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Abstract: The application of artificial intelligence to point-of-care testing (POCT) disease detection
has become a hot research field, in which breath detection, which detects the patient’s exhaled
VOCs, combined with sensor arrays of convolutional neural network (CNN) algorithms as a new
lung cancer detection is attracting more researchers’ attention. However, the low accuracy, high-
complexity computation and large number of parameters make the CNN algorithms difficult to
transplant to the embedded system of POCT devices. A lightweight neural network (LTNet) in this
work is proposed to deal with this problem, and meanwhile, achieve high-precision classification
of acetone and ethanol gases, which are respiratory markers for lung cancer patients. Compared
to currently popular lightweight CNN models, such as EfficientNet, LTNet has fewer parameters
(32 K) and its training weight size is only 0.155 MB. LTNet achieved an overall classification accuracy
of 99.06% and 99.14% in the own mixed gas dataset and the University of California (UCI) dataset,
which are both higher than the scores of the six existing models, and it also offers the shortest training
(844.38 s and 584.67 s) and inference times (23 s and 14 s) in the same validation sets. Compared to
the existing CNN models, LTNet is more suitable for resource-limited POCT devices.

Keywords: breath detection; sensor arrays; convolutional neural network; lightweight neural network;
cancer detection

1. Introduction

Due to its high incidence and lethality, lung cancer (LC) imposes a significant burden
on the healthcare system [1,2]. By the end of 2023, it is forecasted that there will be 609,820
cancer-related deaths in the United States, with lung cancer remaining the leading cause
of cancer mortality among them [3]. Currently, clinical detection of lung cancer primarily
relies on cellular or histopathology examinations, radiographic imaging such as X-rays and
CT scans, and tumor marker assays in bodily fluids. But, these existing detection techniques
have obvious drawbacks, including high cost and significant harm to the human body.

Volatile organic compounds (VOCs) contained in exhaled human breath are closely
associated with various diseases. Breath analysis was one solution to be put forward,
which is a non-invasive early screening method that can be employed for the screening of
various diseases, including lung cancer, diabetes, breast cancer and so on [4–6] Research has
indicated that lung cancer results in elevated levels of acetone and ethanol in exhaled breath.
Both of these gases can serve as reliable exhalation biomarkers for early lung cancer [7,8]. In
current clinical trials, spectroscopic methods, mass spectrometry, chromatography-related
techniques, and electronic noses (e-nose) are considered as relatively viable and efficient
standard technologies for detecting VOCs in human exhaled breath [9–11]. However,
techniques such as mass spectrometry, chromatography and spectroscopic methods are
constrained by their high equipment costs and technical operator requirements. In contrast,
gas sensor array-based e-nose gas sensing technology holds greater cost advantage and
development potential for application in breath analysis [12–14].
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Through the analysis of the data collected by the sensor array by the pattern recog-
nition algorithm, the electronic nose can effectively identify complex gases. In a pattern
recognition task, feature selection and feature extraction directly affect the detection perfor-
mance of electronic nose. Marzorati et al. [15] extracted nine features from the response
of each gas sensor to exhaled gas. Liu et al. [16] used 19 sensors, selected 13 composite
features from each sensor, and combined with classical classifiers to verify the feasibility
of identifying LC patients through VOCs. In previous studies, it has been found that
the whole feature extraction process is particularly complex, and it is necessary to try
the feature extraction method continuously to obtain better results. Gramian Angular
Field (GAF) is a data visualization method, proposed by Wang et al., which converts time
series into two-dimensional color images [17]. GAF encodes one-dimensional time series
into two-dimensional color images with more prominent key features, so as to display
the important information hidden in the sensor signal more clearly. By using the data
visualization technology of GAF, the original data do not need to be processed, and are
directly converted into two-dimensional color images, which can not only retain the deep
features of the signal, but also avoid complex feature extraction engineering [18].

