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Abstract: Nanocomposites are materials of special interest for the development of flexible electronic,
optical, and mechanical devices in applications such as transparent conductive electrodes and flexible
electronic sensors. These materials take advantage of the electrical, chemical, and mechanical
properties of a polymeric matrix, especially in force sensors, as well as the properties of a conductive
filler such as silver nanowires (AgNWs). In this work, the fabrication of a force sensor using AgNWs
synthesized via the polyol chemical technique is presented. The nanowires were deposited via drop-
casting in polyvinyl alcohol (PVA) to form the active (electrode) and resistive (nanocomposite) sensor
films, with both films separated by a cellulose acetate substrate. The dimensions of the resulting
sensor are 35 mm × 40 mm × 0.1 mm. The sensor shows an applied force ranging from 0 to 3.92 N,
with a sensitivity of 0.039 N. The sensor stand-off resistance, exceeding 50 MΩ, indicates a good
ability to detect changes in applied force without an external force. Additionally, studies revealed a
response time of 10 ms, stabilization of 9 s, and a degree of hysteresis of 1.9%. The voltage response
of the sensor under flexion at an angle of 85◦ was measured, demonstrating its functionality over a
prolonged period. The fabricated sensor can be used in applications that require measuring pressure
on irregular surfaces or systems with limited space, such as for estimating movement in robot joints.

Keywords: force sensor; PVA; silver nanowires; cellulose acetate; flexible

1. Introduction

Currently, research in the field of flexible electronics is focused on applications for
force measurement systems using nanomaterials. The flexibility and ability of these devices
to withstand mechanical deformations make them a viable alternative compared to conven-
tional electronic components, which are typically rigid. This technological advancement
has found applications in various sectors, such as the automotive industry [1], biomedical
field [2,3], and the development of robotic skins [3–5], among others.

Recent studies on these types of systems have shown notable characteristics, such
as high sensitivity [3,6], stretchability [6], response rate [3,6], stability [6], and low fab-
rication cost [6]. Regarding force sensors [7–9], they can employ various measurement
techniques based on phenomena such as piezoelectric, piezocapacitive, triboelectric, or
piezoresistive [1,6]. In particular, piezoresistive pressure sensors transform input pressure
into a change in resistance in the device [6]. These sensors represent one of the most
investigated sensing systems due to their low power consumption and high sensitivity in
the low-pressure range [6,10,11].
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Expectations regarding future technologies currently focus on the design of devices
based on nanomaterials and polymers, with silver nanowires (AgNWs) being a prominent
nanomaterial due to their thermal [12,13], optical [12,14], and electrical properties [12,13],
as well as their application in transparent electrodes [15,16], optical polarizers [17,18],
biomolecular sensors [3,19], catalysis, and batteries [20]. Taking advantage of the mechani-
cal properties of the nanowires, piezoresistive sensors (PRSs) have been developed [21–23],
as they exhibit good stability [24], durability, and flexibility, which are characteristics that
conventional PRSs lack [24]. This has driven the development of flexible PRSs and elec-
tronic systems composed of nanocomposites that combine an elastic matrix (polymeric) and
metallic nanomaterials [7,23]. Here, polymers play an important role as a polymeric matrix
in these nanocomposites, providing the device with portability, stretchability, stability, and
flexibility without compromising the flexibility and performance of the metallic filler [3,25].
Flexible PRSs focus on flexibility, low detection limits, low cost, and versatility, making
them the most popular choice for applications in flexible electronics, such as portable health
monitors, electronic skins, and biomedical diagnostics [3,23].

This work reports the fabrication of a flexible piezoresistive sensor using AgNWs in
a polyvinyl alcohol (PVA) matrix. The active and resistive films are deposited on PVA
via drop-casting and separated by a cellulose acetate substrate, ensuring an electrical
response proportional to the applied force. The novelty of the sensor lies in the utilization
of a composite comprising PVA and AgNWs, leveraging the mechanical stability of PVA
and the electrical conductivity of AgNWs. As a result, the operating range obtained is
from 0.039 to 3.92 N, with a stable high sensitivity and a response time of 10 ms. This
design combines flexibility and adaptability to provide accurate measurements of force and
pressure on irregular surfaces or in confined spaces. Particularly, this sensor holds potential
applications in biomechanical and portable sensor technology, representing a significant
contribution to the field of piezoresistive sensors.

