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Abstract: Future air quality monitoring networks will integrate fleets of low-cost gas and particulate
matter sensors that are calibrated using machine learning techniques. Unfortunately, it is well known
that concept drift is one of the primary causes of data quality loss in machine learning application
operational scenarios. The present study focuses on addressing the calibration model update of
low-cost NO2 sensors once they are triggered by a concept drift detector. It also defines which
data are the most appropriate to use in the model updating process to gain compliance with the
relative expanded uncertainty (REU) limits established by the European Directive. As the examined
methodologies, the general/global and the importance weighting calibration models were applied
for concept drift effects mitigation. Overall, for all the devices under test, the experimental results
show the inadequacy of both models when performed independently. On the other hand, the results
from the application of both models through a stacking ensemble strategy were able to extend the
temporal validity of the used calibration model by three weeks at least for all the sensor devices
under test. Thus, the usefulness of the whole information content gathered throughout the original
co-location process was maximized.

Keywords: air quality network; concept drift; general calibration; global calibration; importance
weighting; relative expanded uncertainty; calibration model update

1. Introduction

Scientific and technical communities have long recognized the potential of exploit-
ing low-cost sensors in modern air quality monitoring networks [1]. The main derived
advantage is the possibility of deploying a significant number of sensing nodes at rea-
sonable costs while densifying the sparse regulatory monitoring network. This in turn
allows for long-sought high-density assessments of air pollution phenomena known to
exhibit inherent high spatio-temporal variance [2]. The final outcomes include enhanced
awareness, focused, efficient, and shared remediation policies, improving urban planning
and reducing environmental and health inequalities. However, the large-scale application
of such a technology is still hindered by inherent data quality issues. Correcting sensors’
sensitivity to non-target gases and environmental variables is mandatory to achieve the
needed accuracy [3]. Moreover, the deterioration in the quality of the measurements occur-
ring during long-term operational deployment decreases the data quality perception for
these devices. Often, before any real-life deployment, a costly co-location time at certified
reference stations is needed to obtain sufficient data to derive sensor calibration functions.
The calibration obtained in the controlled environment failed to provide the requested
robustness. Unfortunately, sensor fabrication variance forces this process to be repeated for
each and any sensor by determining overall high costs and logistic bottlenecks. Moreover,
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every ab initio-derived calibration function will fail in the long term due to changes in
sensor characteristics like poisoning or ageing [4].

Machine learning (ML) algorithms are recognized as a very convenient methodology
to derive calibration functions [5]. Unfortunately, due to the operational scenario in which
the sensor is forced to operate, the well-known independent and identically distributed
samples hypothesis (i.i.d. assumption) is certainly violated. Indeed, the calibrated devices
will have to operate in different conditions from those learned during the short-term
co-location phase. Factors like seasonal environmental variations, anthropogenic forces,
micrometeorology-related fluctuations in pollutant concentration levels, sensor aging, and
so on will determine significant changes in the ongoing operative conditions [6]. As such,
the data distribution model is a paramount issue [7]. The change in the type (and its
location and spread parameters) of distribution will negatively impact the accuracy of the
model output [8]. When this condition occurs, it defines the presence of a concept drift [9,10].
Concept drift is in fact a condition in which the statistical distribution of the target and input
variables of a machine learning model has changed or continuously changed over time.
The analysis of concept drift occurrence has given rise to the need for machine learning
algorithms that are capable to learn in so-called “non-stationary environments” [6].

How to efficiently update the calibration model, after a concept drift condition has
been recognized, is still an open question. Remote calibration and hierarchical network
management are two of the most often proposed approaches.

With the term Remote Calibration, researchers indicate continuous or repeated recalibra-
tion schemes relying on a reference data stream from remote stations exploiting particular
conditions and hypotheses. After a seminal paper by Tsujita et al. in 2005, different teams
involved in air quality monitoring using low-cost sensor technologies have recently sug-
gested that data coming from remote regulatory grade stations should be exploited, in
low-spatial-variance conditions, to correct the effects of a drifting calibration in low-cost air
quality networks [11]. It is actually reasonable to suppose a uniform spatial distribution
of the pollutant concentration in a restricted geographical area at certain times when local
emissions are negligible [12,13]. Based on this hypothesis and, therefore, thanks to data
from a nearby regulatory station, in the case of uniformly low pollutant concentrations
(e.g., during early morning hours), it could be possible to correct the baseline response of
targeted gas sensors [14]. However, the generalization of such encouraging method find-
ings has to be carefully evaluated since the spatial and temporal variance of the recorded
phenomena may be significantly different depending on the geographic context negatively
affecting the performance of remote calibration approaches [4].

