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Abstract: The temperature and strain fields monitoring during the preparation process of buoyancy
materials, as well as the health status after molding, are important for mastering the mechanical
properties of buoyancy materials and ensuring the safety of operators and equipment. This paper
proposes a short and high-density femtosecond fiber Bragg grating (fs-FBG) array based on different
temperature coefficients fibers. By optimizing the parameters of femtosecond laser point-by-point
writing technology, high-performance fs-FBG arrays with millimeter level gating length and millime-
ter level spatial resolution were prepared on two types of fibers. These were successfully embedded
in buoyancy materials to achieve in-situ online monitoring of the curing process and after molding.
The experimental results show that the fs-FBG array sensor has good anti-chirp performance and
achieves online monitoring of millimeter-level spatial resolution. Intelligent buoyancy materials can
provide real-time feedback on the health status of equipment in harsh underwater environments. The
system can achieve temperature monitoring with an accuracy of 0.56 ◦C and deformation monitoring
with sub-millimeter accuracy; the error is in the order of micrometers, which is of great significance
in the field of deep-sea exploration.

Keywords: strain and temperature; different temperature coefficient; femtosecond fiber Bragg grating

1. Introduction

Solid buoyancy material is a new type of composite material with high mechanical
strength, low density, low water absorption, and good fatigue resistance, which is widely
used in deep-sea exploration equipment. The performance of materials is related to the
safety of equipment and staff. However, solid buoyancy materials require high temperature
to promote curing, and the temperature distribution is uneven during the preparation
process. The demolded specimens often have significant thermal residual strain, which
can easily cause cracking and warping in high-pressure underwater environments, and
affect the reliability of equipment [1]. Even the material is directly damaged during the
preparation process, making it difficult to use in practical applications. Therefore, in order
to prepare high-performance solid buoyancy materials and ensure the safety of equipment
and workers, it is necessary to research an embedded array sensor that can monitor the
temperature and strain distribution during the curing process of buoyancy materials in real
time, as well as the structural state during use.

Fiber Bragg grating (FBG) sensors have been used in the curing process of many
composite materials due to their small size, light weight, easy multiplexing, and good
compatibility [2–6]. Although there have been some reports of FBGs used for monitoring
the curing of buoyancy materials, the FBGs used are generally prepared using ultraviolet
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excimer laser phase mask technology, which requires removing the coating of fiber; the
grating length is generally between 5 mm and 1 cm [7–9]. When subjected to non-uniform
strain inside the material, there is no coating layer to buffer, and the reflection spectrum
of FBGs with a longer grating length is prone to broadening and splitting [10]. Therefore,
in order to achieve all-round and high-precision monitoring of buoyancy materials, it is
urgent to develop a high-density, short-grating-length FBG array that does not require the
coating to be removed. Femtosecond (fs) laser point-by-point (PbP) writing technology
has prompted the rapid development of high-density FBG arrays due to its flexible and
controllable center wavelength and grating length, as well as its ability to directly modulate
the refractive index through the fiber coating. X. Z. Xu et al. [11] prepared an FBG array
with a grating length of 4 mm and a physical spacing of 2 mm using fs-laser PbP writing
technology. As the grating length of the FBG continues to decrease, the reflectivity also
decreases while the 3 dB bandwidth increases, reaching several nm; this greatly increases
the difficulty of demodulation and writing high-density FBG arrays. L. Q. Zhu et al. [12]
used an 800 nm fs-laser PbP writing method to write an FBG array with a grating length
of 3 mm and a spacing of 5 mm in a polarization-maintaining fiber, and two FBGs were
multiplexed in a wavelength range of 40 nm. Y. P. Wang et al. [13] increased the refractive
index modulation area by writing six FBGs with the same center wavelength at different
radial positions on the same fiber segment, with a reflectivity of about 10% and a 3 dB
bandwidth of about 9.4 nm. They used the same process to write FBGs with different center
wavelengths. However, the 3 dB bandwidth was nearly 10 nm, and the reflectivity was
also low, severely limiting the number of FBGs in dense wavelength division multiplexing
(WDM) systems and making it difficult to achieve high-precision demodulation and high-
density FBG arrays. It can be seen that FBGs with a long grating length can reduce the 3 dB
bandwidth and improve reflectivity, but the physical length limits the size of the FBG array,
which is not conducive to achieving high-resolution monitoring. FBGs with short grating
length have a wide 3 dB bandwidth of and low reflectivity, which increases the difficulty of
achieving dense wavelength division multiplexing. For buoyancy material specimens, it is
required that the FBG does not exhibit chirp and spectrum broadening when subjected to
non-uniform temperature and strain distribution inside the material, accurately monitoring
the state changes at various positions of the buoyancy material. It is necessary to find a
balance point between the length, reflectivity, and 3 dB bandwidth of the FBG to prepare
high-density FBG arrays with a short grating length and narrow bandwidth.