2. Materials and Methods

The development of the flexible force sensor started with the synthesis of the Ag-
NWs, which were made by using the polyol technique [26,27]. These nanowires were
subsequently used to fabricate the resistive film and the electrode. Initially, the AgNWs
were deposited over polyethylene terephthalate (PET) substrates to later transfer them
to a polymeric matrix and thus obtain the resistive films. Simultaneously, the electrode
was designed in a predetermined pattern. Finally, both manufactured flexible polymeric
nanocomposite films fabricated were joined, placing a separator between them.

2.1. Synthesis of AgNWs

The synthesis of AgNWs was carried out using the polyol chemical method. The
experimental setup is presented in Figure 1. The reagents employed in this process included
silver nitrate (AgNO3), ethylene glycol (EG), polyvinylpyrrolidone (PVP), and sodium
chloride (NaCl) [27]. In this synthesis, ethylene glycol acted as the reducing agent for silver
ions, while PVP was used as a stabilizer agent for the AgNWs.

The process was performed by mixing 100 mg of PVP with 15 mL of EG at 600 rpm
for 15 min. Also, in separated vials, it was prepared 0.4 g of NaCl with 1 mL of EG, and
90 mg of AgNO3 with 5 mL of EG. Both solutions were mixed at 600 rpm for 15 min. Then,
the PVP-EG solution was heated at 170 ◦C in an oil bath on a magnetic stirrer. At this
temperature, NaCl-EG and AgNO3-EG solutions were mixed constantly in the PVP-EG
solution for 1 h. Subsequently, the obtained nanowires underwent washes with acetone
(1:4) and ethanol (1:2) to remove residues of ethylene glycol, excess PVP, and possible
nanoparticles present in the solution. Finally, a wash with deionized water was carried out
to eliminate any residue of sodium chloride (NaCl).
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Figure 1. Experimental setup for synthesis of AgNWs. (a) Reagents: AgNO3, EG, PVP; (b) Mixing 
the solution: PVP-EG; (c) Mixing the solutions: NaCl-EG, AgNO3-EG; (d) Mixing the solutions at 170 
°C: PVP-EG, NaCl-EG, AgNO3-EG; (e) AgNWs solution obtained; (f) AgNWs cleaned. 

Figure 2a presents the SEM image of the AgNWs, showing a high density of 
nanostructures. In Figure 2b, a histogram of the diameter distribution of the NWs is pre-
sented. It is observed that the average diameter (Xc) of the AgNWs is 40 nm, with a stand-
ard deviation of σ = 3.4 nm, and lengths reaching the micrometer scale. 

Figure 1. Experimental setup for synthesis of AgNWs. (a) Reagents: AgNO3, EG, PVP; (b) Mixing
the solution: PVP-EG; (c) Mixing the solutions: NaCl-EG, AgNO3-EG; (d) Mixing the solutions at
170 ◦C: PVP-EG, NaCl-EG, AgNO3-EG; (e) AgNWs solution obtained; (f) AgNWs cleaned.

The synthesized AgNWs were morphologically characterized using a scanning elec-
tron microscope (Model JSM-5300, JEOL USA Inc., Peabody, MA, USA). Optical charac-
terization was performed using a UV-Vis spectrophotometer (Model 3101PC, Shimadzu
Europe, Manchester, UK).

Figure 2a presents the SEM image of the AgNWs, showing a high density of nanostruc-
tures. In Figure 2b, a histogram of the diameter distribution of the NWs is presented. It is
observed that the average diameter (Xc) of the AgNWs is 40 nm, with a standard deviation
of σ = 3.4 nm, and lengths reaching the micrometer scale.
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process, polyethylene terephthalate (PET) was used as the substrate, while PVA served as 
the polymeric matrix for the nanocomposite films. The consideration of using PVA was 
based on its characteristics as a thermoplastic, reusable, non-toxic polymer, and hydro-
philic. Moreover, it has very good mechanical properties and good stability over long pe-
riods of time under different temperature and pH conditions. Additionally, PVA is known 
for being water-soluble, simplifying the film production process, as it does not require 
additional solvents. For the PVA film fabrication, 0.5 g of PVA was weighed, dissolved in 
10 mL of water, and subjected to agitation for 2 h at 60 °C. 

Figure 2. (a) SEM image of the AgNWs. (b) Size distribution histogram with Xc = 40 nm and standard
deviation, σ = 3.4 nm.

Figure 3 shows the absorbance spectrum of the AgNWs versus wavelength after the
washing process, showing the characteristic peaks of localized surface plasmon resonance
in both transverse (352 nm) and longitudinal (379 nm) modes.
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Figure 3. Absorption spectrum of the AgNWs.