Hierarchical networks, including “golden” reference stations (proxies), on top have
also been proposed as a solution to the problem of the continuous calibration of low-
cost air quality monitoring systems (LCAQMSs). Usually, regulatory instrumentations
are on top in hierarchy, while some well-calibrated low-cost nodes are also entered into
intermediate positions. These latter nodes which are limited in number can be regularly
recalibrated, offering a quasi-gold reference data stream which can be used to continuously
recalibrate other low-cost nodes. This can be achieved, for example, by regularly collocating
these nodes with the latter by relocating the proxy nodes for short calibration-oriented
periods. Alternatively, by carefully designing node deployment, proxy measurements can
be used to remotely adjust the calibration of the low-cost nodes. One notable example
is the Breathe London project, in which quasi-golden node data streams are exploited
remotely [15]. Another way to practically implement this is by matching the mean and
standard deviations between the measures of the proxy itself and low-cost sensor data
over a fixed time window [16]. Based on this methodology, the Aeroqual Inc. company
(Auckland, New Zealand) has developed a virtual calibration service for its own products
(www.aeroqual.com (accessed on 23 April 2024)).

At present, continuous calibration strategies exploiting remote data are feasible and
cost-effective procedures for continuous recalibration, keeping the required accuracy level
for long-term deployments. Hourly averaged pollution data are, in fact, frequently pub-
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lished by regulatory institutions for the convenience of citizens and other users. This
means that such data are reachable for everyone through API REST services. One possible
implementation to be considered is MOMA (the acronym for MOment MAtching), which
is the commercial name of the virtual calibration service distributed by the Aeroqual Inc.
company. This service updates the calibration at fixed time intervals at an early develop-
ment stage [17]. To apply a similar workflow, we took such a service into consideration
and explored the possibility of triggering calibration by updating using a concept drift
detector. This methodology will allow for the performance of recalibration only when
specifically needed, saving precious computational resources and avoiding unwanted
overfitting errors.

In order to select the suitable strategies to mitigate the effects of the concept drift, the
following three main steps have been carried out: (i) understanding which data should
be used to update the model; (ii) evaluation and validation of the general calibration
model and importance weighting calibration model in the presence of a concept drift;
(iii) attempting to improve the quality of pollution estimations data with the stacking
ensemble technique in air quality network scenarios.

2. Materials and Methods
2.1. Experimental Campaign

The LCAQMS employed is based on an electrochemical sensors array using Al-
phasense (Braintree, UK) A4 class sensor units, respectively, targeted to carbon monoxide
(CO-A4), nitrogen dioxide (NO2-A43F), and ozone (O3-A431). Relative humidity (RH)
and temperature (T) sensors complete the sensing array. The electrochemical gas sensors
array is mounted on an analog front-end provided by Alphasense that outputs the signals
related to the concentration of monitored air gases. The working electrode (WE) and the
auxiliary electrode (AE) signals of each type of sensor are acquired and converted by an ST
Microelectronics (Geneva, Switzerland) Nucleo LK432KC board. The node measurements
are packeted in a proper JSON and sent via low-energy Bluetooth to a Raspberry Pi (Galles,
UK) 3B+ Model. A Wi-Fi router shares the WAN connectivity services with the Raspberry
Pi, allowing the data to reach the MONGO DB database server for storage.

Four nodes, named AQ6, AQ8, AQ11, and AQ12, have been deployed against a
mobile regulatory air quality monitoring station for a two-months-long winter co-location
campaign completed in the city of Portici (Naples, Italy) from 2 January to 2 March 2020.
During the campaign, the AQ8 sensor broke, and therefore it will not be considered.

