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2 Vigo Photonics, Poznańska 129/133, 05-080 Ożarów Mazowiecki, Poland; jpiotr@vigo.com.pl (J.P.)
* Correspondence: jsobieski@vigo.com.pl (J.S.); piotr.martyniuk@wat.edu.pl (P.M.)

Abstract: HgCdTe is a well-known material for state-of-the-art infrared photodetectors. The interd-
iffused multilayer process (IMP) is used for Metal–Organic Chemical Vapor Deposition (MOCVD) of
HgCdTe heterostructures, enabling precise control of composition. In this method, alternating HgTe
and CdTe layers are deposited, and they homogenize during growth due to interdiffusion, resulting in
a near-uniform material. However, the relatively low (350 ◦C) IMP MOCVD growth temperature may
result in significant residual compositional inhomogeneities. In this work, we have investigated the
residual inhomogeneities in the IMP-grown HgCdTe layers and their influence on material properties.
Significant IMP growth-related oscillations of composition have been revealed in as-grown epilayers
with the use of a high-resolution Secondary Ion Mass Spectroscopy (SIMS). The oscillations can be
minimized with post-growth annealing of the layers at a temperature exceeding that of growth. The
electric and photoelectric characterizations showed a significant reduction in the background doping
and an increase in the recombination time, which resulted in dramatic improvement of the spectral
responsivity of photoconductors.

Keywords: HgCdTe; infrared detectors; MOCVD growth; interdiffused multilayer process; residual
inhomogeneities; post-growth annealing

1. Introduction

Mercury Cadmium Telluride (HgCdTe) is a well-known material for state-of-the-art
infrared (IR) photodetectors. It offers continuous wavelength tunability from short-wave
infrared (SWIR) to very long-wave infrared (VLWIR), while ensuring high quantum effi-
ciency (QE) and low dark current. However, the fabrication of good-quality IR detectors
requires solving technological problems resulting from the instability of the compound and
weak ionic bonds. Molecular Beam Epitaxy (MBE) and Metal–Organic Chemical Vapor
Deposition (MOCVD) are the two most important techniques for the growth of high-quality
HgCdTe heterostructures for IR devices. The interdiffused multilayer process (IMP) for
MOCVD growth of Hg1−xCdxTe with precise control of cadmium content, x, in MOCVD
was developed in the 1990s [1]. The process enables to separate the optimization of growth
conditions for the CdTe and HgTe layers, which then allow for the growth of high-quality
heterostructures. Typically, the MOCVD-grown material shows greater background donor
concentration and a shorter recombination time. A possible cause could be not sufficient
homogenization of IMP-grown materials during deposition. This applies especially to
the upper part of the layer, which is briefly homogenized during growth. The first-to-
grow layers are better homogenized than the last ones because of the longer time at the
growth temperature. Non-perfect homogenization during IMP leads to the formation of a
specific type of 2D superlattice material that consists of thin graded-gap HgCdTe layers
with a period equal to the thickness of the IMP CdTe/HgTe pairs (~100 nm). The degree
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of homogenization is determined by the time of homogenization and the interdiffusion
coefficient of Cd and Te in HgCdTe. There have been many articles both experimental and
numerical on the interdiffusion coefficient [2,3]. The interdiffusion coefficient depends on
composition, x of Hg1−xCdxTe, temperature, and Hg pressure. Interdiffusion at tempera-
tures exceeding 450 ◦C is well described by the model based on fundamental point defect
mechanisms [4]. Hg and Cd can diffuse by moving onto interstitial sites or by exchanging
places with vacancies on the cation sublattice. The interdiffusion coefficient decreases with
decreasing temperature, increasing Cd content and Hg pressure. This is the result of a
decreasing concentration of vacancies. The typical IMP growth temperature ranges from
350 ◦C to 370 ◦C [5–8]. The fundamental point defect model does not work well due to the
low concentration of vacancies at these temperatures. For this temperature range, there
is no reliable experimental data and expressions regarding the interdiffusion coefficient.
Interdiffusion and related material composition changes in the near-surface area of the
growing layer are in situ monitored using laser reflection interferometry during the IMP
process [9]. However, this technique cannot measure the residual compositional gradients
in the grown layer. The optical and photoelectrical properties of HgCdTe strongly depend
on its composition. Therefore, the residual oscillations of the composition of IMP material
may highly modify the properties of photodetectors grown by the IMP technique. The
impact of composition oscillations is very complicated (probably negative), determined
by many factors and difficult to predict. In this paper, we have measured the changes
in compositional profiles of the IMP layers after post-growth annealing at temperatures
exceeding that of growth and the impact of the annealing on the photoelectrical properties
of the material. Huge IMP growth-related oscillations of iodine dopant concentration
were reported [10], evidence of the poor homogenization of the dopant concentration.
There are no data in the literature, however, regarding composition fluctuations and their
dependence on growth conditions. This is probably caused by too low spatial resolution
of the SIMS systems used for microanalysis of the in-depth composition profiles. It was
well established that MOCVD-grown Mercury Cadmium Telluride (MCT or HgCdTe)
features donor background doping close to 1015 cm−3 [11], about an order of magnitude
higher compared to molecular beam epitaxy (MBE) [12,13]. The preferred orientation of
MOCVD-grown HgCdTe film is either the (100) or the (111)B, and each has its advantages
and disadvantages. The (100) layers exhibit better crystalline quality and significantly less
residual donor concentration in the mid of 1014 cm−3 [8]. However, the most serious draw-
back is the presence of surface pyramid-shaped macro-defects known as “hillocks”, which
significantly hinder the further processing of detectors. In (111)B epilayers, the background
doping is even 1015 cm−3. The most dominant defects in HgCdTe (111)B epilayers are
twin dislocations that exhibit donor-like activity and also result in high surface roughness.
Regardless of the higher background doping and roughness, it does not prevent from the
obtaining of a background limited infrared photodetector (BLIP) operating in the mid-wave
infrared (MWIR) range [14], while there are no hillocks on (111)B layers. Moreover, high
p-type doping with arsenic can be achieved in (111)B HgCdTe compared to (100) epilayers.
It is especially important for high-operating temperature (HOT) long-wave infrared (LWIR)
photodetectors, where high p-type doping is necessary to suppress thermal generation.