Currently, pattern recognition algorithms employed in electronic noses are categorized
into classical gas identification algorithms (machine learning), artificial neural networks
(ANNs), and biologically inspired pulse neural networks (SNNs) [19–21]. To address com-
plex gas recognition tasks, ANNs have been regarded as the current popular choice [22,23].
Compared with machine learning and SNNs, ANNs exhibit strong adaptability and do not
require model redesign for different training tasks. Additionally, the nets can automatically
learn complex features from data without the need for manual feature extraction and they
encompass various neural network architectures, such as backpropagation neural networks
(BPNNs), convolutional neural networks (CNNs), etc. Avian et al. [24]. proposed a CNN ar-
chitecture and built two models for analyzing VOCs in exhaled gas. The first model receives
the signal processed by different feature extraction methods as input, while the second
model directly processes the original signal. The results indicate that different classifiers
demonstrate varying effects depending on the employed feature extraction methods, with
kernel PCA (KPCA) showing a positive impact on performance. Guo et al. [25] introduced
an innovative deep learning framework that combines an electronic nose to predict odor
descriptor ratings, which was the first application of convolutional long short-term memory
(ConvLSTM) on an electronic nose for olfaction prediction.

Although convolutional neural networks have found extensive application in gas clas-
sification, they possess a substantial number of trainable parameters, high computational
complexity, slow inference speed and are not hardware-friendly for devices, which hinder
the transportability of pattern recognition algorithms into embedded systems. To address
this issue, convolutional neural networks have increasingly evolved towards lightweight
architectures [26,27].

The contributions of this article are summarized as follows:

(1) A hardware-friendly lightweight neural network model (LTNet) using a depth-
separable convolution structure for gas classification is constructed.

(2) To settle the decrease in classification accuracy caused by depthwise separable con-
volutions, we propose to add squeeze-and-excitation (SE) attention mechanisms and
residual connections in the model.

(3) The convolutional and batch normalization (BN) layers are combined together so as to
reduce the model parameters, speed up the inference speed and improve the stability
of the model.

(4) Compared to the unimproved LTNet (LTNet (Original version)), this validates the
effectiveness of the improvements made to LTNet.

2. Experimental Section

Data collection was performed using the CGS-8 intelligent gas sensor analysis system
provided by Beijing Ailite Technology Co., Ltd., a company located in Beijing, China.
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Subsequently, the collected data were transformed into images using the Gramian Angular
Field (GAF), which served as valid inputs to LTNet. Two different datasets were employed
to assess the performance of the model, and the overall process is illustrated in Figure 1.
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2.1. Data Source I: Gas Mixture Dataset

Exhaled breath from the lung cancer patients contains biomarkers, including nu-
merous species, such as acetone, ethanol, isoprene and etc. By detecting the types and
concentrations of these biomarkers, we can assess changes in physiological state in vivo
and achieve early screening for lung cancer. To validate LTNet’s classification capabilities,
the study utilized acetone and ethanol gases to simulate breath biomarkers found in lung
cancer patients. In the experiment, a sensor array composed of 16 commercial semiconduc-
tor metal oxide gas sensors manufactured by FIGARO was used, which matched the sensor
model in Data Source II (UCI database).

The experiment employed a static gas volumetric method using 98% AR acetone
and 98% anhydrous ethanol with a microsyringe capable of handling a range of 10 µL
for liquid extraction. As indicated by Equation (1), it can be observed that conducting
experiments directly with high-concentration test liquids would result in a very small
volume of extracted liquid, making it difficult to inject into the gas chamber. To address this
issue, the concentration of the test liquid was chosen to dilute to 10% in the experiment.

Q =
V × C × M
22.4 × d × r

× 10−9 × 273 + TR
273 + TB

(1)

where Q is the volume of the test liquid (mL), V denotes the volume of the gas chamber
(mL), C stands for the desired gas concentration to be prepared (ppm), M is the molecular
weight of the substance, d is the concentration of the test liquid, r signifies the liquid density
(g/cm3), TR represents the laboratory ambient temperature (◦C) and TB is the gas chamber
temperature (◦C).