This research study is focused only on nitrogen dioxide NO2, which is considered one
of the most dangerous pollutants, meaning that the value of the NO2 concentration is our
target variable Y. In fact, the experimental data stored on the server were averaged on an
hourly basis and used to calibrate the sensor nodes with an ad hoc multilinear regression
model, characterized by six input features X: relative humidity (RH), temperature (Temp),
AE and WE signals of NO2 sensor, AE and WE signals of O3 sensor [18].

2.2. Concept Drift Detection Trigger

Let (X, Y) be couples of input-target samples and Pt(X, Y) be its joint probability
distribution at the instant time t; a concept drift results if Pt(X, Y) 6= Pt+1(X, Y). This
formula can be separated by means of Bayes’ law in the following relation:

Pt(X)Pt(Y|X) 6= Pt+1(X)Pt+1(Y|X) (1)

A spatial or temporal change in the characteristics of the features X, but also a change
in the relationship linking the inputs to the target variable, is the cause of the decline
in the performance of the model used. Therefore, the greater the difference, the greater
the error that has been committed. It becomes imperative to be able to identify when
a similar event is occurring. Statistical tools are one of the most widely used and well-
established methods for accomplishing these tasks. A comprehensive guide to the concept
drift detection algorithms is available in [10].
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An immediate and simple implementation of a concept drift detection block can be
implemented (both on the node hardware and on the back-end server-side software) using
the two-sample Kolmogorov–Smirnov test (TSKS test), which is able to evaluate whether
two samples come from the same distribution without making any assumption regarding
the type of distribution. In the case of low-cost air quality sensors calibrated using ML
techniques, the TSKS test can be used to determine whether both the distributions of the
input features X and the distributions of the output variable Y during the training phase
remain the same also throughout the test phase. Of course, concept drift has occurred,
and a recalibration request is triggered if the distributions turn out to be different. Since
X-values are always available during the LCAQMS operational scenario, it is possible to
detect concept drift even without a reference instrument by comparing the X-distributions
obtained during co-location with those obtained during the operational phase (test phase).
The same Is true for the target variable. The value in co-location is compared with the value
predicted by the model in the test phase. Furthermore, if it is possible to access reference
station data from a remote calibration perspective, the same approach is obvious for the
output variable. According to the heuristic rule described in [19], a recalibration request is
only triggered when the maximum difference between the cumulative density functions of
the training and test distributions of the temperature and/or NO2 concentration exceeds
the threshold of 0.3.

By applying this approach to the experimental data collected, divided into eight
batches (T1 to T8), each one week long, the presence of two concept drifts has been detected.
The first is just before the end of the T4 slot time, while the second drift event happens
in T8, but it is not considered in such analysis. A graphic representation of the concept
drift existing in the dataset under analysis is shown in Figure 1. The green dots represent
the trend of the “concept” that characterizes the target variable and an input variable
(temperature, in this case) during the co-location period and, therefore, during the training
process. The red dots represent the trend of the same variables after the concept drift
detection; therefore, the “new concept” characterizes the test set after only one month.
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2.3. Calibration Model Update Data Selection

To tackle the problem of concept drift handling, data were analyzed to find those
containing the useful information to update the calibration model.
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Let t0 be the time at which the concept drift detector block implemented in the air
quality monitoring network sends an alarm signal to the network administrator, meaning
that the current calibration model is obsolete and needs to be updated. Now the first
question is to understand which data should be used for the update. Three possible
reference datasets can be used within this scope: the dataset preceding the concept drift
alert, called “Last” and identified with the T3 time slot (Figure 2); the dataset following
the concept drift alert, called “Next” (T5 in Figure 2); or part of both called “Mixed” that
contains the time instant t0 and is reported as the T4 time slot (Figure 2) [20].
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Our attention will focus on trying to restore the compliant data quality. The following
tests are fulfilled by updating the model using on-hand reference data (in the proper time
windows) and then evaluating the performance of the new model in T5–T6–T7.

2.4. Calibration Update without Reference Data

Bringing back the data quality at the regulatory level after the detection of a concept
drift event remains the final goal of our study. This means the mitigation of the effects
related to the concept drift. To make the most out of the information content of the co-
location data, two new calibration models beyond the ad hoc one were extracted from
it. The following techniques were explored: the general (also named global or, less often,
universal) calibration model, and the importance weighting calibration model.