Due to the simultaneous variation in temperature and strain fields during the curing
of buoyancy materials, FBGs suffer from cross-sensitivity between temperature and strain.
There are two methods to solve the problem: the temperature compensation method and
the dual wavelength matrix method. The temperature compensation method introduces
two identical FBGs and encapsulates one of the FBGs with a metal sleeve [14], a capillary
glass tube [15], and a ceramic [16,17] to ensure that it is only affected by the temperature
field. This solution is easy to operate and low-cost, but has poor compatibility. The intrusion
of packaging tubes affects the mechanical properties of the material, introducing defects
and damage [18]. The dual wavelength matrix method uses two FBGs with different tem-
peratures or strain sensitivities. Both FBGs simultaneously sense the external temperature
and strain, such as FBG and tilted fiber Bragg grating (TFBG) [19], FBG and long-period
fiber grating (LPFG) [20], TFBG, and LPFG [21]. However, the length of the TFBG and
LPFG is generally in the centimeter range, making it difficult to achieve a high-density
array. It is also possible to construct a dual wavelength matrix using different types of
fibers, such as a hollow-core fiber and a single-mode FBG fusion [22], a single-mode FBG
and thin-core FBG fusion [23], or polarization maintaining a multi-mode fiber [24]. This
method generally requires the fusion of fibers, which reduces the mechanical strength of
the fibers. Therefore, it is of great significance to study a fiber Bragg grating array sensor
that does not require packaging and can be directly embedded inside buoyancy materials
to accurately measure the temperature and strain for buoyancy materials monitoring.
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In this paper, to achieve high-density, short grating length, temperature and strain
measurement of femtosecond fiber Bragg grating (fs-FBG) sensors, we propose a polyimide
fiber Bragg grating and boron/germanium (B/Ge) co-doped fiber Bragg grating sensor
array based on femtosecond laser point-by-point writing technology. By optimizing the
fs-laser processing technology, FBG arrays with a grating length of 2 mm were successfully
prepared on two types of fibers. Three FBGs were multiplexed at a wavelength interval
of 12 nm, with a total array length of 22 mm, achieving a high-density and short-physical-
length FBG array preparation. Without any packaging, they were directly embedded into
buoyancy materials, successfully achieving temperature and strain monitoring at different
positions during the curing process of buoyancy materials. The formed intelligent buoyancy
material can sense the temperature and deformation.

2. Fabrication of Short Grating Length and High-Density fs-FBG Arrays Based on
Different Temperature Coefficients
2.1. Fs-Laser Point-by-Point Writing Technology

The schematic of the fs-laser PbP writing system of the FBG arrays is shown in Figure 1.
An fs laser system (light conversion, carbide) producing laser pulses with a duration of
220 fs at a central wavelength of 1030 nm is employed for inscribing. The laser maximum
output power is 5 W and the repetition rate is adjustable within the range of 1 MHz.
The fs laser is introduced into the Z axis stage after a beam shaping module, which is
subsequently focused into the fiber core (YOFC) by a 20X objective (NA = 0.4). To eliminate
the cylindrical astigmatism and positional distortion of the fiber during laser processing,
the fiber is immersed in a refractive index-matching oil (Cargille, n = 1.4587). The average
laser output power is adjusted by an electric laser power attenuator and quantitatively
controlled in percentages through software. The movement of the three-dimensional (3D)
translation stage is also controlled by the software of a computer, and the microstructure
of FBG can be captured in real time through a CCD and an LED. It is monitored using an
amplified spontaneous emission source (ASE) passing through a circulator and recording
of either the reflection or transmission spectra with an optical spectrum analysis (OSA,
APEX, AP2061A), and the resolution of the OSA is 1.12 pm.
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Figure 1. Schematic of the fs-laser PbP writing system.

