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Abstract: Modern homes are experiencing unprecedented levels of convenience because of the
proliferation of smart devices. In order to improve communication between smart home devices,
this paper presents a novel approach that particularly addresses interference caused by different
transmission systems. The core of the suggested framework is an intelligent Internet of Things
(IoT) system designed to reduce interference. By using adaptive communication protocols and
sophisticated interference management algorithms, the framework minimizes interference caused
by overlapping transmissions and guarantees effective data sharing. This can be accomplished
by creating an optimization model that takes into account the dynamic nature of the smart home
environment and intelligently allocates resources. By maximizing the signal quality at the destination
and optimizing the distribution of frequency channels and transmission power levels, the model
seeks to minimize interference. A deep learning technique is used to augment the optimization model
by adaptively learning and predicting interference patterns from real-time observations and historical
data. The experimental results show how effective the suggested hybrid strategy is. While the deep
learning model adjusts to shifting interference dynamics, the optimization model efficiently controls
resource allocation, leading to better data reception performance at the destination. The system’s
robustness is assessed in various kinds of situations to demonstrate its flexibility in responding to
changing smart home settings. This work not only offers a thorough framework for interference
reduction but also clarifies how deep learning and mathematical optimization can work together to
improve the dependability of data reception in smart homes.

Keywords: smart home; Lagrange optimization; 1-DCNN; energy efficiency; achievable data rate

1. Introduction

The Internet of Everything has arrived with the rapid development of Internet of
Things (IoT) technology in recent years. A number of applications have emerged, including
smart manufacturing, smart homes, automatic driving, health monitoring, smart agricul-
ture, and smart metres [1,2]. The IoT is the engine powering improved network monitoring
and control, from intelligent energy metres to the placement of sensors at strategic sites
from production facilities to distribution hubs. Further improvements are needed in mo-
bile network ecological structure and resource management to fulfil the demands of big
machine-type communications in the IoT and to give users of the network a satisfying
service experience [3].

It has become common for smart houses to come equipped with integrated commu-
nication systems. In order to meet the ideal home-energy profile and maintain a pleasant
lifestyle, both grid operators and home users will soon be able to monitor and operate a
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number of household appliances. To create home area networks (HMAs), a variety of wired
communication schemes, including power-line communication (PLC), inter-integrated
circuit (I2C), and serial peripheral interface, as well as wireless technologies, including
Wi-Fi, Zigbee, RFID, and the IoT, can be chosen based on the characteristics of the home [4].
Inherent flexibility and the capacity to move data between networks without a direct con-
nection between users and computers have greatly aided in data analysis, task scheduling,
device connections, and storage [5,6].

While IoT has several advantages, it also has a number of serious disadvantages, such
as latency, security and privacy concerns, node or connection failures, communication
protocols, and network efficiency [7]. These issues can all have a detrimental effect on the
overall performance of the network. While security and privacy are the most frequently
discussed constraints of IoT systems in the literature [8], interference mitigation is one of the
challenges that still require further research. Blockchain technology, artificial intelligence
(AI), and machine learning (ML) are further techniques being researched to enhance the
functionality of IoT systems [9]. Furthermore, the fifth generation (5G) network is a
powerful IoT strategy capable of supporting hundreds of medical devices. Several 5G-
enabled IoT techniques have been presented [10,11] to support IoMT devices. Optimization
techniques are essential for enhancing system performance and producing diverse model
solutions in a multitude of domains and aspects, apart from machine learning and artificial
intelligence [12,13].

IoT devices employ the 5G spectrum, a vital medium shared with other cellular
user equipment (CUE) and other devices, to send data to gateways or other specified
destinations. The fundamental difficulty is the possibility of interference at these gateways
or destinations, which might harm the dependability and effectiveness of IoT connectivity.
This interference is a serious problem, especially for vital applications like healthcare, where
patient safety is directly impacted by data transmission accuracy. This work presents a novel
approach that combines a mathematical optimization model and a deep learning algorithm
to tackle these problems in a complete way. By working together, the interference problems
that IoT devices face while using shared spectrum should be tackled. The suggested
approach aims to improve the network’s reliability and efficiency by concentrating on
the optimization of IoT communication strategies designed for smart homes, thereby
guaranteeing dependable and smooth data transmission. The proposed approach does
more than just address interference; it also makes smart home networks better overall. The
suggested framework lays the groundwork for more durable and dependable smart home
environments by placing a higher priority on the accuracy of collected data. In brief, the
key contributions of this paper are as follows:

• In order to facilitate efficient and precise information delivery from smart home
devices to their destinations, the proposed strategy developed a novel technique for
controlling interference among IoT device connections. The Lagrange optimization
technique was used to design an optimization problem with the installation of 1 D-
CNN in order to ascertain the reliability of communication between home gateways
and their destinations.