Following the specifications in the sensor manual, the working voltage of all 16 sensors
was set to 5 V. The sensor operating current was adjusted on the CGS-8 smart gas sensing
analysis system through multiple experiments to identify the optimal operating current
for each sensor. The sensor models and their optimal operating currents are presented in
Table 1, respectively.
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Table 1. Sensor models and optimal operating currents.

NO. Models Target Gases Detection
Ranges (ppm)

Optimal Operating
Currents (mA)

1 TGS2600 Ethanol, Hydrogen 1–30 45
2 TGS2602 Ammonia, Ethanol Ethanol 1–30 50
3 TGS2610 Organic compounds 500–10,000 55
4 TGS2620 Ethanol, Organic compounds Ethanol 50–5000 43

After setting the optimal operating current, it is necessary to preheat the sensor for two
hours and wait for the baseline to stabilize. Then, the evaporation and heating functions
of the experimental apparatus are activated. A microsyringe is used to extract a certain
amount of liquid from the test liquid prepared according to Formula (1), which is then
vertically dropped into the evaporation dish. The sensor array is exposed to acetone,
ethanol or a binary mixture of these two VOC gases. The concentration indices for the two
gas mixtures are detailed in Table 2. The experimental response time is set approximately
120 s, and the recovery time is also about 120 s.

Table 2. Details of concentration indicators in the acetone ethanol experimental dataset.

NO. Ethanol (ppm) Acetone (ppm) Mixed Gas (ppm)

1 0 1 1
2 0 3 3
3 0 5 5
4 0 7 7
5 0 9 9
6 0 11 11
7 0 13 13
8 0 15 15
9 1 0 1
10 3 0 3
11 5 0 5
12 7 0 7
13 9 0 9
14 11 0 11
15 13 0 13
16 15 0 15
17 1 1 2
18 1 5 6
19 1 10 11
20 1 15 16
21 5 1 6
22 5 5 10
23 5 10 15
24 5 15 20
25 10 1 11
26 10 5 15
27 10 10 20
28 10 15 25
29 15 1 16
30 15 5 20
31 15 10 25
32 15 15 30

2.2. Data Sources II: UCI Database

This work also used a public database from the University of California (UCI) to com-
plement and validate Data Source I. This dataset is a collection of gas sensor drift datasets
at different concentrations, collected by the Chemical Signaling Research Laboratory at the
UCI BioCircuits Institute in San Diego [28,29]. The acetone concentrations in the dataset
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range from 12–500 ppm and ethanol concentrations range from 10–500 ppm. A total of
4650 datapoints from UCI dataset were used for classification with LTNet.

2.3. Experimental Environment and Hardware Configuration

The algorithmic programming environment for this study is Python 3.10, running on a
computer with an RTX 3060 graphics card. The LTNet network, as well as the comparison
network, uses the Adam optimizer with a cross-entropy loss function. The model usually
converges after about ten rounds of training, so epoch was set to 30. Conventional con-
volutional neural networks take up a lot of graphics card memory during training, and
for comparison purposes, the batch size was set to 16. For the own mixed gas dataset,
the learning rate was set to 0.0006, while for the UCI database, the learning rate was set
to 0.0004.

3. Data Processing
3.1. Image Conversion Methods

CNNs are typically used for processing two-dimensional image data. However, the
raw data collected from each channel of the sensor array were one-dimensional results
and not suitable for processing by the CNNs directly. To figure out this issue, an image
transformation model based on Gramian Angular Field (GAF) was utilized [30], transform-
ing one-dimensional time series data into two-dimensional images that would become
effective inputs for the LTNet. The coding diagram based on GAF is shown in Figure 2.
The response data of 16 sensors were selected at a certain sampling point, and the response
data were denoted as X = {x1, . . . , x16},then normalization of the response data X to the
range of [−1, 1] was carried out using min–max normalization with Formula (2).

∼
x i =

(xi − max(X)) + (xi − min(X))

max(X)− min(X)
, i = 1, 2 . . . 16 (2)

where X represents the response data of the sampling points and xi is the response data
of the ith sensor. This step constrains the angular range between 0 and π, facilitating the
acquisition of more detailed GAF information.
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Figure 2. The diagram of GAF coding. X represents the response data of 16 sensors at a certain
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GASF/GADF image is generated.

