit rates (under
6 kbps) with minimal processing costs is feasible but accompanied by certain limitations.
Specifically, at these very low bit rates, the approach tends to suppress high-frequency
components while introducing noise in the lower frequencies. Additionally, for complex
classification problems, such as the 50-class categorization of the ESC-50 dataset, the method
suffers from a significant accuracy drop of about 10%.

However, it is important to note the relative performance advantages of this approach
over alternatives such as Opus. Despite having similar challenges in frequency suppression
and noise introduction, the suggested method outperforms Opus in terms of overall
sound quality. Furthermore, for simpler classification tasks, such as binary and five-
class (super categories of ESC-50) classifications, the performance of this approach does
not significantly deviate from the performance of classification of the original sound, as
presented in Figure 6. Impressively, across all three classification tasks examined, the
proposed approach demonstrates superior performance compared to Opus, highlighting
its potential in applications where low bit rate and efficient processing are crucial.

The proposed method encounters difficulties in handling complex classification tasks
for three primary reasons. Firstly, the relatively small structure and limited number of
parameters of the DNN-based encoder restrict its ability to capture meaningful features
from complex soundscapes. This limitation, combined with the achieved extremely low bit
rates, is particularly problematic for sounds that contain high-frequency components, such
as those produced by birds and insects found in the ESC-50 dataset, which may suffer from
poor reconstruction quality due to the suppression of high frequencies at very low bit rates.
Additionally, to keep processing costs low, the method processes raw audio waveforms
directly, foregoing the extraction of spectro-temporal representations that could allow for
more detailed analysis in both time and frequency domains.
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Despite these challenges, the method shows a robust capability for simpler classifi-
cation tasks, as can be seen in Figure 6. Its low processing demands and minimal time
delay make it well-suited for streaming applications. Moreover, by utilizing an encoding–
decoding scheme, this approach facilitates the transfer of audio samples to the cloud for
accurate classification and human supervision, circumventing the limitations of on-device
classification. This setup not only ensures accurate classification and potential for human
oversight, but also allows for the transmission of encoded samples at extremely low bit
rates. Consequently, it reduces the memory required for storage and supports ongoing
learning by accumulating and utilizing less space-intensive samples.

6. Conclusions and Future Work

This work proposes an audio encoding and classification process with applications
in resource-constrained environments for multimodal data gathering. Using a scheme
as such allows for the exploitation of large DNN-based models, as the encoded signal is
effectively being transferred to the resourceful cloud. The proposed method overcomes
processing costs and memory limitations, as the signal is encoded via significantly low bit
rates. Additionally, the size of the encoding model is relatively small, indicating its ability
to be deployed in resource-constrained environments. The gathered samples can be fused
to fine-tune large pre-trained CV models that cannot be deployed in environments with
limited resources. Moreover, these models usually require spectro-temporal representations
that not only demand high processing power, but also increase memory consumption. Our
method is able to effectively handle these obstacles by efficiently transferring data to
the cloud.

The lightweight encoding process, along with the achieved bit rates, are strong indica-
tors that the proposed methodology can be effectively deployed in pipelines that handle
multimodal data. Furthermore, this method could be fused in data pipelines that gather
and process visual data and environmental monitoring variables and lead to more accurate
predictions or to the detection of anomalies.
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While the classification model seems to be robust with respect to the binary classifica-
tion task, this behavior is not observed in the five-class and 50-class classification tasks. The
introduction of noise in the low-frequency regime and the suppression of high-frequency
components seem to confuse the model. However, the proposed encoding–decoding
process introduces less noise than Opus, while the fine-tuned CV classifiers perform bet-
ter when it comes to samples produced through our proposed approach. Moreover, the
achieved compression ratios and efficiency in terms of processing costs can be used in
already developed systems for broadcasting audiovisual information [60] and within web-
based applications that also rely on deep-learning-based processing systems [61].

In our future work, we will consider techniques that effectively compress DNN-based
models. We will increase the number of parameters and perform adversarial training
with psychoacoustic model-based losses, as proposed in recent studies. We will evaluate
the potential of asymmetrical encoder–decoder architectures [62], while maintaining the
number of encoder parameters, and apply a super-resolution-based decoder to improve
the method’s performance regarding high-frequency components. As a final step, we will
consider the deployment of our method in devices that gather information about the levels
of pollution and fuse both modalities in pipelines that predict future pollution levels and
perform joint analysis. Moreover, the same techniques will be evaluated for multimodal
data, for images, video, and audiovisual information channels in an information fusion
approach. While old approaches that exploit multichannel (spatial) audio encoding and
processing use high-end dedicated equipment and network infrastructures [60], modern
solutions exploit mobile devices with fewer capacities in audio-related problems, also
employing distributed multimodal sensing supplemented with AI automations (e.g., multi-
channel speaker localization and diarization, web TV indexing automations, etc.) [63].
Hence, the proposed approach and the achieved efficiency points to the direction of machine
cognitive coding.