2.4.1. General Calibration Model

This methodology has been introduced in recent years as an attempt to reduce the
calibration costs [21,22]. It consists of identifying and applying a general calibration model
to all the nodes involved in the network, thus avoiding the need for additional ad hoc
calibrations. As known, the raw output of most electrochemical gas sensors consists of the
voltage (mV) measured at the working and auxiliary electrodes that is representative of the
measured gas concentration. Let us consider n co-located sensors, and then the median
between these n values is calculated. The same procedure is applied for temperature and
humidity values. The set of medians of all the single quantities (input variables) involved
in model creation accounts for the training set which the global model is trained on. Such a
procedure is depicted in Figure 3.
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Such an approach can incorporate the inherent variability of each sensor into a single
model, as previously investigated to contrast the effects of concept drift on metal oxide
(MOX) gas sensors [23]. The same approach was applied to the NO2 electrochemical gas
sensors in our case study.

2.4.2. Importance Weighting Calibration Model

The idea behind this procedure is to “weigh” the test set samples in order to “match”
the distribution used during the training phase. Once the weights are obtained, these will
be applied in the training process, obtaining a new calibration model [24].

The importance of a sample (i.e., the “weight”) is calculated as the ratio between the
probability density functions (pdf ) of the test and training set (Figure 4). If such a ratio
w(x) is equal to 1, this means that the sample has the same degree of importance in both
the test and the training set, while if w(x) > 1, the considered sample is more important in
describing the test set rather than the training set.
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In the present analysis, the application of the importance of the weighting calibration
model was limited to the target variable only, and the weights were obtained using the ad
hoc model prediction of the time slot T4 (the last useful time slot before the effects of the
concept drift would become disruptive).

2.4.3. Stacking Ensemble Calibration Model

Recently, the stacking ensemble technique has been successfully applied in domain
adaptation under concept drift due to its ability to reduce the deviation and variance in
neural networks, thus producing robust predictions. Such a strategy has also already been
applied in air quality sensor networks [25,26].

Stacking ensemble consists of combining the outputs of several models produced by
different algorithms (generally called base learners or also weak models) in order to increase
the total accuracy and increase generalization. The estimations of the basic learners are
combined in a second level, called meta-learner, which, in the case of regression problems,
can be a simple linear regression. In our case study, instead of implementing additional
algorithms such as base learners, we exploited the estimations of nitrogen dioxide result-
ing from the general calibration model and the importance weighting calibration model.
Figure 5 describes the proposed architectural scheme in detail. The reference data (labels)
for the meta-learner training phase will be requested to the air quality network in the T4
time slot. Such an approach is known as remote calibration, as described in the Introduction,
and in our case study, its usage avoids new co-locations.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. The proposed stacking ensemble architecture. 

2.4.4. Performance Evaluation 
According to the European Directive [27], if a NO2 low-cost sensor is used in an air 

quality network for indicative measurements, it should present a relative expanded un-
certainty (REU) below 25%. In this analysis, we labeled this positive operational scenario 
with “PASS”, while “FAIL” identified REU > 25%. The REU and the REU plots, reported 
in the Supplementary Materials, were computed with an appropriate MATLAB script on 
the basis of the formulas and the methodology described in [19,28]. In our analysis, an-
other main parameter that was taken into account was the pollutant concentration value, 
at which the REU graph intercepts the data quality objective (DQO) threshold line at 25%. 
Obviously, the following choice between different models would be oriented towards the 
model that shows the lowest possible REU, which is translated into the model’s better 
capability to mitigate the effects of the concept drift. 

3. Results and Discussion 
To improve the readability of this section, the reader can refer directly to the follow-

ing tables, which summarize the outcomes of the REU plots, which are detailed for com-
pleteness in the Supplementary Material. 

3.1. Results with Reference Data 
It would be obvious to come to the conclusion that the “Next” approach is to be pre-

ferred over the others because it is after the alert that the new operating conditions fully 
manifest themselves, independently, from the metrics used for the assessment. 