2.2. Film Fabrication

The fabrication of flexible nanocomposite films, both resistive and active, was carried
out using the drop-casting method. The experimental setup is shown in Figure 4. In this
process, polyethylene terephthalate (PET) was used as the substrate, while PVA served as
the polymeric matrix for the nanocomposite films. The consideration of using PVA was
based on its characteristics as a thermoplastic, reusable, non-toxic polymer, and hydrophilic.
Moreover, it has very good mechanical properties and good stability over long periods of
time under different temperature and pH conditions. Additionally, PVA is known for being
water-soluble, simplifying the film production process, as it does not require additional
solvents. For the PVA film fabrication, 0.5 g of PVA was weighed, dissolved in 10 mL of
water, and subjected to agitation for 2 h at 60 ◦C.
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The fabrication process of the flexible nanocomposite film (resistive) begins with the 
deposition of 180 µL of AgNWs solution onto a PET substrate, followed by a drying pro-
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the PVA film with the adhered AgNWs is peeled off from the PET substrate, resulting in 
the formation of the resistive nanocomposite film: PVA/AgNWs. This process is shown 
schematically in Figure 5. 

Figure 4. Experimental setup of films fabrication. (a) AgNWs dropped on PET substrate at 65 ◦C for
10 min; (b) PVA in 10 mL water at 65 ◦C for 2 h; (c) PVA dropped at PET substrated/AgNWs at 30 ◦C
for 8 h; (d) Resistive film; (e) Active film with a pattern of AgNWs; (f) Fabricated sensor.

The fabrication process of the flexible nanocomposite film (resistive) begins with the
deposition of 180 µL of AgNWs solution onto a PET substrate, followed by a drying process
by exposing the material to a temperature of 65 ◦C for 10 min. Subsequently, 360 µL of
PVA (0.05 g/mL) is incorporated and allowed to dry at 30 ◦C for a period of 8 h. Finally,
the PVA film with the adhered AgNWs is peeled off from the PET substrate, resulting in
the formation of the resistive nanocomposite film: PVA/AgNWs. This process is shown
schematically in Figure 5.

The fabrication process of the active nanocomposite film or electrode follows a similar
procedure to the one described above, as shown in Figure 6. However, in this case, instead
of having a film with AgNWs, a pattern was created (see Figure 6 (iii)) with the aim to
not sacrifice the flexibility of the film and cover a specific area. Over the AgNWs pattern,
it was necessary to employ a copper (Cu) tape to enhance the stability of the electrode
response, since the electrode response without the Cu tape was unstable. This instability
could be due to the bending effect of the AgNWs on the motion of the electrons and to
the discontinuities resulting from the random spatial distribution of the AgNWs, which
may lead to a certain rugosity of the film and a consequent decrease in the electron flux.
Placing the Cu tape over the AgNWs pattern allows the transfer of electrons towards the
tape, which acts as a continuous film, and this makes the motion of the electrons easier in
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comparison to their motion in the nanowire net itself. Furthermore, establishing an ohmic
contact between Ag and Cu favors a good electronic flux between these two materials.
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2.3. Fabrication of the Force Sensor

Once the flexible nanocomposite films are fabricated, they are carefully assembled.
The active and passive films are aligned and placed facing each other. To isolate the
two film layers, a cellulose acetate separator frame is inserted between them. This process
is illustrated in Figure 7. The result is a force sensor with 35 mm in width, 40 mm in
length, and a thickness of 0.10 mm. Figure 7b displays the actual fabricated sensor. The
electrical characterization of the sensor was carried out by measuring the voltage change
as a function of the applied force or pressure. The sensor response was measured using a
digital multimeter and a Wheatstone bridge electronic interface topology.
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The calculation of the sheet or frame resistance (Rs) was carried out using the
two-point method [28,29]. The choice of this method was based on the homogeneity
of the film and the non-uniformity in the distribution of the AgNWs, since these are dis-
persed randomly, generating areas with a greater or lesser amount of nanowires. This
two-point method consists of measuring the resistance (R) at the edges or ends of the film,
averaging the resistance obtained, and multiplying it by the ratio of the width (W) and
length (L) of the film. This is expressed as Rs = R (W/L) [28,29]. In this case, W = 35 mm,
L = 40 mm, and the average resistance measured was 117 Ω, obtaining a value of Rs = 102.4 Ω.