Author Contributions: Methodology, A.E.; Writing—original draft, A.E.; Writing—review & editing,
N.V., M.-E.S. and L.V.; Supervision, C.D. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ullo, S.L.; Sinha, G.R. Advances in smart environment monitoring systems using IoT and sensors. Sensors 2020, 20, 3113.

[CrossRef] [PubMed]
2. Alahi, M.E.E.; Sukkuea, A.; Tina, F.W.; Nag, A.; Kurdthongmee, W.; Suwannarat, K.; Mukhopadhyay, S.C. Integration of IoT-

enabled technologies and artificial intelligence (AI) for smart city scenario: Recent advancements and future trends. Sensors 2023,
23, 5206. [CrossRef] [PubMed]

3. Bibri, S.E.; Alexandre, A.; Sharifi, A.; Krogstie, J. Environmentally sustainable smart cities and their converging AI, IoT, and big
data technologies and solutions: An integrated approach to an extensive literature review. Energy Inform. 2023, 6, 9. [CrossRef]
[PubMed]

4. Adli, H.K.; Remli, M.A.; Wong, K.N.S.W.S.; Ismail, N.A.; González-Briones, A.; Corchado, J.M.; Mohamad, M.S. Recent
Advancements and challenges of AIoT application in smart agriculture: A review. Sensors 2023, 23, 3752. [CrossRef]

5. Sarroeira, R.; Henriques, J.; Sousa, A.M.; da Silva, C.F.; Nunes, N.; Moro, S.; Botelho, M.D.C. Monitoring Sensors for Urban Air
Quality: The Case of the Municipality of Lisbon. Sensors 2023, 23, 7702. [CrossRef] [PubMed]

6. Chi, X.; Hua, J.; Hua, S.; Ren, X.; Yang, S. Assessing the impacts of human activities on air quality during the COVID-19 Pandemic
through case analysis. Atmosphere 2022, 13, 181. [CrossRef]

7. Wai, C.Y.; Muttil, N.; Tariq, M.A.U.R.; Paresi, P.; Nnachi, R.C.; Ng, A.W.M. Investigating the Relationship between Human
Activity and the Urban Heat Island Effect in Melbourne and Four Other International Cities Impacted by COVID-19. Sustainability
2021, 14, 378. [CrossRef]

https://doi.org/10.3390/s20113113
https://www.ncbi.nlm.nih.gov/pubmed/32486411
https://doi.org/10.3390/s23115206
https://www.ncbi.nlm.nih.gov/pubmed/37299934
https://doi.org/10.1186/s42162-023-00259-2
https://www.ncbi.nlm.nih.gov/pubmed/37032812
https://doi.org/10.3390/s23073752
https://doi.org/10.3390/s23187702
https://www.ncbi.nlm.nih.gov/pubmed/37765759
https://doi.org/10.3390/atmos13020181
https://doi.org/10.3390/su14010378


Sensors 2024, 24, 2755 17 of 18

8. Sun, Y.; Brimblecombe, P.; Wei, P.; Duan, Y.; Pan, J.; Liu, Q.; Fu, Q.; Peng, Z.; Xu, S.; Wang, Y.; et al. High resolution on-road air
pollution using a large taxi-based mobile sensor network. Sensors 2022, 22, 6005. [CrossRef] [PubMed]

9. Shumba, A.T.; Montanaro, T.; Sergi, I.; Fachechi, L.; De Vittorio, M.; Patrono, L. Leveraging IoT-aware technologies and AI
techniques for real-time critical healthcare applications. Sensors 2022, 22, 7675. [CrossRef] [PubMed]

10. Trilles, S.; Vicente, A.B.; Juan, P.; Ramos, F.; Meseguer, S.; Serra, L. Reliability validation of a low-cost particulate matter IoT sensor
in indoor and outdoor environments using a reference sampler. Sustainability 2019, 11, 7220. [CrossRef]

11. Biraghi, C.A.; Carrion, D.; Brovelli, M.A. Citizen Science Impact on Environmental Monitoring towards SDGs Indicators: The
CASE of SIMILE Project. Sustainability 2022, 14, 8107. [CrossRef]

12. Karanassos, D.; Kyfonidis, C.; Angelis, G.; Emvoliadis, A.; Theodorou, T.I.; Zamichos, A.; Tzovaras, D. SOCIO-BEE: A Next-
Generation Citizen Science Platform for Citizens’ Engagement to Air Pollution Measuring. In Proceedings of the 2023 IEEE
International Smart Cities Conference (ISC2), Bucharest, Romania, 24–27 September 2023; pp. 1–5.