However, in order to learn the new operating domain, it is necessary to wait for the 
necessary time to acquire a certain number of samples to train the new model. This means 
continuing, in the meantime, to invalidate the data released by the node (which would be 
a PASS level of REU up to T4 and FAIL from T5 onward). An important drawback is rep-
resented by the delayed time needed to obtain reference data before having a running 
updated model. It could be possible to wait for T5 reference data and then embed the new 
concept into the new updated model. However, such a strategy, even if allowing for good 
performances in T6 and T7, would lead to a loss of continuity in the data quality in T5. 
The goal, instead, is to achieve a continuity in data quality by wishing the REU in T5–T6–
T7 to be equal to PASS. Therefore, it would be helpful if the “Last” and/or “Mixed” ap-
proaches presented acceptable REU values. 

Tables 1 and 2 summarize the results obtained from the REU plots in the “Mixed” 
and “Last” scenarios and emphasize their ability to mitigate the concept drift effects and 
lead to more accurate and precise NO2 estimations. Both tables show, for each time slot 
and for each device, the assigned REU labels (PASS, FAIL) as well as the value correspond-
ing to the intersection of the pollutant concentration value with the data quality objective 
(DQO) threshold line at 25%, as disposed by the European Directive [27]. The missing 
values in the tables are related to the REU plot, failing to reach the minimum threshold of 
25%. 

Figure 5. The proposed stacking ensemble architecture.

2.4.4. Performance Evaluation

According to the European Directive [27], if a NO2 low-cost sensor is used in an
air quality network for indicative measurements, it should present a relative expanded
uncertainty (REU) below 25%. In this analysis, we labeled this positive operational scenario
with “PASS”, while “FAIL” identified REU > 25%. The REU and the REU plots, reported in
the Supplementary Materials, were computed with an appropriate MATLAB script on the
basis of the formulas and the methodology described in [19,28]. In our analysis, another
main parameter that was taken into account was the pollutant concentration value, at
which the REU graph intercepts the data quality objective (DQO) threshold line at 25%.
Obviously, the following choice between different models would be oriented towards the
model that shows the lowest possible REU, which is translated into the model’s better
capability to mitigate the effects of the concept drift.

3. Results and Discussion

To improve the readability of this section, the reader can refer directly to the fol-
lowing tables, which summarize the outcomes of the REU plots, which are detailed for
completeness in the Supplementary Material.
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3.1. Results with Reference Data

It would be obvious to come to the conclusion that the “Next” approach is to be
preferred over the others because it is after the alert that the new operating conditions fully
manifest themselves, independently, from the metrics used for the assessment.

However, in order to learn the new operating domain, it is necessary to wait for the
necessary time to acquire a certain number of samples to train the new model. This means
continuing, in the meantime, to invalidate the data released by the node (which would
be a PASS level of REU up to T4 and FAIL from T5 onward). An important drawback is
represented by the delayed time needed to obtain reference data before having a running
updated model. It could be possible to wait for T5 reference data and then embed the new
concept into the new updated model. However, such a strategy, even if allowing for good
performances in T6 and T7, would lead to a loss of continuity in the data quality in T5. The
goal, instead, is to achieve a continuity in data quality by wishing the REU in T5–T6–T7 to
be equal to PASS. Therefore, it would be helpful if the “Last” and/or “Mixed” approaches
presented acceptable REU values.

Tables 1 and 2 summarize the results obtained from the REU plots in the “Mixed” and
“Last” scenarios and emphasize their ability to mitigate the concept drift effects and lead to
more accurate and precise NO2 estimations. Both tables show, for each time slot and for
each device, the assigned REU labels (PASS, FAIL) as well as the value corresponding to
the intersection of the pollutant concentration value with the data quality objective (DQO)
threshold line at 25%, as disposed by the European Directive [27]. The missing values in
the tables are related to the REU plot, failing to reach the minimum threshold of 25%.

Table 1. Summary of REU results for the “Mixed” scenario.

T5 T6 T7

REU Value
[µg/m3] REU Value

[µg/m3] REU Value
[µg/m3]

AQ6 FAIL - PASS 65 PASS 70
AQ11 PASS 60 PASS 80 PASS 80
AQ12 PASS 55 PASS 55 PASS 51

Table 2. Summary of REU results for the “Last” scenario.