• The recommended approach aims to improve IoT network connections, especially for
smart home devices that are experiencing extreme circumstances. This can be achieved
by determining the necessary interference distance between the smart home gateways
and any interfered distance to convey dependable data in various environmental
circumstances from their intended destinations. On the other hand, path loss, the
necessary signal-to-interference-plus-noise ratio (SINRth), transmission power, and
the presence of various interfering devices are other variables that could affect system
performance.

• In order to receive precise and trustworthy data, home gateways will be able to predict,
based on the channel circumstances, the maximum appropriate interference distance
to reach accurate data by means of a deep learning model.
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• The proposed method’s overall achievable data rate and energy efficiency were an-
alyzed under a variety of environmental conditions, such as transmission power,
required (SINRth) values, and different transmission ranges. These results make it
possible to optimize IoT networks for smart homes.

The following sections are arranged in the following order: The work on IoT will
be presented in Section 2. The details of the recommended approach will be covered in
Section 3. In Section 4, the analytical and experimental work for the proposed approach
will be given. The work suggested in this paper will be concluded in Section 5.

2. Related Work

Many studies have been conducted on interference management and control in gen-
eral, but not many have looked into this specifically in the context of smart homes. In order
to address user-system conflicts in smart homes, Ref. [14] proposed a definition and mech-
anism for detecting them. It sought to increase user satisfaction and provide developers
with guidance for building more dependable smart home systems based on an empirical
study involving 163 users. RF sensing holds promise for improving healthcare and getting
to know inhabitants as smart homes develop, but it also causes wireless congestion. In
order to improve functionality, Ref. [15] suggested a collaborative design strategy that
enhanced WiFi signals and integrated communication with sensing equipment. The aim
was pervasive connectivity and inconspicuous sensing for smooth smart home operation.
Additionally, Ref. [16] created a reference architecture with approachable security proce-
dures for the IoT, which was the goal of this paper. It presented the first comprehensive
strategy for smart-home activity, the traffic monitoring mechanism NDFA. The GHOST-IoT
dataset is produced by NDFA and records actual IoT network traffic. With this dataset,
NDFA’s capability to handle unprocessed network traffic from various interfaces and IoT
in an actual smart home is demonstrated.

Furthermore, Ref. [17] optimized video streaming with wireless micro medical devices
(WMMDs) in smart healthcare homes through the use of AI and IoT. By using a video trans-
mission rate control algorithm (VTRCA) and a lazy video transmission algorithm (LVTA),
it was able to stream videos through WMMD with notable energy savings and increased
performance over the baseline. The growing risk of hacking assaults on smart building
systems was discussed in [18]. The approach focused on locally identifying abnormalities
and highlights how crucial it is for network providers to identify and correlate anomalies on
a wider scale. By utilising machine learning, the method recognised questionable activities
at the data centre of the service provider, encouraging shared accountability for the security
of smart homes. Additionally, Ref. [19] also provided firewalling for IoT traffic. This
technique, which is well known in computer networks, enables traffic routed to addresses
that these end devices have never used before to be detected. As a result, after warning
authorities, undesired traffic from smart devices may be banned, and the suspect device
may be placed in quarantine.

Ref. [20] presented SEED, a novel and secure method for collecting data from IoT
devices, in terms of energy efficiency for IoT networks. Compared to existing methods,
SEED offered improved throughput and energy efficiency by using MD5 hashing to assure
data integrity and upgrading aggregator nodes to address network issues. Additionally,
Ref. [21] provided an energy-efficient Massive MIMO-NOMA IoT network for communi-
cations beyond 5G and addressed concerns with fast data transfer. By utilising fractional
programming and sequential convex approximation, the proposed method outperformed
previous methods in terms of energy efficiency, convergence, and user fairness. Further-
more, Ref. [22] suggested an interference control strategy to improve 5G cellular networks
and IoT. Lagrange optimization was used to reduce interference, which improved sys-
tem reliability and energy efficiency—two crucial QoS criteria. The simulation’s results
demonstrated considerable improvements in network performance. In addition, the imple-
mentation of the dynamic Frequent Frequency Reuse (FFR) strategy, which was presented
in [23], for maximizing network capacity by decreasing interference in the 5G system is one
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of these techniques. To mitigate interference concerns during the cohabitation of 5G and
IoT networks, Ref. [24] introduced a distributed deep learning model designed to avoid
interference. By predicting optimal distances for various communication circumstances,
the model beat the state-of-the-art benchmarks in terms of throughput, energy efficiency,
and interference suppression. Furthermore, Ref. [25] described a strategy for improving
IoE network performance using Lagrange optimization and deep learning. It optimized
transmission power for efficiency and throughput while minimising interference. A dis-
tributed deep learning network predicted optimal transmission power using Lagrange
optimization data, which was validated by testing.