The amount of AgNWs used was 180 µL, as lower quantities did not register an
adequate electrical response. Currently, we are not exploring higher loads due to the
necessity of maintaining film transparency. An increase in the amount of AgNWs would
increase the conductivity of the film but reduce its transparency. Additionally, excessive
amounts of AgNWs and PVA could compromise the flexibility of the sensor, making it
more rigid.

2.4. Sensing and Working Mechanisms

The detection mechanism of the force sensor relies on the change in resistance when
the device is subjected to an applied force, a common characteristic of a piezoresistive
sensor. This type of device converts the applied force into resistance changes that can be
measured or adjusted.
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Figure 8a shows the cross-sectional view of the sensor without any applied force, show-
ing infinite resistance. Upon applying force (as depicted in Figure 8b), the nanocomposite
films come into contact, inducing a change in the sensor resistance. As the force applied
to the sensor increases, the resistance value decreases due to increased contact between
the AgNWs. In other words, the minimum resistance value implies maximum contact
between the AgNWs. When the force exerted on the sensor is removed, the resistance
returns to infinity, and the sensor stops measuring. Thus, the sensor without any applied
force remains in an inactive state, resulting in energy savings. Consequently, when the
sensor is connected to an electronic interface, it does not consume power.
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The electrical properties of the films comprising the sensor are inherently temperature-
sensitive, as is common with such materials. However, it is important to note that the
temperature coefficient of resistance (TCR) of silver (Ag) and copper (Cu) is in the range of
milliohms per degree Celsius (mΩ/◦C), specifically 3.8 mΩ/◦C and 4.3 mΩ/◦C, respec-
tively [30]. Thus, the sensor is expected to maintain its functionality and performance
within a reasonable range of ambient temperature variations. Regarding the PVA, the TCR
for this material is lower than that of AgNWs.

In a bridge signal conditioner, typically excitation voltage levels of around 3 V and
10 V are common. A higher output voltage can cause larger errors because of self-heating.
Otherwise, an unstable excitation source can affect the accuracy of measurements [31].

If a high level of excitation were applied, the developed sensor would experience
heating in the conductors and connection strips. This phenomenon would affect the system
by changing the resistivity and sensitivity properties of the bridge components, as well as
the polymer structure of the sensor or measurement device. Consequently, this adverse
effect would result in a degradation of sensor performance.

Initially, the bridge was calibrated to achieve optimal sensor performance. In this
procedure, all three potentiometers of the bridge were adjusted to 0 Ω. Subsequently, the
circuit was connected to the power supply, and the bridge output terminals were connected
to a multimeter to monitor variations. A minimum force of 0.039 N was applied to the
sensor, following which the value of each potentiometer was increased, and the voltage
variation at the sensor output was measured until it did not exceed 2 V. The applied force
was gradually increased, ensuring that the voltage obtained with the minimum force did
not reach its maximum value, which, in this case, was 5 V. Multiple calibrations were
performed until the bridge values with the best performance were achieved.

The electrical response characterization of the sensor was performed through voltage
measurements as a function of the applied force. The sensor terminals were connected to a
Wheatstone bridge electronic interface to adjust resistance values, as shown in Figure 9.

The Wheatstone bridge was implemented using precision potentiometers in a range
from 2 Ω to 100 kΩ, allowing for sensor calibration based on the required output voltage
values for measurement readings, with an excitation level of 5 V.
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Figure 9. Signal conditioning circuit using Wheatstone bridge topology. R1, R2 and, R3 are the
precision potentiometers, with R3 as a variable resistance; Rsensor is the resistance generated by the
sensor; Vcc is the voltage applied. The electrical response is measured using a multimeter.

3. Results and Discussions

The sensor was characterized using the experimental setup shown in Figure 10. The
sensor terminals were connected to the Wheatstone bridge, to which a constant voltage of
5 V was applied through a voltage source (Model 1670A, BK PRECISION, Yorba Linda, CA,
USA). The electrical response measurements were carried out using a digital multimeter
(Model 115, FLUKE, Everett, WA, USA), with which the voltage change was recorded
as a function of the applied force. The force application on the sensor was carried out
using precision weights placed on the device. The results indicated that a minimum force
of 0.039 N (equivalent to 4 g) was required to obtain a sensor response. Then, a gradual
increase in the applied weight was performed until completing the full operational range
of the sensor.
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Figure 11 shows the results of the electrical characterization, demonstrating the voltage
change recorded as a function of the applied force and the typical behavior of a piezoresis-
tive sensor. The obtained results show that in the absence of an applied force, the voltage
is zero because the sensor exhibits infinite resistance. Upon exerting force on the sensor,
different voltage values are recorded in response.
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Figure 11. Voltage behavior as a function of the applied force, and linear adjustment in the measuring
range of the force sensor.