13. Latino, M.E.; Menegoli, M.; Signore, F.; De Lorenzi, M.C. The Potential of Gamification for Social Sustainability: Meaning and
Purposes in Agri-Food Industry. Sustainability 2023, 15, 9503. [CrossRef]

14. Bountourakis, V.; Vrysis, L.; Konstantoudakis, K.; Vryzas, N. An enhanced temporal feature integration method for environmental
sound recognition. Acoustics 2019, 1, 410–422. [CrossRef]

15. Han, Y.; Zhang, Q.; Li, V.O.; Lam, J.C. Deep-AIR: A hybrid CNN-LSTM framework for air quality modeling in metropolitan cities.
arXiv 2021, arXiv:2103.14587.

16. Le, V.D.; Bui, T.C.; Cha, S.K. Spatiotemporal deep learning model for citywide air pollution interpolation and prediction. In
Proceedings of the 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), Busan, Republic of Korea,
19–22 February 2020; pp. 55–62.

17. Scheibenreif, L.; Mommert, M.; Borth, D. Estimation of air pollution with remote sensing data: Revealing greenhouse gas
emissions from space. arXiv 2021, arXiv:2108.13902.

18. Clark, S.N.; Alli, A.S.; Brauer, M.; Ezzati, M.; Baumgartner, J.; Toledano, M.B.; Arku, R.E. High-resolution spatiotemporal
measurement of air and environmental noise pollution in Sub-Saharan African cities: Pathways to Equitable Health Cities Study
protocol for Accra, Ghana. BMJ Open 2020, 10, e035798. [CrossRef] [PubMed]

19. Stamatiadou, M.E.; Vryzas, N.; Vrysis, L.; Saridou, T.; Dimoulas, C. A citizen science approach to support joint air quality and
noise monitoring in urban areas. In Proceedings of the Audio Engineering Society Convention 152. Audio Engineering Society,
The Hague, The Netherlands, 7–8 May 2022.

20. Vryzas, N.; Stamatiadou, M.E.; Vrysis, L.; Dimoulas, C. The BeeMate: Air quality monitoring through crowdsourced audiovisual
data. In Proceedings of the 2023 8th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia,
20–23 June 2023; pp. 1–5.

21. Elliott, D.; Martino, E.; Otero, C.E.; Smith, A.; Peter, A.M.; Luchterhand, B.; Leung, S. Cyber-physical analytics: Environmental
sound classification at the edge. In Proceedings of the 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), New Orleans,
LA, USA, 2–16 June 2020; pp. 1–6.

22. Nanni, L.; Maguolo, G.; Brahnam, S.; Paci, M. An ensemble of convolutional neural networks for audio classification. Appl. Sci.
2021, 11, 5796. [CrossRef]

23. Abdulmalek, S.; Nasir, A.; Jabbar, W.A.; Almuhaya, M.A.; Bairagi, A.K.; Khan, M.A.M.; Kee, S.H. IoT-based healthcare-monitoring
system towards improving quality of life: A review. Healthcare 2022, 10, 1993. [CrossRef] [PubMed]

24. Syed, A.S.; Sierra-Sosa, D.; Kumar, A.; Elmaghraby, A. IoT in smart cities: A survey of technologies, practices and challenges.
Smart Cities 2021, 4, 429–475. [CrossRef]

25. Wilkinghoff, K. On open-set classification with L3-Net embeddings for machine listening applications. In Proceedings of the 2020
28th European Signal Processing Conference (EUSIPCO), Amsterdam, The Netherlands, 18–21 January 2021; pp. 800–804.

26. Cramer, A.L.; Wu, H.H.; Salamon, J.; Bello, J.P. Look, listen, and learn more: Design choices for deep audio embeddings. In
Proceedings of the ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Brighton, UK, 12–17 May 2019; pp. 3852–3856.

27. Snyder, D.; Garcia-Romero, D.; Sell, G.; Povey, D.; Khudanpur, S. X-vectors: Robust dnn embeddings for speaker recognition.
In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB,
Canada, 15–20 April 2018; pp. 5329–5333.

28. Kim, J. Urban sound tagging using multi-channel audio feature with convolutional neural networks. In Proceedings of the
Detection and Classification of Acoustic Scenes and Events, Tokyo, Japan, 2–3 November 2020.