This study explores a crucial component of smart house infrastructure in order to
improve the communication dependability between smart home devices and their destina-
tions. Finding the ideal interference distance between house gateways—the central hubs
gathering data for IoT smart homes and any interfered devices—in situations where other
transmitting devices sharing the same frequency band could cause interference is the main
goal. The goal is to pinpoint critical elements and setups that will increase smart home
connectivity via enhanced IoT networks. The suggested methodology incorporates both an
analytical optimization strategy and a deep learning model to address this difficulty. The
method optimizes communication in smart homes by teaching IoT devices to dynamically
alter their proximity to the targeted destinations by utilising a distributed deep learning
model for IoT networks.

3. Materials and Methods

This section describes the suggested approach approach for enhancing communication
between smart home devices and their intended destinations. In the suggested model, La-
grange optimization and 1D-CNN approaches were used to determine the ideal interference
distance for improving IoT connectivity in smart home situations. Lagrange optimization
is implemented as a mathematical optimization technique to maximize the performance of
IoT communication systems while adhering to restrictions such as transmission distance,
signal-to-interference-plus-noise ratio (SINR), and transmission power. Through Lagrange
optimization, we were able to derive an analytical solution that best balances the trade-offs
between interference mitigation and communication dependability by transforming the
problem into a limited optimization assignment. In addition to Lagrange optimization, a
1D-CNN architecture is used to improve the accuracy of interference distance prediction.
The 1D-CNN model was trained using simulated or real-world data to discover compli-
cated patterns and correlations between input features (such as interference levels, signal
strength, and environmental parameters) and the ideal interference distance. By employing
deep learning capabilities, the 1D-CNN model allowed us to capture nonlinear correlations
and make accurate predictions, improving the effectiveness of interference management
tactics in smart home environments. The combination of Lagrange optimization with
1D-CNN enabled us to create a reliable and data-driven method for identifying the optimal
interference distance to boost IoT connectivity in smart homes. Our research approach,
which integrates mathematical optimization concepts with machine learning approaches,
provides a complete and systematic framework for addressing interference management
difficulties in complicated wireless communication systems.

3.1. System Model and Problem Formulation

For the proposed IoT network for smart homes, it is assumed that there are multiple
appliances which directly communicate with the home gateways (G) and these home
gateways have to send data to their desired destinations. A base station (BS) communicates
with C cellular user equipment (CUEs), and D D2D communication pairs, consisting of
transmitting devices (Dtx) and receiving devices (Drx), share the spectrum, as illustrated
in Figure 1. Communication scenarios include: (i) sending data from any smart home’s
appliances to the home gateways, which are subsequently in charge of forwarding the data
to the intended location; (ii) standard cellular communication, in which CUEs communicate
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with BS; and (iii) Dtx and Drx communicating D2D. Interference is introduced to the desti-
nation if at least one CUE, or transmitting device (Dtx), sharing the same spectrum as home
gateways, has data to broadcast to BS or any receiving devices (Drx), respectively. Thus,
by reducing interference, the suggested methodology aims to improve communication
between home gateways and their destinations. The goal is to maximize the smart home
IoT network’s overall performance while taking into consideration the following equations,
which represent the total attainable data rate (R) and energy efficiency (EE):

Maximize
G

∑
g=1

C

∑
c=1

D

∑
d=1

EEg,c,d

Subject to EEg,c,d := f1(SINRGD, PC, PD)

{SINRGD ≥ SINRth, PC ≤ PCmax, PD ≤ PDmax}

(1)

Maximize
G

∑
g=1

C

∑
c=1

D

∑
d=1

Rg,c,d

Subject to Rg,c,d := f2(SINRGD, PC, PD)

{SINRGD ≥ SINRth, PC ≤ PCmax, PD ≤ PDmax}

(2)

Thus, in the context of the optimization problem, the system energy efficiency is
denoted by EEg,c,d and the total possible data rate is denoted by Rg,c,d. These measures are
related to the d-th road between D2D devices, the k-th path between CUE and BS, and the
i-th path between home gateways and their intended destination. The symbols SINRth
and SINRGD represent the required system signal-to-interference-plus-noise ratio and the
signal-to-interference-plus-noise ratio for home gateways to any destination connection,
respectively. Similarly, PD and PDmax indicate the transmission power and maximum
transmission power of the D2D communication connection, whereas PC and PCmax represent
the transmission power of the CUE and its maximum transmission power.