Post-growth annealing is a proven method to improve the crystalline quality of MBE-
grown HgCdTe. For example, annealing at temperatures below 200 ◦C of planar devices
after ion implantation was studied [15,16]. This sort of annealing is required to activate
implanted elements and reduce structural defects after implantation. Post-growth anneal-
ing at temperatures from about 200 ◦C to 300 ◦C in Hg vapor is commonly used to reduce
Hg-vacancy concentration [17]. Reduced dislocation density after post-growth annealing
at higher temperatures was reported. Cycle annealing at temperatures between 290 ◦C and
350 ◦C, which is close to the MOCVD growth temperature resulted in a reduction in etch
pit density (EPD) of HgCdTe grown on CdTe/Si substrate [18]. Surface properties of ion-
implanted HgCdTe were studied after annealing at 360 ◦C [19]. As a result, higher arsenic
(acceptor) activation was achieved and extended defects were removed. Degradation of the
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carrier lifetime was observed after annealing at a temperature of 420 ◦C in Hg-saturated
pressure in H2 [20]. The effect was attributed to the creation of an SRH recombination
center only when annealing was done in H2. On the other hand, in situ annealing between
390 ◦C and 450 ◦C in the MBE reactor led to a reduction in EPD [21].

In this paper, we discuss the residual oscillations of cadmium content in IMP-grown
(111)B HgCdTe layers and their impact on the background doping and minority carrier
lifetime. Furthermore, to remove residual inhomogeneities, the samples were annealed at a
temperature of 400 ◦C for 30 min.