The alignment between the laser spot and the fiber core is crucial for writing the FBG,
which is carried out under the real-time observation of the CCD. Subsequently, we set the
X axis stage to move along the fiber axis at a constant speed of v = 1.61 mm/s. Due to the
pulse mode of the fs laser, the traces of the pulse at different positions in the fiber core can
be obtained, and an FBG is fabricated. The central wavelength λB of the FBG is [25]:

mλB = 2ne f f Λ = 2ne f f v/ f , (1)
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where m is the resonance order of the FBG; neff is the effective refractive index of the fiber,
Λ is the grating period, and f is the repetition rate of the laser. In the experiment, m = 3,
neff = 1.4475, f = 1 kHz, Λ is related to the central wavelength, and different wavelength
FBGs can be fabricated by adjusting the processing speed, which reflects the flexibility of
fs-laser PbP writing technology.

2.2. FBG Arrays Written by Fs-Laser in Different Fibers

The key processing parameters of the fs-laser PbP writing technology were optimized
to realize the short and high-density fs-FBG array. For FBGs, the reflectivity and 3 dB
bandwidth are the main parameters that affect the sensing performance. The variation
in FBG reflectivity and 3 dB bandwidth with a grating length of 1–9 mm was studied in
the experiment. The single pulse energy was about 300 nJ, and there were five pulses, as
shown in e Figure 2. It can be seen that the longer the fiber grating length is, the narrower
the 3 dB bandwidth and the higher the reflectivity will be. However, an FBG with a long
grating length is not conducive to achieving high-spatial-resolution monitoring. When the
grating length was 1 mm, the reflectivity was less than 40%, which increased the difficulty
of achieving high-precision demodulation. The reflectivity can be increased by increasing
the depth of the refractive index modulation [26], but as the depth of the refractive index
modulation increases, the 3 dB bandwidth also increases. Therefore, there is a contradictory
relationship between the 3 dB bandwidth and reflectivity, and a balance point needs to
be found.
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Changing the single pulse energy and quantity of the fs-laser can achieve a change
in the depth of the refractive index modulation, thereby creating fs-FBGs with different
parameters [27].

For the short fs-FBG required for buoyancy materials, in order to ensure a relatively
high reflectivity, we controlled the grating length to 2 mm to ensure that there was no
chirping due to an uneven strain field during the monitoring of the curing of buoyancy
materials. The 3 dB bandwidth of the fs-FBG was also controlled within 1 nm, which was
conducive to achieving a high-density fs-FBG array [28]. Through multiple process studies,
it has been found that for polyimide fiber Bragg grating arrays, the energy of the fs laser
single pulse was about 550 nJ, and there were 10 pulses per refractive index modulation
point. For B/Ge co-doped fiber Bragg grating arrays, the energy of the fs laser single
pulse was about 240 nJ, and there were 6 pulses per refractive index modulation point.
The grating length of the fs-FBG was 2 mm, with an interval of 8 mm. Three FBGs are
multiplexed in the wavelength range of 12 nm, with a total array length of approximately
22 mm. The reflection and transmission spectra of the fs-FBG array are shown in Figure 3,
and it can be seen that the 3 dB bandwidth was about 0.5 nm, and the reflectivity R was
about 50%. The reflectivity was calculated by the formula R = 1−10−T/10, where T was the
transmission peak depth, which was about 3 dB [29]. The fs-FBG array with millimeter
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level grating length and millimeter level spatial resolution was fabricated, providing a core
sensor component for intelligent buoyancy materials.
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3. Temperature and Strain Monitoring of Buoyancy Materials Curing
3.1. Curing of Buoyancy Materials Based on fs-FBG Arrays

The experimental setup for monitoring the curing of buoyancy materials based on
fs-FBG arrays is shown in Figure 4. The buoyancy materials were heated by an electric
constant-temperature blast drying oven (DHG-9140AD) to promote curing. A set of fs-FBG
arrays with different temperature coefficients were parallel embedded inside the buoyancy
materials, and the center wavelength of the fs-FBG array was recorded in real time by an
MOI demodulator (LUNA, si155). The center wavelength change ∆λB was related to the
temperature and strain [30]:

∆λB
λB

= KT∆T + Kε∆ε, (2)

where λB is the center wavelength, KT is the temperature sensitivity, ∆T is the temperature
change, Kε is the strain sensitivity, and ∆ε is the strain change. The response of two fs-FBG
arrays could be expressed: (