The selected data for this study consist of the response data from 16 sensors at a
specific sampling point, and do not involve time series. Therefore, there is no need to
encode the timestamps as radii. Formula (3) was used to calculate the arccosine values of
the response data for the sensors at this sampling point.

ϕ = arccos(
∼
x i),−1 ≤ ∼

x i ≤ 1,
∼
x i ∈ X (3)
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After transforming the scaled
∼
x i into polar coordinates, the correlation between re-

sponse data of different sensors was captured through the summation of triangular rela-
tionships among each point. Therefore, GASF and GADF were defined by the following
equations, respectively.

GADF =

sin(ϕ1 − ϕ1) . . . sin(ϕ1 − ϕn)
...

...
...

sin(ϕn − ϕ1) · · · sin(ϕn − ϕn)

 (4)

GASF =

cos(ϕ1 + ϕ1) . . . cos(ϕ1 + ϕn)
...

...
...

cos(ϕn + ϕ1) · · · cos(ϕn + ϕn)

 (5)

In which, ϕ1 and ϕn represent the normalized and inverse cosine-transformed response
data of the first and nth sensors, respectively, in the sensor array.

3.2. Lightweight Neural Network Model

The high complexity, large number of parameters and relatively slow inference speed
of neural networks could potentially impede the feasibility of porting pattern recognition
algorithms to embedded systems. Therefore, a lightweight neural network model (LTNet)
is proposed to figure out this problem. It includes a backbone network based on depthwise
separable convolutions, and the complete network architecture is illustrated in Figure 3.
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Figure 3. Block diagrams of LTNet network structure. (a) The ConvBN module is presented, which
results from the fusion of depthwise separable convolution and batch normalization (BN) layers,
(b) the backbone network and (c) the LTBlock module, constructed by integrating the ConvBN
module, residual connections and the squeeze-and-excitation (SE) attention mechanism.
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As shown in Figure 3, the architecture of the LTNet is mainly composed of the ConvBN
layer and the LTBlock module. The convolutional layer is fused with the BN layer into a
new ConvBN layer and the weights and biases of the ConvBN layer are reinitialized. The
aim of this design is to reduce the parameter size of the network and improve the inference
speed of the network in the validation procedure.

To extract features from the input image, the network uses a 3 × 3 deep convolution to
learn the feature maps of the input channels when the input image passes through the Con-
vBN layer, in order to preserve the correlation between different channels. Subsequently,
the feature maps produced by deep convolution are mapped by a 1 × 1 point-by-point
convolutional layer to improve the ability to capture local information of the models. In
order to avoid increasing the depth of the network, the LTBlock module uses the ConvBN
layer for feature extraction several times, and introduces the SE attention mechanism and
residual connectivity in order to enhance the feature interactions between channels, main-
taining the integrity of the original input information. The LTBlock module employs the
hard swish as activation function (Hswish) in order to introduce the nonlinear nature of
the output of the network neurons, and finally obtains the classification results through the
fully connected layer (FC layer).

3.3. Calculation of Depthwise Separable Convolutions Parameters

To enhance the efficiency of standard convolutions while maintaining network perfor-
mance and generalization capability, LTNet introduces depthwise separable convolutions.
Depthwise separable convolutions decompose standard convolutions into two steps: firstly,
a depthwise convolution with a K × K kernel, followed by a pointwise convolution with
a 1 × 1 kernel. In the depthwise convolution stage, independent convolution filters are
applied to each input channel, making the convolution operation independent in the chan-
nel dimension and effectively capturing spatial features within each channel [31]. The role
of pointwise convolution is to construct new features by computing a linear combination
of input channels. The parameters and floating-point operations (FLOPs) for standard
convolution and depthwise separable convolution are as follows:

CP = K × K × Cin × Cout (6)

CF = H × W × K × K × Cin × Cout (7)

DP = K × K × Cin + Cin × Cout (8)