2. Materials and Methods

The (111)B HgCdTe samples were grown by the IMP technique in a horizontal Aix-
tron AIX-200 MOCVD system on 2 inch, epi-ready, semi-insulating (100) GaAs substrates
(AXT Inc., Beijing, China) buffered with a 3 µm thick CdTe layer to compensate the lattice
mismatch between the GaAs substrate and the HgCdTe layer. The growth was carried
out at a temperature of approximately 350 ◦C with the mercury zone at a temperature of
170 ◦C. Diisopropyltelluride (DIPTe) and dimethylcadmium (DMCd) (Dockweiler Chem-
icals GmbH, Marburg, Germany) were used as precursors for Te and Cd, respectively.
Elemental mercury (Alfa Aesar Thermofisher Haverhill, Massachusetts, United States) was
used as a mercury precursor, and H2 was used as the carrier gas. Two non-intentionally
doped (n.i.d.) HgCdTe samples were prepared for the research as follows:

• Sample MW with a planned x = 0.29 at a cutoff wavelength of 4.5 µm at 300 K,
• Sample SW with a planned x = 0.37 at a cutoff wavelength of 3.2 µm at 300 K.

After the growth, the samples were annealed for 30 min at a temperature of 400 ◦C
in mercury pressure of 50 mbar and then slowly cooled down to 150 ◦C in varying near-
saturated Hg vapor pressure. Secondary ion mass spectrometry (SIMS) experiments were
performed with the CAMECA IMS SC Ultra instrument to identify composition inhomo-
geneities. Cesium was used as a primary ion source and with the positive detector polarity
all signals were registered as CsX+ cluster ions. The impact energy, intensity, and beam di-
ameter were 100 eV, 0.5 nA, and 20 microns, respectively. The impact angle was increased to
79◦. Such non-trivial conditions practically eliminated the mixing effect and, in some cases,
ensured the atomic depth resolution [22]. It allowed us to detect even small fluctuations in
the chemical composition which would not be possible in the classical SIMS experiment
(i.e., with much higher impact energy and the impact angle in the range of 40–60◦). X-ray
diffraction rocking curves were collected with PANalytical X’Pert—HRXRD. Full Width
at Half Maximum of the peak from (511) plane was used to reveal the changes of layers
crystalline quality due to the 400 ◦C anneal. Electrical properties were estimated by the Hall
effect measurements at a temperature range from 80 K to 300 K using the Van der Pauw
technique with a 0.542 T magnetic field. The minority carrier lifetime was measured by
photoconductivity decay method using a 1 mm long photoconductive device illuminated
by a 1.6 µm wavelength pulse laser. The same devices were used for the spectral current
responsivity measurement using the PerkinElmer Spectrum 3 FTIR spectrophotometer.

3. Results and Discussion

Figure 1 shows the SIMS composition measurements of the as-grown sample and the
sample subjected to the post-growth annealing at temperatures higher than the growth
temperature. Significant oscillations of composition can be seen. The period of oscil-
lations equal to the thickness of the IMP HgTe/CdTe pairs was found. In contrast, no
oscillations of Cd-related SIMS signal intensity at any part of the epilayer can be seen in
the sample subjected to the post-growth annealing. This shows a practically perfect IMP
layer homogenization during the 30 min anneal at 400 ◦C. This is also confirmed by a
significant narrowing of the FWHM of the x-ray diffraction rocking curve from 307 arcsec
to 230 arcsec. The relatively large FWHM is probably due to the design of the sample
structure that also consists of the CdTe buffer and its interface of graded composition with
the HgCdTe epilayer.
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Figure 1. The relative Cd SIMS intensity (a) of and XRD rocking curves (b) of the as-grown and 
annealed Hg1-xCdxTe (x = 0.37) layers. 
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Figure 1. The relative Cd SIMS intensity (a) of and XRD rocking curves (b) of the as-grown and
annealed Hg1−xCdxTe (x = 0.37) layers.

The IMP layers grown at relatively low temperatures without post-growth annealing
can be treated as a long (~100 nm) period superlattice of variable bandgap HgCdTe pairs.
This may affect the electric and photoelectric properties of the material.