Non-orthogonal multiple access (NOMA) is chosen as the appropriate access method
in the proposed paradigm [26,27] in order to enable concurrent access to the channel and to
enable the wide implementation of IoT, CUE, and D2D. Additionally, the suggested model
functions on the presumption of an additive white Gaussian noise (AWGN) Rayleigh fading
channel [28]. Moreover, the model assumes statistical independence between the channel
fading coefficients for various transmission connections. Consequently, the network’s
achievable data rate (R) and energy efficiency (EE) can be expressed as follows:

EE =
RGD

PG + Po
+

RCB
PC + Po

+
RDDrx

PD + Po
(3)

R = RGD + RCB + RDDrx (4)

where the achievable data rates for the home gateways and their destinations link, CUE-
BS link, and D2D communication link are represented by the symbols RGD, RCB, and
RDDrx , respectively. The values PG and Po, respectively, indicate the internal circuit power
consumption and home gateway transmission power for chronic patients. As a result, the
following are the expressions for RGD, RCB, and RDDrx :

RGD = B log2

(
1 +

PG HGD

∑K
k=1 PC HCk D + ∑D

d=1 PD HDdD + N

)
(5)

RCB = B log2

(
1 +

PC HCB

∑G
g=1 PG HGgB + ∑D

d=1 PD HDdB + N

)
(6)
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RDDrx = B log2

(
1 +

PD HDDrx

∑G
g=1 PG HGgDrx + ∑K

k=1 PC HCk Drx + N

)
(7)

where the channel gain coefficients between the home gateways and the intended destina-
tion, CUE and BS, Dtx and Drx, respectively, are denoted by the symbols HGD, HCk D, and
HDdD. The channel gain coefficients between CUE and BS, home gateways and BS, and Dtx
and BS are denoted by the variables HCB, HGgB, and HDdB, respectively. The channel gain
coefficients between Dtx and Drx, home gateways and Dtx, and CUE and Drx are, respec-
tively, HDDrx , HGgDrx , and HCk Drx . The channel gains are measured in dB. Additionally, in
this case, N and B represent the noise power and channel system bandwidth which are
measured in dBm and hertz, respectively.

Figure 1. Proposed smart home communication system model.

The principal aim of the suggested methodology is to maximize the achievable data
rate (R) and overall energy efficiency (EE) in diverse environmental scenarios, as indicated
by Equations (1) and (2). Thus, Equations (1) and (2) reflect the optimization problem, and
the Lagrangian for them is as follows:

L(SINRGD, PC, PD, λ1, λ2, λ3) = EE + λ1(SINRGD − SINRth)

+λ2(PC − PCmax) + +λ3(PD − PDmax).
(8)

L(SINRGD, PC, PD, µ1, µ2, µ3) = R + µ1(SINRID − SINRth)

+µ2(PC − PCmax) + µ3(PD − PDmax).
(9)
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The non-negative Lagrangian multipliers in this instance are λ1, λ2, λ3, µ1, µ2, and
µ3. The values of λ1, λ2, and λ3 must be ascertained by considering the derivative of
Equation (8) with reference to PG, PC, and PD in order to fulfil the requirements of the
energy efficiency (EE) optimization issue. Consequently, the following can be used to
obtain λ1, λ2, and λ3:

λ1 =
B · X1

(PG + Po)
+

B · log2(1 + PG · X2)

(PG + Po)
2 · X2

+
B · X3 · X4

(PC + Po) · X2
+

B · X5 · X6

(PD + Po) · X2
(10)

λ2 =
B · X1

(PG + Po)
·

PG ∑K
k=1 Hck D · X2

C
+

B · log2(1 + PC · X7)

(PC + Po)
2 − B · X3 · X7

(PC + Po)

+
B · X5 · X8

(PD + Po)
+ λ1(

PG ∑K
k=1 HCk D · X2

C
)

(11)

λ3 =
B · X1

(PG + Po)
·

PG ∑L
l=1 HDdD · X2

C
+

B · X3 · X9

(PC + Po)
+

B · log2(1 + PDX10)

(PD + Po)
2

− B · X5 · X10

(PD + Po)
+ λ1(

PG ∑D
d=1 HDdD · X2

C
)

(12)