T5 T6 T7

REU Value
[µg/m3] REU Value

[µg/m3] REU Value
[µg/m3]

AQ6 FAIL - PASS 80 FAIL -
AQ11 PASS 55 FAIL - FAIL -

Observing the REU plots from T5 to T7 for the AQ12 device in the “Mixed” approach,
it can be seen that the REU drops below 25% from 55 µg/m3 onwards in T5 and T6
(Figures S1.1 and S1.2), while it drops from 51 µg/m3 in T7 (Figure S1.3). Surely such a
situation is to be preferred since it allows for the continuity of data quality, extending
the hoped PASS REU value for 3 more weeks. Regarding the AQ11 device, the “Mixed”
approach worked similarly to AQ12, but the inherent variability of the device negatively
affected the model performance, meaning it failed to repair the effects of the concept
drift. In fact, it can be seen that the intersections with the DQO threshold line at 25% are
higher, at 60 µg/m3 in T5 (Figure S1.4) and 80 µg/m3 in T6 and T7 (Figures S1.5 and S1.6),
respectively. On the other hand, in the “Last” approach, AQ11 exhibits good performances
only in T5 (Figure S1.7), while it does not reach the desired REU levels in T6 and T7
(Figures S1.8 and S1.9). This means that the intrinsic variability of AQ11 and the operating
conditions in T3 used for the fitting of the new model are too different from those present
after the concept drift. The AQ6 device in the “Mixed” approach presents a FAIL in T5,
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while in T6 and T7, a PASS is reached at 65 and 70 µg/m3, respectively (Figures S1.10–S1.12).
The “Last” scenario for AQ6 does not work, except for in T6, but at a higher pollution
level of 80 µg/m3 (Figures S1.13–S1.15). The outcomes for the AQ12 device in the “Last”
scenario are missing due to data transmission issues.

From the analysis carried out, it can be concluded that all in all, if there is a possibility of
drawing on the data of a regulatory reference station, it is possible to update the calibration
model after the trigger signal using the “Mixed” approach, i.e., selecting part of the reference
data before the concept drift alert and remaining data after it.

3.2. Results without Reference Data: General Calibration Model

Proceeding similarly to the previous case, it is essential to evaluate the REU to un-
derstand if the general calibration model is able to positively mitigate the effects of the
concept drift. Table 3 details the obtained results, while the REU plots in the Supplementary
Materials are also shown in comparison with the ad hoc calibration model.

Table 3. Summary of REU results for the general calibration model.

T5 T6 7

REU Value
[µg/m3] REU Value

[µg/m3] REU Value
[µg/m3]

AQ6 PASS 45 PASS 63 PASS 80
AQ11 FAIL - FAIL - FAIL -
AQ12 FAIL - FAIL - FAIL -

Applying the general calibration model to the AQ6 node, the REU plot drops below
25% at 45 µg/m3, suggesting that the global calibration model is efficient in mitigating
the concept drift consequences in the T5 time slot (Figure S2.1). This value shifts at higher
concentration levels in T6 and T7, specifically at 63 µg/m3 and 80 µg/m3, respectively
(Figures S2.2 and S2.3). Although the REU does not fall within a considerable range of
values below 25% in T6 and T7, it must be observed that such a situation presents better
results than the ad hoc model. Therefore, a first applicative scenario would be to use the
global model for AQ6 from T5 onwards, instead of continuing with the ad hoc one. For
the AQ12 device, the general calibration model matches the ad hoc model performance
(Figures S2.4–S2.6). The same result has been obtained for particulate matter sensors in
terms of the mean absolute error (MAE) in [29]. The AQ11 intrinsic node variability makes
this instrument too different from the others; therefore, a general model built in this way
is unable to work properly for our purposes. Indeed, its performance is too far also from
the performance of the ad hoc model; thus, we chose not to report the REU plots. Future
research projects could investigate this aspect and evaluate whether it is better to build
more global models among similar devices by means of clustering [30].