∆λB1
∆λB2

)
=

(
KT1 Kε1
KT2 Kε2

)(
∆T
∆ε

)
, (3)

where ∆λB1 is the center wavelength change of polyimide fs-FBG, KT1 and Kε1 are the
temperature and strain sensitivities, respectively; ∆λB2 is the central wavelength change of
B/Ge co-doped fs-FBG, KT2 and Kε2 are the temperature and strain sensitivities, respectively.
Thus, by solving the inverse matrix of Equation (2), both values could be obtained from the
central wavelengths [31,32]:(

∆T
∆ε

)
=

1
M

(
Kε2 −Kε1

−KT2 KT1

)(
∆λB1
∆λB2

)
(4)

where M = KT1Kε2 − KT2Kε1 is the matrix determinant.
Through temperature and strain sensitivity calibration, the temperature sensitivity

KT1 and KT1 of polyimide fs-FBG (P-fs-FBG) and B/Ge co-doped fs-FBG (B-fs-FBG) in the
range of 30–170 ◦C were approximately 12.1 pm/◦C and 9.7 pm/◦C, respectively; and both
types of fs-FBGs had a strain sensitivity (Kε1 and Kε2) of 1.0 pm/µε, as shown in Figure 5.
Three experiments were conducted to calibrate the strain sensitivity to better ensure the
accuracy of the measurement results and reduce errors. Therefore, Equation (4) can be
expressed as: (

∆T
∆ε

)
=

1
2.4

(
1 −1

−9.7 12.1

)(
∆λB1
∆λB2

)
(5)
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The measurement results of polyimide fs-FBG and B/Ge co-doped fs-FBG indicated
that they overcame the problem of strain and temperature cross-sensitivity in traditional
FBGs, and could achieve measurements of temperature and strain in principle by utilizing
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different temperature sensitive properties. The temperature monitoring resolution of the
fs-FBG can be expressed by the formula [18]:

∆T =
∆λ

|KT1 − KT2|
(6)

where, ∆T is the temperature resolution and ∆λ is the wavelength resolution of the fiber
Bragg grating demodulator. By using fiber sensors with significantly different sensitive
characteristics, a higher temperature resolution can be achieved. In the experiment, the
wavelength resolution of the MOI demodulator used is 1 pm, so the temperature monitoring
resolution is about 0.42 ◦C.

When fs-FBG arrays were used for monitoring the curing of buoyancy materials, to
ensure that the temperature and strain fields perceived by the two fs-FBG arrays were the
same, polyimide fs-FBG array and B/Ge fs-FBG array were placed side by side in the center
of the mold with a spacing of 2 mm, to ensure that the perceived external environment
was essentially the same. Two fs-FBG arrays were directly embedded in the buoyancy
material, and a prestrain of 642 µε was applied at both ends to make sure the sensor was in
a working condition.

The buoyancy materials were provided by the Technical Institute of Physics and
Chemistry, Chinese Academy of Sciences, and consisted of two components, hollow glass
beads and epoxy resin. The average particle size of the hollow glass beads was about 40 µm.
The curing process, which included three steps, is shown in Figure 6: heating, insulation,
and cooling. The initial temperature was 30 ◦C, and after four rounds of heating to 155 ◦C
to ensure that the buoyancy material was fully cured, it was subsequently slowly cooled
down to 30 ◦C. The curing process lasted approximately 42 h.
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3.2. Fs-FBG Array in Buoyancy Materials after Curing

After 42 h of the curing process, the buoyancy material was formed. The sample
areas with a high strain measured by the different fs-FBGs were observed using an optical
microscope, and the results are shown in Figure 7. After the buoyancy material was formed,
both types of fs-FBGs were well coupled with the buoyancy material, and no abnormal
situations were observed in the coating, cladding, and fiber core. In an environment
of thousands of µε, the fs-FBGs survived perfectly. From Figure 7, it can also be seen
that fs-FBG sensors can be well combined with the substrate material, maintaining good
consistency and fully demonstrating the advantage of the fiber optic sensor scheme.
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The reflection spectra of embedded fs-FBG arrays before and after the curing process
are presented in Figure 8. The center wavelengths of the fs-FBG sensors moved toward
the shortwave direction after curing, and the fs-FBG arrays had good waveforms and
symmetry at the end of the curing process. Figure 8c,d shows the changes in the center
wavelength and 3 dB bandwidth of the fs-FBG arrays before and after curing. Due to the
different temperature sensitivity of polyimide and B/Ge co-doped fs-FBGs, the wavelength
shift of the two fs-FBG arrays was not the same. Both sensors did not exhibit spectral
degradation phenomena such as chirp distortion and spectral broadening.
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3.3. Temperature and Strain Curing Curve Analysis of Buoyancy Material