The first voltage response is obtained with an applied force of 0.039 N (R = 50 MΩ),
generating a voltage response of 1.66 V. As the applied force increases, the voltage values
also increase. The maximum measured voltage value, 2.9 V, is reached with an applied force
of 3.92 N, considered as the sensor saturation point. It was confirmed that for an applied
force of 4.41 N, the same voltage value is obtained as for 3.92 N. The voltage decreases for a
force of 4.90 N. Therefore, the effective operating range of the sensor is considered from
0.039 N to 3.92 N.

Figure 11 also shows the linear fit of the voltage response as a function of the applied
force within the sensor operating range. Two linear zones are observed: the first zone
(Zone 1) with a slope of 1.94 and a second one (Zone 2) with a slope of 0.08. In this graphic,
it is demonstrated that the correlation coefficient (R2) obtained in Zone 2 is 0.976 and in
Zone 1 is 0.863. The value for Zone 2 is closer to one, which indicates that there is a better
fit in this zone than in Zone 1.

The behavior of Zone 1 can be attributed to the limited contact between the two films.
As the applied force increases, the films have better contact with each other, resulting in a
better linear response (Zone 2). It is considered that the behavior of the response within
the sensor operating range is due to both the heterogeneousness and randomness of the
distribution of AgNWs in the film. The aforementioned would mean a certain roughness
or porosity in the film.

The electrical characterization allowed determining the values of the most significant
figures of merit of the piezoresistive sensor at room temperature, such as the actuation
force, stand-off resistance, working range, response time, stabilization time, sensitivity,
hysteresis degree, and sensor repeatability.

The actuation force, defined as the minimum force that causes a change in the sensor
output, was measured at 0.039 N, which is the value that triggers a response in the sensor.
The stand-off resistance exceeded 50 MΩ, which represents the sensor resistance when a
force is not applied on it. The operating range, defined by the minimum and maximum
values of the physical variable that the sensor can measure, was determined from 0.039 N
to 3.92 N. The sensor response time was 10 ms, indicating the minimum time to record
a change in output after applying a force. Then, the sensor bandwidth is 100 Hz. The
stabilization time is known as the period during which the sensor stabilizes after receiving
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a force. This figure of merit was recorded at 9 s, during which output variations were
minimal. The sensitivity of the sensor, defined as the minimum input value required to
produce a change in the output, was set at 0.039 N.

Additionally, the degree of hysteresis (DH) of the sensor was calculated using the
following equation:

DH =
v2 − v1

vmax − vmin
× 100(%), (1)

where v2 and v1 are the values of the voltage obtained for a given value of the force, when
the force applied to the sensor increases (loading) from a minimum to a maximum value
and then decreases (unloading) from the maximum to the minimum value. In this equation,
vmin and vmax are the output voltages for the minimum and maximum forces, respectively.

The calculation of the sensor hysteresis degree was DH = 1.9%, obtained by averaging
each measured force value (Figure 12). This is an important parameter, since a lower value
of DH indicates smaller variations in the measurement parameters, independently of the
measurement direction (loading or unloading), and indicates a smaller effect of lag or mem-
ory in the device. With the aim to validate the hysteresis value, twenty loading/unloading
tests were carried out. This highlights the remarkable viscoelasticity of the sensor materials,
which exhibit an elastic response when deformed under the application of force.
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Figure 12. Sensor hysteresis curve.

Figure 13 shows the repeatability error across the entire sensor operating range (Zone 1
and Zone 2), derived from 20 measurements. It can be observed that the repeatability error
in Zone 1 is higher than in Zone 2, which is attributed to the better linear response in
Zone 2, as indicated by its correlation constants. Similarly, in the last two measurements
(higher force), although the error is not significant, there is a slight overlap of the measured
values, which is due to reaching the sensor maximum measurement range.
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Figure 13. Sensor repeatability measurement error graph.