where

C =
K

∑
k=1

PC HCk D +
D

∑
d=1

PD HDdD + N,

X1 =
∑K

k=1 PC HCk D + ∑D
d=1 PD HDdD + N

∑K
k=1 PC HCk D + ∑D

d=1 PD HDdD + N + PG HGD
,

X2 =
HGD

∑K
k=1 PC HCk D + ∑D

d=1 PD HDdD + N
,

X3 =
∑G

g=1 PG HGgB + ∑D
d=1 PD HDdB + N

∑I
i=1 PI HIi B + ∑D

d=1 PD HDdB + N + PC HCB
,

X4 =
PC HCB ∑G

g=1 HGgB(
∑G

g=1 PG HGgB + ∑D
d=1 PD HDdB + N

)2 ,

X5 =
∑G

g=1 PG HGgDrx + ∑K
k=1 PC HCk Drx + N

∑G
g=1 PG HGgDrx + ∑K

k=1 PC HCk Drx + N + PD HDDrx

,

X6 =
PD HDDrx ∑G

g=1 HGgDrx(
∑G

g=1 PI HGgDrx + ∑K
k=1 PC HCk Drx + N

)2 ,

X7 =
HCB

∑G
g=1 PG HGgB + ∑D

d=1 PD HDdB + N
,

X8 =
PD HDDrx ∑K

k=1 HCk Drx(
∑G

g=1 PG HGgDrx + ∑K
k=1 PC HCk Drx + N

)2 ,

X9 =
PBHCB ∑D

d=1 PD HDdB(
∑G

g=1 PG HGgB + ∑D
d=1 PD HDdB + N

)2 ,
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X10 =
HDDrx

∑G
g=1 PG HGgDrx + ∑K

k=1 PC HCk Drx + N

Equations (10)–(12) are determined using Lagrange optimization techniques. Lagrange
optimization is a strong mathematical method for solving restricted optimization problems
that incorporates restrictions into the goal function using Lagrange multipliers. In this
work, Lagrange optimization is used to maximize the system’s energy efficiency (EE) while
respecting system restrictions such as transmission power, transmission lengths, path loss,
and SINR. Equations (10)–(12) are the Lagrangian functions designed to maximize the
objective function (energy efficiency) while adhering to the stipulated limitations. The
Lagrange multipliers associated with these equations play an important role in defining
the appropriate interference distance, ensuring that smart home communication systems
operate efficiently.

Additionally, by deriving Equation (8) with respect to λ1, λ2, and λ3, it is possible to
find the optimal required interference distance (dint) between the required destination for
the data sent from the home gateways and any interfering devices, the optimal required
CUE interference transmission power (PC), and the optimal required Dtx interference
transmission power (PD).

dint =

 PG HGD − N · SINRth

SINRth

(
∑K

k=1 PC plo + ∑D
d=1 PD plo

)
−1/α

(13)

where the path loss exponent is α and the constant path loss is plo.

PC = PCmax (14)

PD = PDmax (15)

The values of µ1, µ2, and µ3 can be found using the derivative of Equation (9) with
regard to PI , PC, and PD in order to satisfy the constraint of the optimization problem for
(R). Then, we may represent µ1, µ2, and µ3 as follows:

µ1 =
B · X1 · X2 + B · X3 · X4 + B · X5 · X6

X2
(16)

µ2 = B · X1(
PG ∑K

k=1 HCk D · X2

C
)− B · X3 · X7 + B · X5 · X8

+ λ1(
PG ∑K

k=1 HCk D · X2

C
)

(17)

µ3 = BX1

(
PG ∑L

d=1 HDdD · X2

C

)
+ B · X3 · X9 − B · X5 · X10

+ λ1

(
PG ∑D

d=1 HDdD · X2

C

) (18)

Equations (16)–(18) are developed using Lagrange optimization techniques to calculate
the system’s maximum achievable data rate (R). Lagrange optimization is used to maximize
data rate while adhering to restrictions like power allocation and interference management.
Equations (16)–(18) are the Lagrangian functions designed to maximize the goal function
(achievable data rate) under the given restrictions. The Lagrange multipliers associated
with these equations are critical in calculating the appropriate power allocation method
and interference distance, assuring the effective operation of smart home communication
systems in obtaining the highest achievable data rate (R).

The optimal required interference distance (dint) between home gateways and the
required destination, the optimal required CUE interference transmission power (PC), and
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the optimal required Dtx interference transmission power (PD) can be obtained by deriving
Equation (9) with respect to mu1, mu2, and mu3. This will make it possible to optimize the
overall attainable data rate (R), which may be calculated with the following formula:

dint =

 PG HGD − N · SINRth

SINRth

(
∑K

k=1 PC plo + ∑D
d=1 PD plo

)
−1/α

(19)

PC = PCmax (20)

PD = PDmax (21)

3.2. Dataset Generation

In this section, equations for the proposed model described in Section 3.1 have been
implemented, and MATLAB (2018a) simulations have been used to provide the necessary
datasets. The values of the simulation’s parameters are displayed in Table 1. The goal is to
improve communication between home gateways and the intended destination by using
the datasets to train models that will be installed on all transmitting devices.

Table 1. Simulation Parameters.

Parameter Value

N −174 dBm/Hz [29]

B 10 Mbit/s [30]

α 4

PG 23 dBm [31]

PC 23 dBm [31]

PD 23 dBm [31]

SINRth 20 dB [31]

Pathloss between CUE and BS 148 + 40 log2

(
dCB
km

)
Pathloss between D2D link 128.1 + 37.6 log2

(
dDD
km

)

There are 44,679 records in all. Each record contains a unique combination of these vari-
ables to represent the following: the distances (dGD) between the home gateways and their
destination, CUB and BS (dCB), Dtx and Drx (dDDrx ), the necessary signal-to-interference-
plus-noise-ratio threshold (SINRth), the home gateways (PG), the CUE transmission power
(PC), and the D2D transmission power (PD). Figure 2 shows the Pearson coefficients that
illustrate the relationship between each input and output parameter. The graph shows that
EE and R have a substantial negative correlation with the PG, PC, and PD parameters, but
the output dint has a strong association with the dGD, dCB, and dDDrx parameters. Further-
more, there is not much of a link between parameters R and the input parameters. Each of
these variables must be used to train the deep learning model, and the results section will
provide an explanation of the association’s significance.
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Figure 2. Pearson correlation coefficients of each input parameter (dCB, dDDrx , dCB, SINRth, PG, PC,
and PD) and the output (dint, EE and R).