29. Lopez-Meyer, P.; del Hoyo Ontiveros, J.A.; Lu, H.; Stemmer, G. Efficient end-to-end audio embeddings generation for audio
classification on target applications. In Proceedings of the ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Virtual, 6–11 June 2021; pp. 601–605.

30. Gong, Y.; Chung, Y.A.; Glass, J. Ast: Audio spectrogram transformer. arXiv 2021, arXiv:2104.01778.
31. Mohaimenuzzaman, M.; Bergmeir, C.; West, I.; Meyer, B. Environmental Sound Classification on the Edge: A Pipeline for Deep

Acoustic Networks on Extremely Resource-Constrained Devices. Pattern Recognit. 2023, 133, 109025. [CrossRef]
32. Palanisamy, K.; Singhania, D.; Yao, A. Rethinking CNN models for audio classification. arXiv 2020, arXiv:2007.11154.
33. Chen, S.; Wu, Y.; Wang, C.; Liu, S.; Tompkins, D.; Chen, Z.; Wei, F. Beats: Audio pre-training with acoustic tokenizers. arXiv 2022,

arXiv:2212.09058.

https://doi.org/10.3390/s22166005
https://www.ncbi.nlm.nih.gov/pubmed/36015765
https://doi.org/10.3390/s22197675
https://www.ncbi.nlm.nih.gov/pubmed/36236773
https://doi.org/10.3390/su11247220
https://doi.org/10.3390/su14138107
https://doi.org/10.3390/su15129503
https://doi.org/10.3390/acoustics1020023
https://doi.org/10.1136/bmjopen-2019-035798
https://www.ncbi.nlm.nih.gov/pubmed/32819940
https://doi.org/10.3390/app11135796
https://doi.org/10.3390/healthcare10101993
https://www.ncbi.nlm.nih.gov/pubmed/36292441
https://doi.org/10.3390/smartcities4020024
https://doi.org/10.1016/j.patcog.2022.109025


Sensors 2024, 24, 2755 18 of 18

34. Elizalde, B.; Deshmukh, S.; Al Ismail, M.; Wang, H. Clap learning audio concepts from natural language supervision. In
Proceedings of the ICA SSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Rhodes Island, Greece, 4–10 June 2023; pp. 1–5.

35. Lelewer, D.A.; Hirschberg, D.S. Data compression. ACM Comput. Surv. (CSUR) 1987, 19, 261–296. [CrossRef]
36. Byun, J.; Shin, S.; Park, Y.; Sung, J.; Beack, S. A perceptual neural audio coder with a mean-scale hyperprior. In Proceedings of the

ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece,
4–10 June 2023; pp. 1–5.

37. D’efossez, A.; Copet, J.; Synnaeve, G.; Adi, Y. High fidelity neural audio compression. arXiv 2022, arXiv:2210.13438.
38. Emvoliadis, A.; Vryzas, N.; Stamatiadou, M.E.; Vrysis, L.; Dimoulas, C.; Drosou, A.; Tzovaras, D. A Robust Deep Learning-based

System for Environmental Audio Compression and Classification. In Proceedings of the Audio Engineering Society Convention
154. Audio Engineering Society, Helsinki, Finland, 13–15 May 2023.

39. Piczak, K.J. ESC: Dataset for environmental sound classification. In Proceedings of the 23rd ACM International Conference on
Multimedia, Brisbane, Australia, 26–30 October 2015; pp. 1015–1018.

40. Vrysis, L.; Tsipas, N.; Thoidis, I.; Dimoulas, C. 1D/2D Deep CNNs vs. Temporal Feature Integration for General Audio
Classification. J. Audio Eng. Soc. 2020, 68, 66–77. [CrossRef]

41. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
42. Van Den Oord, A.; Vinyals, O. Neural discrete representation learning. arXiv 2017, arXiv:1711.00937.
43. Stankevicius, D.; Treigys, P. Investigation of machine learning methods for colour audio noise suppression. In Proceedings of the