DF = H × W(K × K × Cin + Cin × Cout) (9)

where CP and CF represent the parameters and floating-point operations (FLOPs) of stan-
dard convolution, and DP and DF represent the parameters and FLOPs of depthwise
separable convolution. The convolution kernel size is K × K. H and W represent the dimen-
sions of the output feature map.Cin is the number of input feature map channels, and Cout
is the number of output feature map channels. The comparison of parameters and FLOPs
between standard convolution and depthwise separable convolution is as follows:

DP
Cp

=
K × K × Cin + Cin × Cout

K × K × Cin × Cout
=

1
Cout

+
1

K × K
(10)

DF
CF

=
H × W(K × K × Cin + Cin × Cout)

H × W × K × K × Cin × Cout
=

1
Cout

+
1

K × K
(11)

From Equations (10) and (11), it can be observed that depthwise separable convolu-
tion involves fewer parameters and floating-point operations, making the model more
lightweight.
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This study integrates deep convolution with the BN layer, further reducing the number
of parameters in the LTNet model and accelerating the model’s inference speed. The
parameter calculations before and after fusion are shown in Equations (12) and (13).

Up = Cout × Cin × K × K + 4 × Cout (12)

Fp= Cout × Cin × K × K + Cout (13)

where Up is the number of parameters before fusion and Fp is the number of parameters
after fusion. The parameters of the BN layer are mainly determined by four parameters,
which are scale parameter, offset parameter, mean and variance of BN layer. The purpose
of the BN layer is to normalize the data on each channel, so the number of parameters of
the BN layer corresponds to the output channel Cout. From Equations (12) and (13), fusing
the depth-separable convolution with the BN layer only reduces the parameters of Cout
with a factor of three. But, the fused weights and biases can be directly used in the testing
and validation phases of LTNet, which can speed up the inference of LTNet and reduce the
computation and memory consumption. The merged ConvBN layer obtained after fusion
needs to be computed according to the relevant parameters of the convolutional and BN
layers to generate new weights and biases, which are described by the following formula:

Yf = γ·(X−µ)√
σ2+ε

+ β

= γ·(XcWc+bc)−µ√
σ2+ε

+ β

= γ·Wc ·Xc√
σ2+ε

+ γ·(bc−µ)√
σ2+ε

+ β

(14)

where Yf represents the output of the merged ConvBN layer, X is the output of the pre-
merged convolutional layer, γ and β denote the weights and biases of the BN layer, σ2

represents the variance and ε is a constant that prevents division by zero. Xc represents the
input of the pre-merged convolutional layer, while Wc and bc are the weights and biases of
the convolutional layer, respectively. Formula (14) can be simplified as follows:

Yf = W f · Xc + b f (15)

where the weights W f and biases b f of the ConvBN layer are calculated as follows:

W f =
γ · Wc√
σ2 + ε

(16)

b f =
γ · (bc − µ)√

σ2 + ε
+ β (17)

4. Results and Discussion

The dataset was divided into training, testing and validation sets in a 6:3:1 ratio. For
the own mixed gas dataset, the numbers of images in the training, testing and validation
sets were 4474, 2234 and 744, respectively. For the UCI database, the training, testing and
validation sets consisted of 2791, 1395 and 464 images, respectively. In this study, validation
set accuracy and six evaluation metrics were adopted as criteria for assessing both the
lightweight of the model and its classification performance. These criteria include the
model’s total accuracy on the validation set (accuracy) (ethanol, acetone and the mixture),
the time required for the model to complete thirty training epochs (training time), the GPU
memory usage under the same conditions when different models are trained with a cleared
background (GPU RAM), the inference time on the validation set (Inference time), the
model’s parameters (params) and the size of the best-preserved weights on the test set
(weight size).
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4.1. Data Conversion Comparison Test and Results Discussion

In the data preprocessing, GASF is compared with Gramian Angular Difference Field
(GADF), Short-Time Fourier Transform (STFT) and Markov Transition Field (MTF). Figure 4
illustrates the images transformed by these four data transformation methods.
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LTNet was employed to evaluate four different methods for transforming one-dimensional
time series into two-dimensional images. The confusion matrices, which can display the
classification of each sample intuitively and make up an important index used to mea-
sure the classification performance, are depicted in Figure 5a–d, while Table 3 presents a
comparative analysis of the results obtained using these four methods.