3.3. Proposed Deep Learning Model

In this section, the suggested deep learning model is demonstrated and explained.
Before adding the variables to the recommended deep learning model, a normalization
phase must be completed in order to help with the learning of the model weights. Each
variable is normalized using the min-max scaling procedure before being incorporated into
the model. Using the eight input variables, dGD, dDDrx , dCB, SINRth, PG, PC, and PD, the
output parameters, dint, EE, and R, are obtained from the final dense layer. The model
has three distinct phases, namely 1D-CNN [32], flattening, and thick layers, as illustrated
in Figure 3. The normalized input parameters are processed through three DCNN layers,
as shown in Figure 3. The first layer has 64 filters and a kernel of size 1, the second has
64 filters and a kernel of size 1, and the third has 128 filters and a kernel of size one. Each
1D-CNN layer generates padded results to maintain the output matrix width. The output
of the third 1D-CNN is then sent into a flattening layer, which restores the dimension and
prepares it for input to the dense layers. Three dense layers follow the flattening layer to
provide the regression result. A grid search was used to examine various combinations of
the number of filters in the 1D-CNN and nodes in dense layers.

To maintain a constant width of the output matrix, each layer of the 1D-CNN produces
padded results. Next, a flattening layer receives the output from the third 1D-CNN and
reformats the dimension to prepare it for input into the dense layers. Regression is produced
by six dense layers that come after the flattening layer. Before choosing how many nodes
to utilize for the dense layers and how many filters to employ for the 1D-CNN, a grid
search was utilized to test out a number of options. The activation function for each hidden
layer has been the rectified linear unit (ReLU). The grid search took activation function
selection into consideration and tested several methods for following the hidden layers in
the proposed model. For optimal results, the output of each hidden layer was input into an
activation function known as a parametric rectified linear unit, or PReLU.

The root mean square error (RMSE) and mean absolute error (MAE) loss function are
the objectives of the adaptive moment (Adam) optimization used in the proposed model.
Adam’s learning method allows him to acquire the required abilities. Whereas RMSE is the
root square of the average of the squared disparities between real and anticipated values,
MAE measures the average difference between the actual and expected values. They can
be referred to as these:

MAE =
∑n

j=1 |yj − xj|
n

(22)
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RMSE =

√
∑n

j=1(yj − xj)2

n
(23)

If xj is the anticipated value, yj is the actual value, and n is the total number of data points
that were recorded. The experiments that were conducted in order to develop, validate,
and test the proposed model are covered in the section that follows.

Figure 3. Proposed deep learning model.

4. Results

This section presents the performance of the suggested deep learning and analytical
models. Furthermore, the effectiveness of the suggested method was assessed in terms of
achievable data rate and improved energy efficiency using MATLAB and Python simula-
tions. As seen in Figure 4, the suggested deep learning model from Section 3.3 is assessed
and put to the test. An 80% train set and a 20% test set were created from the datasets. For
the necessary dint, EE, and R, respectively, the training and validation mean absolute errors
are displayed in Figure 4a–c. Since the results were not changing noticeably beyond epoch
100, all of these graphs demonstrate that additional training was not necessary. Further-
more, each output in Figure 4d had about equal independent training and validation errors,
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indicating that the suggested model was neither overfit nor underfit. It also shows how the
independent training and validation mistakes loss eventually decrease and stabilize.

Figure 4. Training and validation mean absolute error generated during training the proposed model.
(a) The training and validation mean absolute errors (dint), (b) the training and validation mean
absolute errors (EE), (c) the training and validation mean absolute errors (R) and (d) the training and
validation mean absolute errors of the suggested model.

It has been assumed that the home gateway transmission power is always equal to the
interference transmission power in order to show the efficacy and resilience of the proposed
approach. Figure 5 illustrates the required linked signal-to-interference-plus-noise ratio
(SINRth) for both the analytical and deep learning methods, weighed against the necessary
interference transmission distance between the home gateway and any interfered devices.
There are two distinct transmission distances (100 and 250 m) that have been assumed in
order to assess the effectiveness of the suggested model. Additionally, it has been assumed
that every interfering device transmitted data using the 23 dBm maximum interference
transmission power. In the worst scenario, data delivered from home gateways and their
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destinations can be impacted by significant amounts of interference transmission power.
There is an optimal necessary interference transmission distance between home gateways
and any interfering devices for each required SINRth for both the analytical and deep
learning models in order to accomplish the required system (SINRth). As seen in Figure 5,
the ideal required interference distance for home gateways and any interfering devices for
the analytical and deep learning models, respectively, to fulfil needed system (SINRth),
is 178.429 m and 181.6867 m when SINRth is 10 dB and transmission distance distance is
100 m. For the analytical and deep learning models, the optimal necessary interference
distance is 452.5064 m and 445.61835 m, respectively, whereas the transmission distance
is 250 m. By comparing the two cases, it is feasible to conclude that a certain interference
distance between home gateways and any interfering equipment is needed to obtain the
desired SINRth. Moreover, it is noteworthy that increasing the required SINRth leads to
a longer interference distance, which helps to reduce interference’s effects and attain the
intended performance. This guarantees that the information will be received with sufficient
accuracy and reliability and that it will be delivered via an effective communication route.