The buoyancy material was placed in an electric constant-temperature blast drying
oven and cured according to the process shown in Figure 6. According to Equation (5), the
temperature and strain distribution during the curing process of the buoyancy material
monitored by two types of fs-FBG arrays are shown in Figure 9. This was similar to
the monitoring results of the fiber Bragg grating fabricated by our previous ultraviolet
excimer laser phase-mask technology [7], but compared to before the research, the curing
process has been changed, so the temperature and strain monitoring curves were different.
Moreover, in this study, the removal of capillary glass tubes ensured a high consistency of
the solid buoyancy material, increased the compressive strength of the buoyancy material,
and avoided the rupture of capillary glass tubes under high pressure, which would affect
the reliability of the material. We conducted a detailed analysis of the curing process of the
buoyancy material in several stages. In the early stage of the curing process (A-B period),
the resin crosslinking reaction inside the buoyancy material had not yet begun and was still
in a viscous state. Therefore, the temperature perceived by the fs-FBG array was the result
of external heat transfer. Due to the poor thermal conductivity of the buoyancy material,
the temperature was approximately linearly increased, and the strain magnitude remained
at pre-strain.
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In the subsequent B-C stage, as the temperature increased the buoyancy material
continuously absorbed heat and the intramolecular energy increased. The input of external
energy intensified the thermal motion and intermolecular collisions of molecules, and the
resin began complex physical and chemical reactions. At this stage, the resin released
a large amount of heat, which was perceived by the fs-FBG array sensor. The highest
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peak heat release measured by fs-FBG3 was 165 ◦C, while the temperature measured by
fs-FBG1 was 149 ◦C. This indicated that for every 16 mm position change, the temperature
changes by about 16 ◦C, and the internal temperature distribution of the material is uneven.
The viscosity of the buoyancy material increased with the increase in the curing degree,
gradually transforming from a fluid to a viscoelastic solid with a certain hardness. Due
to the uneven curing degree at various positions, internal stress and curing deformation
were generated.

In the C-D stage, also known as the gel stage [33], after prolonged heating, the buoy-
ancy material underwent sufficient curing reactions. The non-uniform temperature and
strain fields were measured by fs-FBG array, and the central wavelength of the fs-FBG array
moved to the short wavelength direction [34]. In the final D-E stage, the high viscosity of
the material increased the internal friction and hindered the progress of chemical reactions,
which were mainly the physical crosslinking processes [35]. At this point, the shrinkage
strain reached its maximum, approximately −4891 µε, marking the end of curing. Com-
bined with Figure 8, it can be seen that both fs-FBG array spectra remained integral in
thousands of µε environments. The experimental results indicated the advanced nature
of the sensor. Two kinds of fs-FBG arrays with different temperature coefficients could
separate the temperature and thermal residual strain information during the curing process
of buoyancy materials, realize the measurement of the temperature and strain, and play an
auxiliary role in mastering the mechanical properties of the solid buoyancy materials.

3.4. Intelligent Buoyancy Material Temperature and Strain Sensing

After 42 h of a curing reaction, the femtosecond fiber Bragg grating has been integrated
with the buoyancy material, becoming an intelligent buoyancy material that can achieve
self-perception and self-adjustment. Temperature and strain are two of the key factors
affecting the reliability of intelligent buoyancy materials. Real-time monitoring of the
perceived temperature and strain of buoyancy materials provides a reference for adjusting
engineering operations and ensures the performance of buoyancy materials under various
environmental conditions. Buoyancy materials were applied at different temperatures and
strains to verify their self-sensing temperature and strain capacity. In the experiment, the
intelligent the strain of the buoyancy material was applied through a pressure-loading
device. Because the intelligent buoyancy material was an isotropic medium, the applied
pressure was directly proportional to the deformation and strain. The applied pressure
measured by the pressure sensor was converted to the deformation and strain of the
intelligent buoyancy material. The Poisson’s ratio of the buoyancy material was 0.3 and
the elastic modulus was 4 GPa. To verify the accuracy and reliability of the data measured
by the intelligent buoyancy material, a pressure sensor was also fixed on the pressure
application device to provide a pressure reference value, as shown in Figure 10.
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Due to the fact that fs-FBGs were integrated with solid buoyancy materials, both the
temperature and strain sensitivity were affected by the buoyancy materials. When the
temperature changed, the fs-FBG directly contacted the buoyancy material, which was
not only affected by the temperature, but also by the thermal expansion effect of the solid
buoyancy material. When the temperature changed ∆T, the strain generated on fs-FBG
could be expressed as [36,37]:

εT = (αsub − α)∆T, (7)

where αsub was the thermal expansion coefficient of the buoyancy materials; in the ex-
periment about 4 × 10−5/◦C, α was the thermal expansion coefficient of fibers, usually
5.5 × 10−7/◦C [38,39], where αsub was much larger than α. Therefore, the impact of
temperature changes on the center wavelength of fs-FBG was:

∆λB = [ξ + (1 − Pe)αsub]∆T · λB (8)

where ξ was the thermal optical coefficient of fs-FBG, generally 8.3 × 10−6/K, Pe was the ef-
fective elastic coefficient, generally taken as 0.22 [40]. Therefore, the temperature sensitivity
coefficient of fs-FBG could be expressed as KT’ = [ξ + (1 − Pe)αsub] ≈ 3.95 × 10−5/◦C.

To more accurately obtain the sensing ability of the two types of fs-FBGs embedded in
buoyancy materials, we calibrated the temperature and strain of the intelligent buoyancy
material. The temperature sensitivity of polyimide fs-FBG and B/Ge co-doped fs-FBG
was 45.1 pm/◦C and 42.9 pm/◦C, respectively. The difference of 0.2 pm/◦C was mainly
due to the normalization effect after coupling the fs-FBG with the buoyancy material. The
strain sensitivity was 0.504 pm/µε and 0.463 pm/µε, respectively. It can be seen that the
strain sensitivity decreased compared to the bare fs-FBGs. This was because the stiffness of
buoyancy materials was relatively higher than the fiber.

The temperature test range was 30~55 ◦C, and the strain test range was 0~340 µε.
Considering the poor thermal conductivity of buoyancy materials, each temperature point
was stable for 4 h to ensure temperature transfer to the interior of the buoyancy materi-
als. The temperature and strain experimental results are shown in Figure 11. It can be
seen that when the temperature and strain changed, the intelligent buoyancy material
could separate two types of signals, with temperature and strain monitoring accuracies of
0.56 ◦C and 28 µε, respectively. The monitoring accuracy had decreased due to the fact that
the temperature and strain perceived by the fs−FBG embedded in the buoyancy material
were transmitted by the buoyancy material. The experimental results indicate that the
intelligent buoyancy material has the ability to perceive the external temperature and
strain, which provides a new monitoring method for material condition and equipment
safety evaluation.
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3.5. Intelligent Buoyancy Material Pressure Sensing