2023 18th Iberian Conference on Information Systems and Technologies (CISTI), Aveiro, Portugal, 20–23 June 2023; pp. 1–6.
44. Scudo, F.L.; Ritacco, E.; Caroprese, L.; Manco, G. Audio-based anomaly detection on edge devices via self-supervision and

spectral analysis. J. Intell. Inf. Syst. 2023, 61, 765–779. [CrossRef]
45. Kumble, L.; Patil, K.K. An improved data compression framework for wireless sensor networks using stacked convolutional

autoencoder (scae). SN Comput. Sci. 2023, 4, 419. [CrossRef]
46. Ahmed, N.; Natarajan, T.; Rao, K.R. Discrete cosine transform. IEEE Trans. Comput. 1974, 100, 90–93. [CrossRef]
47. Welch, T.A. A technique for high-performance data compression. Computer 1984, 17, 8–19. [CrossRef]
48. Alakuijala, J.; Farruggia, A.; Ferragina, P.; Kliuchnikov, E.; Obryk, R.; Szabadka, Z.; Vandevenne, L. Brotli: A general-purpose

data compressor. ACM Trans. Inf. Syst. (TOIS) 2018, 37, 1–30. [CrossRef]
49. Collet, Y.; Kucherawy, M. Zstandard compression and the application/zstd media type. Tech. Rep. 2018. [CrossRef]
50. Hirschberg, D.S.; Lelewer, D.A. Context modeling for text compression. In Image and Text Compression; Springer: New York, NY,

USA, 1992; pp. 113–144.
51. Collet, Y. Finite State Entropy. 2013. Available online: https://github.com/Cyan4973/FiniteStateEntropy (accessed on 15 January 2024).
52. Valin, J.M.; Vos, K.; Terriberry, T. Definition of the opus audio codec. Tech. Rep. 2012. [CrossRef]
53. Liu, X.; Dohler, M.; Deng, Y. Vibrotactile quality assessment: Hybrid metric design based on SNR and SSIM. IEEE Trans. Multimed.

2019, 22, 921–933. [CrossRef]
54. Thiede, T.; Treurniet, W.C.; Bitto, R.; Schmidmer, C.; Sporer, T.; Beerends, J.G.; Colomes, C. PEAQ-The ITU standard for objective

measurement of perceived audio quality. J. Audio Eng. Soc. 2000, 48, 3–29.
55. Iandola, F.; Moskewicz, M.; Karayev, S.; Girshick, R.; Darrell, T.; Keutzer, K. Densenet: Implementing efficient convnet descriptor

pyramids. arXiv 2014, arXiv:1404.1869.
56. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
57. Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A convnet for the 2020s. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–22 June 2022; pp. 11976–11986.
58. Koonce, B. EfficientNet. Convolutional Neural Networks with Swift for Tensorflow: Image Recognition and Dataset Categorization;

Springer: New York, NY, USA, 2021; pp. 109–123.
59. Wu, Z.; Shen, C.; Van Den Hengel, A. Wider or deeper: Revisiting the resnet model for visual recognition. Pattern Recognit. 2019,

90, 119–133. [CrossRef]
60. Vegiris, C.E.; Avdelidis, K.A.; Dimoulas, C.A.; Papanikolaou, G.V. Live broadcasting of high definition audiovisual content using

HDTV over broadband IP networks. Int. J. Digit. Multimed. Broadcast. 2008. [CrossRef]
61. Vryzas, N.; Vrysis, L.; Dimoulas, C. Audiovisual speaker indexing for Web-TV automations. Expert Syst. Appl. 2021, 186, 115833.

[CrossRef]
62. Mandel, M.; Tal, O.; Adi, Y. Aero: Audio super resolution in the spectral domain. In Proceedings of the ICASSP 2023–2023 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–5.
63. Xylogiannis, P.; Vryzas, N.; Bountourakis, V.; Dimoulas, C. Multichannel speaker diarization with arbitrary microphone arrays. In

Proceedings of the Audio Engineering Society Convention 154. Audio Engineering Society, Espoo, Finland, 13–15 May 2023.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/45072.45074
https://doi.org/10.17743/jaes.2019.0058
https://doi.org/10.1007/s10844-023-00792-2
https://doi.org/10.1007/s42979-023-01845-7
https://doi.org/10.1109/T-C.1974.223784
https://doi.org/10.1109/MC.1984.1659158
https://doi.org/10.1145/3231935
https://doi.org/10.17487/RFC8878
https://github.com/Cyan4973/FiniteStateEntropy
https://doi.org/10.17487/RFC6716
https://doi.org/10.1109/TMM.2019.2936305
https://doi.org/10.1016/j.patcog.2019.01.006
https://doi.org/10.1155/2008/250654
https://doi.org/10.1016/j.eswa.2021.115833

	Introduction 
	Related Work 
	Materials and Methods 
	Data Preparation 
	Sound Encoding–Decoding Mechanism 
	DNN-Based Encoding 
	Conventional Coding 

	Classification Mechanism 
	Overall Pipeline 

	Results 
	Audio Reconstruction 
	Audio Classification 
	Binary Classification 
	Multi-Label Classification 


	Discussion 
	Conclusions and Future Work 
	References