Figure 5. Required signal-to-interference-plus-noise ratio (SINRth) versus required interference
distance.

Furthermore, given the same previously stated assumed scenario, the system is assessed
in terms of total system EE and overall achievable data rate, as shown in Figures 6 and 7.
Figure 6, which shows how EE increases with the increase in required SINRth, for both
analytical and deep learning models, demonstrates the effectiveness of the proposed model
and its ability to modify the necessary interference distance between home gateways and
any interfering devices in order to reach the maximum required EE. Furthermore, it can
be observed that both the analytical and deep learning models perform equally well as
the transmission distance rises. Moreover, the same result is obtained when assessing
the system’s performance in terms of achievable data rate (R), as Figure 7 illustrates.
Furthermore, increasing SINRth raises EE for both analytical and deep learning models,
for both estimated transmission distances, as Figure 7 illustrates. This figure illustrates the
effectiveness of the proposed model, which also validates the results from Figure 6. It can
modify the interference distance based on the system’s needs to ensure dependable and
efficient communication under a range of channel conditions.
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Figure 6. Required signal-to-interference-plus-noise ratio (SINRth) versus overall system energy
efficiency (EE).

Figure 7. Required signal-to-interference-plus-noise ratio (SINRth) versus overall system achievable
data rate (R).

It is noteworthy to emphasize that extra care should be taken in the strategic position-
ing of additional possibly interfering devices in circumstances where a range of IoT devices
are responsible for data transmission. This is because Figure 5 provides insights into the
discoveries made in Figures 6 and 7. This becomes important when trying to properly
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stop, remove, or manage interference to obtain the required system performance. Maintain-
ing rigorous control over the positioning of interfering equipment can boost the overall
dependability of the data gathered and provide the foundation for essential emergency
decision-making.

In order to assess the system further, the required interference distance between the
home gateway and any interfering devices is calculated versus home gateway transmis-
sion power (PG), taking into account three distinct values for the (SINRth) thresholds
(5 dB, 10 dB, and 20 dB), and an interference transmission power equals to home gateway
transmission power (PG). Increasing SINRth produces an increase in the necessary inter-
ference distance between the home gateway and any interfering devices, as demonstrated
in Figure 8. Due to the assumption that the interference power always equals PG, it is
noteworthy that increasing the home gateway transmission power does not change the
required interference distance. Furthermore, it is vital to underline that an increase in the
interference transmission distance is connected with increases in SINRth. Put another way,
as SINRth increases, the system merely increases the interference distance to maintain
efficient information exchange and boost overall dependability and efficiency under a
variety of circumstances.

Figure 8. Home gateway transmission power (PG) versus required interference distance.

Figures 9 and 10 exhibit the correlation between home gateway transmission power
(PG) and the total energy efficiency of the system as well as the correlation between home
gateway transmission power (PG) and the total achievable data rate. As previously noted,
three different values for SINRth have been taken into consideration. Using either the
analytical or deep learning model, as the home gateway transmission power (PG) increases,
the overall system energy efficiency (EE) decreases, as shown in Figure 9. This is related
to the growth in energy expenses accompanying greater power, paired with a matching
increase in interference power equal to PG. Additionally, it is noteworthy that an increase
in the signal-to-interference-plus-noise ratio threshold (SINRth) adds to an increase in the
total system energy efficiency. Furthermore, as shown in Figure 10, the same performance
is obtained for both analytical and deep learning models, indicating that raising the value
of PG leads to a decrease in the value of the system’s achievable data rate (R). Also, the
increase in SINRth values leads to a decrease in the value of R. The results shown in
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Figures 9 and 10 show that a higher threshold (SINRth) for the signal-to-interference-plus-
noise ratio indicates that the communication signal is of higher quality when contrasted
to noise and interference. The system reduces the influence of noise and interference
by prioritising stronger and clearer signals by setting a higher SINRth. This results in
a more effective use of the resources and spectrum that are available, which raises the
system’s total energy efficiency and achievable data rate. In essence, a greater SINRth
contributes to increased signal quality, which in turn improves the communication system’s
energy efficiency.

Figure 9. Home gateway transmission power (PG) versus overall system energy efficiency (EE).