Table 3. Comparison of results of four data conversion methods.

Models Accuracy Training Time (S) GPU RAM (G)

GADF 98.79% 863.49 2.3
MTF 92.34% 929.08 2.6
STFT 100% 1630.92 2.6
GASF 99.06% 844.38 2.1

From Table 3 and the results of confusion matrices, it is evident that STFT exhibits
the highest total classification accuracy, reaching 100%. The majority of errors for GADF
and GASF are concentrated in the mixed gas class, with total classification accuracies of
98.79% and 99.06%, respectively. MTF, on the other hand, experiences more classification
errors in the mixed gas and ethanol classes, resulting in the total accuracy of only 92.34%.
However, training with images transformed using STFT takes the longest training time,
reaching 1630.92 s, and it also requires the highest GPU RAM usage. Conversely, training
with images transformed using GASF for the same thirty epochs only takes 844.38 s and
occupies a mere 2.1 GB of GPU RAM, while achieving similar accuracy to STFT. Therefore,
GASF was chosen as the data transformation method in this work.
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Figure 5. The confusion matrices. (a–d) The evaluation results of LTNet on the GADF, MTF, SFTF and
GASF image transformation methods, respectively. (e–k) The evaluation results of AlexNet, ResNet50,
VGG16, EfficientNet, MobileNetV3_large, LTNet (original version) and LTNet on the mixed gas
dataset. (l–r) The evaluation results of AlexNet, ResNet50, VGG16, EfficientNet, MobileNetV3_large,
LTNet (original version) and LTNet on the UCI database.

4.2. Model Evaluation and Comparison Experiment

LTNet is compared with a total of six different networks, including three traditional
convolutional neural networks (AlexNet, ResNet50, VGG16) and two lightweight convolu-
tional neural networks (EfficientNet and MobileNetV3_large), as well as the unimproved
version of LTNet (LTNet (Original version)). AlexNet is a relatively deep neural network,
which facilitates the model in learning more complex features. ResNet50 implements
classification using skip-connected residual blocks, VGG16 employs deep convolutional
networks for feature extraction from raw samples, followed by classification using fully
connected layers. EfficientNet achieves high performance in resource-constrained environ-
ments through strategies like compound scaling and width multiplier. MobileNetV3_large
classifies raw samples using depthwise separable convolution. To verify the effectiveness
of the improvements on LTNet, LTNet (Original version) was used to compare with LTNet.



Sensors 2024, 24, 2818 11 of 14

LTNet (Original version) refers to a version of LTNet that does not utilize deep separable
convolution, the SE attention mechanism, residual connections or the fusion of convolution
layers and BN layers. Instead, it solely implements the network architecture of LTNet.

Before conducting the classification task, we compared the model parameters and
the size of the best saved weights during training of LTNet with the other six networks,
as shown in Table 4. Among these seven models, LTNet has only 32,614 parameters,
which is less than the number of parameters of the LTNet (Original version). Specifically,
it is equivalent to just 0.139% of the traditional convolutional neural network ResNet50,
less than 0.1% of AlexNet and VGG16 and even less than 1% of the popular lightweight
convolutional neural networks EfficientNet and MobileNetV3_large. The optimal training
weight size of LTNet is 0.155 MB, demonstrating a more efficient memory utilization
compared to MobileNetV3_large, EfficientNet, AlexNet and LTNet (Original version).
This indicates that relative to the existing lightweight convolutional neural networks
and traditional convolutional neural networks, LTNet is better suited for use in resource-
constrained environments, and by comparing LTNet with its unimproved version, we have
demonstrated that the improvements made to LTNet have a lightweight effect.

Table 4. Model parameters and weights.