Solid buoyancy materials are mainly used in high-pressure underwater environments.
Therefore, pressure is another major factor affecting the performance of buoyancy materials.
In this study, the working environment of intelligent buoyancy materials was simulated by
applying pressure to evaluate their performance under different pressures. The intelligent
buoyancy material was fixed on an electronic universal pressure testing machine (Jinan
Dongce Testing Machine Technology Co., Ltd., Jinan, China) and the repeatability and
reliability of fs-FBG monitoring were verified through two tests, as shown in Figure 12.
The compression degree of intelligent buoyancy materials was 1%. Due to the size of the
buoyancy material being 120 mm × 120 mm × 128 mm, the compression height was set to
1.28 mm. The electronic universal pressure testing machine was set up by the computer
to slowly apply pressure at a speed of 0.256 mm/min, maintain 300 s at the position of
compression to 1.28 mm, and then slowly moved upward at a speed of 0.256 mm/min
until the intelligent buoyancy material was in a free state. The entire test lasted for about
16 min, and the external ambient temperature was maintained at 22 ◦C.
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The second fs-FBG of two types of fs-FBG arrays was selected for analysis, as shown
in Figure 13a–d. The center wavelength of the femtosecond fiber Bragg grating changes
in real time with the applied pressure. From the red curves in Figure 13a,c, it can be seen
that although the compression deformation applied twice was 1%, the maximum pressure
provided by the electronic universal pressure-testing machine was different, which might
be caused by the equipment as well as by human error. In the experiment, we determined
the position where the electronic universal pressure-testing machine just came into contact
with the buoyancy material as the initial point, which was compressed downwards by
1.2 mm. Due to the difference in the position of the initial point, the deformation was
different, resulting in different pressures. Figure 13a,c shows the results obtained from
polyimide fs-FBG measurements, while Figure 13b,d shows the results obtained from B/Ge
co-doped fs-FBG. It can be seen that polyimide fs-FBG had a higher response accuracy.
However, there were differences between the pressure changes measured by B/Ge co-
doped fs-FBG and the settings. This was mainly due to the different coating types of
the two types of fs-FBGs. The polyimide coating has strong adhesion and a better strain
transfer performance, which can accurately reflect external pressure changes, while the
coating layer of B/Ge co-doped fiber is acrylic resin, which is not tightly adhered to the
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fiber-core-like polyimide. When subjected to pressure, its mechanical properties are not as
good as polyimide polymer materials. Therefore, the response to pressure was not sensitive
enough, and there was a certain hysteresis effect. The experimental results showed that
the polyimide fs-FBG had a higher response accuracy. Due to the constant temperature,
choosing a polyimide fs-FBG for pressure testing can meet the requirements. In the future,
the doping concentration of B/Ge co-doped fibers can be increased to improve the accuracy
of temperature and strain monitoring. At the same time, the coating layer of B/Ge co-doped
fibers is also changed to polyimide to increase the adhesion between the coating layer and
the fiber core, ensuring that the coating layer can tightly adhere to the fiber core during
the buoyancy material curing process and after curing, reducing hysteresis effects and
improving monitoring accuracy.
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The relationship between the sensor and the pressure is shown in Figure 13e,f. The
sensitivity of the two measurements of the polyimide fs-FBG and the B/Ge fs-FBG was
similar, with a difference of 0.37 pm/kN and 0.544 pm/kN, respectively, and the linearity
was good. This indicated that the intelligent buoyancy material embedded in the fs-FBG
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array could provide real-time feedback on changes in external pressure, and the stability of
fs-FBGs was good, with sensitivity remaining relatively stable under different pressures.

By applying different pressures, the deformation of intelligent buoyancy materials
could be obtained. Polyimide fs-FBG2 was selected to analyze the deformation monitoring
capability of the intelligent buoyancy material system. The identifiable minimum displace-
ment of the system can be represented as ∆X = λstd/K, where λstd is the standard deviation
of the fs-FBG center wavelength, and K is the displacement sensitivity of the fs-FBG. By
calibrating the displacement of intelligent buoyancy materials, the sensitivity could be
determined to be 12 pm/mm, as shown in Figure 14a. Figure 14b shows the wavelength
standard deviation of the fs-FBG within 10 min, which was approximately 2 pm. Therefore,
the minimum displacement that the fs-FBG could recognize was about 0.17 mm. By con-
trolling the universal pressure testing machine to apply a displacement of 0.17 mm to the
intelligent buoyancy material at a speed of 0.256 mm/min, and maintaining it for 120 s,
then returning to the original position at a speed of 0.256 mm/min. As can be clearly seen
from Figure 15, the system could accurately identify a deformation of 0.17 mm. However,
due to the fluctuation in the fs-FBG center wavelength detected by the MOI demodulator,
the average measurement data within 120 s were taken to be 0.164 mm, with an error of
0.006 mm. By conducting compression tests on intelligent buoyancy materials, it can be
found that fs-FBGs can sense external pressure in real time. When intelligent buoyancy
materials are subjected to significant external impacts, resulting in material deformation
and splitting, fs-FBG array sensors can accurately monitor them and ensure the reliability
of the equipment.
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4. Conclusions

In this paper, we proposed a short fs-FBG array based on different temperature coeffi-
cients fiber for monitoring the temperature and strain of intelligent buoyancy materials.
By optimizing the processing parameters of fs laser, short and high-density fs-FBG arrays
with a millimeter-level grating length and a millimeter-level spatial resolution were suc-
cessfully prepared. Directly embedded inside the buoyancy material, the curing process
of the intelligent buoyancy material and in-situ online monitoring after molding were
successfully achieved. The fs-FBG array sensor maintained good spectral performance
during the monitoring process without a significant chirp and broadening phenomenon,
and the data reliability and accuracy were high. The fs-FBG array sensor is of great signifi-
cance for achieving in situ online monitoring of intelligent buoyancy materials in harsh
underwater environments.
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