3.3. Results without Reference Data: Importance Weighting Calibration Model

As can be seen in Table 4, re-weighing the target variable in T4 produces a considerable
improvement in the performance of the AQ11 device. In fact, looking at the REU plot of
AQ11 in T5, the intersection with the 25% value was observed at 40 µg/m3 (Figure S3.4),
while in T6 and T7, it did not quite reach the DQOs, although the importance weighting
calibration model performs slightly better than the ad hoc one (Figures S3.5 and S3.6). As
far as the AQ6 and AQ12 devices, the REU plots equaled those of the ad hoc model in some
time slots, while they were worse in others (Figures S3.1–S3.3 and S3.7–S3.9).
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Table 4. Summary of REU results for the importance weighting calibration model.

T5 T6 T7

REU Value
[µg/m3] REU Value

[µg/m3] REU Value
[µg/m3]

AQ6 FAIL - FAIL - FAIL -
AQ11 PASS 40 FAIL - FAIL -
AQ12 FAIL - FAIL - FAIL -

Summarizing the application of the importance weighting calibration model brings
the AQ11 device in T5 back to the allowed REU values.

3.4. Stacking Ensemble Calibration Model Results

Table 5 shows the summary of the REU values for the stacking ensemble calibration
model. The inference to be drawn comparing the outcomes of Table 5 with those of Table 1
is that the application of the stacking ensemble technique lowers the value at which the
REU reaches 25%, making the mitigation of the concept drift effects more robust in all the
analyzed cases. In principle, the use of better-performing base learner algorithms could
contribute to further error reductions. The proposed solution, although not yet optimal,
constitutes a good compromise, since it guarantees the continuity of the data’s quality
even after the detection of concept drifts. Furthermore, operating within an air quality
network, the implementation of the proposed stacking ensemble approach requires only
the reference data in T4, meaning that any other re-co-location could be avoided in a remote
calibration approach.

Table 5. Summary of REU results for the stacking ensemble calibration model.

T5 T6 T7

REU Value
[µg/m3] REU Value

[µg/m3] REU Value
[µg/m3]

AQ6 PASS 44 PASS 56 PASS 65
AQ11 PASS 44 PASS 70 PASS 76
AQ12 PASS 51 PASS 54 PASS 45

4. Conclusions

In this study, we attempted to achieve the data quality objectives in the measurements
of environmental pollutants through machine-learning-calibrated low-cost gas sensors.
Through our results, we hope to accelerate the spread of this technology in smart city
applications. The core of our work is a concept drift adaptation in the context of air quality
monitoring networks but by exploring the possibility of using the whole useful information
content of the data collected in the course of the co-location.

Another noteworthy aspect relates to the choice of calibration models used. With
the general calibration model, we wanted to incorporate the intrinsic variability of each
sensor into a single calibration model. On the other hand, with the importance weighting
calibration model, we tried to reduce the prediction error by matching the distributions
between training and test using accurate weights. Unfortunately, the general calibration
model and the importance weighting calibration model show promising results only for
some devices and only in the one time slot in this specific dataset. On the contrary, their
use in a stacking ensemble architecture succeeds in mitigating the concept drift effects
by allowing an extension of the calibration robustness both for all devices and in all time
slots after concept drift. For example, by turning off the ad hoc model and turning on the
stacking ensemble model, the node is able to output reliable data.

Even though the proposed methodology offers encouraging results, future research
is encouraged to test other models in the first layer of the stacking ensemble to increase
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performance but also to test the assessment and validation of the methodology using wider
datasets with a greater number of devices.

Finally, an important aspect to remark is the feasibility of the implementation on the
backend side of the platform of an air quality network of the proposed approach. This
might deliver a continuous calibration service. Recently, indeed the issue of evaluating and
monitoring machine learning models from validation to production has come to the fore.
Therefore, numerous start-ups have implemented their own platform and began offering
services in many application areas [31]. The low-cost air quality monitoring network could
be one of such applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s24092786/s1, Figures S1.1–S1.15: REU plots of reference data selection
for calibration update; Figures S2.1–S2.6: REU plots of general calibration model; Figures S3.1–S3.9: REU
plots of importance weighting calibration model; Figures S4.1–S4.9: REU plots of stacking ensemble
calibration model.
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