Models Params. Weight Size (MB)

AlexNet 57,012,034 217
ResNet50 23,514,179 89.9
VGG16 134,268,738 512

EfficientNet 4,586,092 17.8
MobileNetV3_large 4,208,443 16.2

LTNet (Original version) 296,994 1.15
LTNet (This work) 32,614 0.155

4.3. Classification Results of Own Mixed Gas Dataset

From Figure 5e–k and Table 5, it can be observed that for the own mixed gas dataset,
LTNet has five errors in the mixed gas category and only two errors in the ethanol gas
category, achieving the highest classification accuracy of 99.06%. Additionally, it is worth
noting that LTNet’s GPU RAM usage during training is significantly lower than that
of traditional convolutional networks, such as VGG16 and lightweight networks like
EfficientNet. It completes thirty rounds of training in only 844.38 s, making it the fastest
among all compared networks, far surpassing ResNet50, VGG16 and EfficientNet. LTNet
only takes 23 s to complete inference on 744 validation set images, making it the fastest
among these six networks. It significantly outperforms traditional convolutional neural
networks, with the required inference time being only a quarter of that of the lightweight
network MobileNetV3_large. Compared to LTNet (Original version), LTNet has even
more advantages.

Table 5. Classification results of mixed gas datasets.

Models Accuracy GPU RAM (G) Training Time (S) Inference Time (S)

AlexNet 97.71% 3.1 853.27 283
ResNet50 98.39% 3.8 1234.34 284
VGG16 97.98% 6.9 2249.56 592

EfficientNet 99.06% 5.4 1373.48 170
MobileNetV3_large 98.79% 3.3 877.53 91

LTNet (Original version) 98.65% 2.3 1112.03 26
LTNet (This work) 99.06% 2.1 844.38 23
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4.4. UCI Database Classification Results

From Figure 5l–r and Table 6, it can be observed that for the UCI database, LTNet
achieves similar results as on the own mixed gas dataset. LTNet still maintains the highest
classification accuracy while significantly outperforming the traditional convolutional
neural network models and lightweight convolutional neural network models in terms of
GPU RAM, training time and inference time.

Table 6. Classification accuracy and model parameters of UCI database.

Models Accuracy GPU RAM (G) Training Time (S) Inference Time (S)

AlexNet 98.92% 3.2 613.50 187
ResNet50 98.92% 3.7 841.81 178
VGG16 98.71% 7.1 1477.44 377

EfficientNet 98.92% 5.3 933.21 109
MobileNetV3_large 98.92% 3.3 606.20 60

LTNet (Original version) 98.06% 2.3 859.49 18
LTNet (this work) 99.14% 2.1 584.67 14

Results from the own mixed gas dataset and the UCI database demonstrate that LTNet
can achieve high accuracy in gas classification tasks while maintaining low computational
resource requirements, further validating the lightweight nature of LTNet. Moreover, LTNet
demonstrates higher accuracy than LTNet (Original version), with better lightweighting
effects, validating the effectiveness of LTNet’s improvements.

5. Conclusions

In this study, we proposed a lightweight and efficient LTNet network model combined
with GASF to convert one-dimensional time series into two-dimensional images for high-
precision classification of acetone and ethanol gases, which are respiratory markers for
lung cancer patients. The six evaluation metrics verified that LTNet outperforms classical
convolutional neural network models, such as VGG16 and ResNet50, as well as lightweight
neural network models, such as MobileNetV3_large. Validation with the own mixed gas
dataset and the UCI database shows that compared with the other six models, LTNet has
higher classification accuracy, superior generalization performance, and fewer parameters.
By fusing the convolutional layer with the BN layer, the inference speed of LTNet in
the validation set is much faster than that of ResNet50, MobileNetV3_large and so on.
In addition, it required less graphic card resources during the training process and the
model weights took up less memory. This indicated that the LTNet network requires less
computational resources and is suitable for less configured hardware. The lightweight
network model lays the foundation for subsequent algorithm transplant. At the same time,
it verifies the effectiveness of the improvements made to LTNet. In the future, artificial
intelligence and novel biomarkers could play a key role in the entire lung cancer screening
process, promising to transform lung cancer screening [32].
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