The suggested model has been compared with an established technique [21] to demon-
strate its efficacy. This suggested strategy performs better, as evidenced by a comparison
between the model presented in [21] and the proposed model. The comparison focuses on
the relationship between necessary transmission power and overall energy efficiency, as
shown in Figure 11. In terms of total energy efficiency, the suggested strategy performs
better than the alternative, and this result can be linked to a number of important elements.
Firstly, the suggested method probably uses complex algorithms or techniques to determine
the necessary interference distance between home gateways and any interfered devices
in order to maximize energy efficiency and achievable data rate. Transmission power
can be used more effectively as a result of this optimization’s increased energy efficiency.
Furthermore, by allowing the proposed technique to achieve the best possible trade-off
between transmission distance and signal quality, this flexibility helps to achieve even more
energy efficiency. Moreover, energy efficiency may be naturally increased by the fundamen-
tal design or architecture of the suggested methodology. To achieve this, state-of-the-art
methods for modulation schemes, transmission protocols, and interference management
could be used to create a paradigm that consumes less energy than its counterpart. In
conclusion, the advanced optimization techniques, adaptability, and efficient architecture
of the suggested technology can be attributed to its increased energy efficiency during
transmission power changes. Furthermore, the suggested method enables home gateways
to anticipate the maximum suitable interference distance based on channel conditions,
providing accurate and trustworthy data reception via a deep learning model. This re-
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search also assesses the overall possible data rate and energy efficiency under various
environmental circumstances. This complete study, which takes into account parameters
like transmission power and needed SINRth values, provides insights for optimizing IoT
networks for smart homes. Essentially, this work sets the groundwork for more durable
and efficient smart home environments, emphasizing the accuracy of acquired data and
contributing to the continued advancement of IoT technology.

Figure 10. Home gateway transmission power (PG) versus overall system achievable data rate (R).

Figure 11. Home gateway transmission power (PG) versus overall energy efficiency (EE) [21].
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Finally, the results show that the deep learning model and the proposed optimiza-
tion have the adaptability and capabilities to respond to changing system environmental
conditions, thereby improving the system’s performance in terms of energy efficiency and
achievable data rates. Furthermore, while the suggested paradigm makes significant contri-
butions to IoT for smart home connectivity, it is critical to recognize its limitations. One
noteworthy restriction is the use of generated data instead of real-world experimentation.
Simulations enable controlled testing and investigation of many scenarios, but they may
not fully replicate the intricacies and nuances of real-world smart home environments.
Factors such as user behaviour, environmental conditions, and hardware heterogeneity are
difficult to fully recreate in simulations, thus affecting the validity and application of our
findings in real-world scenarios. Furthermore, the generalizability of our findings may be
constrained by certain assumptions and simplifications made throughout our modelling
process. While we aim to create models that capture the core properties of smart home
communication systems, these models will necessarily include simplifications and idealiza-
tions that may not fully represent the variety of real-world deployment circumstances. As
a result, caution should be given when projecting our findings to diverse situations, and
additional validation through empirical investigations in real-world settings is required to
assure the robustness and applicability of our recommended solutions.

5. Conclusions and Future Work

This research looked into the essential aspect of improving communication reliability
in smart homes by focusing on determining the optimal interference distance between
home gateways and any interfering devices. These gateways, which serve as crucial hubs
for data collection in IoT networks, are critical to guaranteeing seamless connectivity. This
work focuses on the issues given by potential interference from other devices operating in
the same frequency band, with the goal of determining the ideal interference distance. The
suggested method addresses interference while simultaneously enhancing IoT connectivity
strategies for smart homes. The strategy seeks to improve the reliability of communication
between home gateways and their destinations by employing the Lagrange optimization
technique and incorporating a 1 D-CNN. This optimization is critical for the effective and
precise transmission of information from smart home devices. This paper’s contributions
go beyond interference control. The recommended approach is to increase IoT network
connections, particularly in difficult situations. The suggested model performs optimally
under various environmental conditions, as demonstrated by system throughput and
energy efficiency results. The interference problem has been studied and solved using
deep learning and the Lagrange optimization technique. Both strategies were used to
forecast the optimal interference distance in order to improve IoT communication networks.
Furthermore, based on analytical and deep learning, it has been demonstrated that the
interference distance must be greater than the transmission distance between any sender
and receiver in order to avoid or reduce interference at any destination. To provide
dependable data transmission in a variety of situations, it takes into account variables
such as interference distance, path loss, signal-to-interference-plus-noise ratio (SINRth),
transmission power, and the existence of various interfering devices. For future works, we
are aiming to look into using AI algorithms to analyze real-time data streams from smart
home devices and sensors, allowing interference mitigation tactics to be optimized in real
time. This dynamic technique has the potential to dramatically increase the robustness
and efficiency of communication in smart home situations. Furthermore, looking into the
potential of emerging technologies like edge computing and blockchain to supplement
interference management approaches could improve the reliability and security of smart
home communication systems while also opening up new opportunities for innovative
applications and services.
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