Flexible devices, such as those reported in this work, must have the capability to
withstand bending and remain functional. Therefore, the flexibility of the sensor was
verified by applying a bending force at an angle of 85◦ for 60 min. The sensor was fixed
over a cylindrical surface. The scheme of the sensor bending at an angle of 85◦ is shown in
Figure 14. It is observed the reduction in the effective area due to the bending where the
force can be applied.
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Figure 15 shows the results of the voltage behavior as a function of the applied force
on the effective area on the sensor bending at an angle of 85◦. It is observed that without
the application of force, the sensor responds with a voltage value of 0.690 V. This is because
the resistive and active films of the sensor are in contact due to the bending. For sensor
applications, this measured voltage value under bending could be considered its offset.
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When a variable force is applied to the sensor from 0.5 N, an increase in voltage can
be observed. As the applied force increases, the voltage slightly rises at a rate of 0.08 V/N.
Note that despite the flexible state of the sensor, the stability or slope of 0.08 V/N is
maintained. However, it is noticeable in the graph that the number of measured points is
lower, as after the force of 2.0 N, the voltage drops, reaching sensor saturation. Thus, the
operating range of the sensor under flexion is reduced. This behavior could be attributed
to the effective area of the sensor being reduced (Figure 14), meaning that the measurement
area where the force is applied on the sensor is smaller due to the sensor being flexed.
Figure 15 shows a linear fit of the voltage response as a function of the force of the sensor
under flexion. The linearity of the measured points is demonstrated.

It is worth mentioning that the sensor returns to its original shape after being bent to
confirm its functionality and response. It was obtained the same response as in Figure 11,
measuring an infinite resistance without a force applied on the sensor, and obtaining the
same voltage values when the force increases.

One of the important ideas in the study and manufacturing of this sensor prototype is
the possible applications it can have. However, a particular interest lies in sensing small
force ranges, aiming to apply them in systems with limited and confined spaces, such as
measuring forces in knee or elbow joints in robot movements. Additionally, the angle of
bending applied to the sensor (at 85◦) was considered, as it is a relevant angle in the study
and development of knee movements, as well as evaluating the voltage response in relation
to the sensor force over a certain period when it is under bending.

The ability to measure small forces in knee or elbow joints is crucial for various
applications in robotics and biomechanics. In robotic systems, accurate force measurements
are essential for tasks requiring delicate movements and interactions with the environment.
For example, in prosthetic limbs or exoskeletons, precise force-sensing enables natural
and responsive movements, enhancing user comfort and safety [32]. Additionally, in
rehabilitation robotics, measuring forces exerted on joints during physical therapy sessions
allows for personalized treatment plans and progress tracking [33,34]. Therefore, by
incorporating sensors capable of measuring small forces, robotic systems can achieve
greater precision and adaptability in performing tasks involving joint movements.
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In comparison with force or pressure sensors reported and based on materials similar
to those used in this work, such as silver (Ag) and polymers, the response time that is
present is longer (20 to 50 ms) than that obtained with the developed sensor [35–37]. More-
over, although sensors have been reported that use the same operating mechanism with a
wider range of measured forces or lower response time, the manufacturing techniques of
these sensors are usually more complex and expensive [38,39].

With the aim of improving the sensor linear response, it will be necessary to imple-
ment compensation algorithms that can be used in conjunction with the development
of user-friendly interfaces that facilitate feedback and data management from the sensor.
Additionally, in order to expand the potential application of the sensor, a review of the
design will be required to assess the possibility of extending the range of measured forces.

4. Conclusions

In this work, a prototype force sensor was fabricated using flexible nanocomposite
films (PVA/AgNWs) through a simple and cost-effective method. The nanocomposite films
were fabricated using a thermoplastic (PVA) because it is a reusable, non-toxic, hydrophilic
polymer with good mechanical properties and is stable for long periods under different
temperature and pH conditions. AgNWs with diameters of 42 nm were used as the
conductive filler material in both the resistive and active (electrode) films. The fabricated
sensor measured 35 mm in width, 40 mm in length, and had a thickness of 0.10 mm. The
characterization of the sensor demonstrated a sensitivity ranging from 0.039 N to 3.92 N,
with a stand-off resistance greater than 50 MΩ, response time of 10 ms, stabilization time of
9 s, hysteresis value of 1.9%, and a very good repeatability. The bending test of the sensor,
with an angle to 85◦ of bending for 60 min, verified that the sensor maintained its properties
by preserving its measuring functionality. This suggests the possible extension of the use
of the device for pressure measurements when placed over other not-so-regular surfaces.

The fabricated sensor can be used in applications that require measuring pressure
on irregular surfaces or systems with limited space, such as in estimating movement in
robotics and biomechanics. Regarding the nanocomposites applied in this work, these have
potential applications as flexible, transparent, conductive electrodes. Due to its optimal
electrical and optical properties, this material can be used in a variety of areas unrelated to
sensors, such as solar cells, smart windows, and smart screens.
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