Relations on energy gap [23], carrier mobilities [24], minority carrier lifetime [25], com-
position for Hg1−xCdxTe are well established. The composition of samples was determined
by measurements of the spectral photoconductivity of the samples [26]. Minority carrier
lifetime was measured by the photoconductivity time response method [27].

Figure 2 shows the measured and calculated Hall carrier concentrations. Measured
at 80 K, the Hall concentrations for as-grown and annealed MW and SW samples were,
respectively, as follows:

• MW: ≈ 5.5 × 1015 cm−3 and 2.2 × 1015 cm−3,
• SW: ≈ 5 × 1015 cm−3 and 1.9 × 1015 cm−3.
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For calculated Hall concentrations, uniform compositions (Table 1) were assumed.
Donor concentrations for as-grown and annealed MW and SW samples were taken, respec-
tively, as follows:

• MW: ≈ 6.0 × 1015 cm−3 and 2.2 × 1015 cm−3,
• SW: ≈ 6.2 × 1015 cm−3 and 1.9 × 1015 cm−3.

Table 1. Summary of measured parameters. Values in brackets correspond to samples after annealing.

Parameter SW MW

x
0.355 0.292

(0.370) (0.297)

λcut-off (300 K)
3.52 µm 4.84 µm

(3.32 µm) (4.66 µm)

XRD rocking curve FWHM
307 arcsec -

(230 arcsec) -

SRH lifetime
0.5 µs 5 µs

(2 µs) τp0 = τn0
(200 µs) τn0 >> τp0

(30 µs)

Total lifetime at 300 K
0.73 µs 0.15 µs

(4.84 µs) (1.41 µs)

Hall concentration at 80 K
5.0 × 1015 cm−3 5.5 × 1015 cm−3

(1.9 × 1015 cm−3) (2.2 × 1015 cm−3)

The results show a significant reduction in the background donor concentrations after
the homogenization annealing. It should be noted that the measured and calculated Hall
concentrations are in good agreement for the annealed samples. In contrast, there is a
large discrepancy in the low-temperature range between the experimental and calculated
concentrations. This is due to the oscillations of material composition not being taken into
account in the calculations. The nature of the high Hall concentrations in as-grown samples
is not clear yet. This may be caused by the composition gradients themselves, specific
properties of the superlattice material structure or defects of the material. The annealing
may eliminate all the reasons.

Figure 3 shows the normalized spectral responsivities of photoconductors fabricated
from the as-grown and annealed HgCdTe layers. The annealing results in two important
changes as follows:

• Blue shift of the long wavelength photoresponse cutoff. This is probably due to the
material homogenization that leads to an increase in the bandgap in HgTe-rich parts
of the post-IMP periodic structures,

• Dramatic increase in the responsivity by much more than one order of magnitude.

This is the result of the increase in the materials’ electron mobility and recombination
time product (µe × τ). The homogenization probably increases both µe and τ. This
would improve the performance of not only photoconductors but also other types of IR
photodetectors.

Figures 4 and 5 show the experimental dependence of minority carrier lifetimes on
temperature for the Hg1−xCdxTe epilayer with x = 0.29 (Sample MW) and x = 0.37 (Sample
SW), respectively. The evolution of time response with temperature is characteristic of each
recombination mechanism. Radiative, Auger 1, and non-fundamental Shockley–Read–Hall
(SRH) recombination processes were considered in the theoretical analysis (see Appendix A).
For the unannealed Sample MW (with residual composition inhomogeneities), the minority
carrier lifetime is limited by the Auger 1 recombination. This is probably due to high
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intrinsic concentration at high temperatures and high background donor doping at temper-
atures < 250 K. In the case of the unannealed Sample SW, all three effects determined the
minority carrier lifetime. Discrepancies between the theoretical results and those calculated
at lower temperatures may result from similar discrepancies in electron concentration (see
Figure 2). It has to be noted that theoretical analysis assumes uniform material and thus
may not be sufficient for the material with residual compositional inhomogeneities. Auger
1 recombination strongly depends on electron concentration and thus it is expected to be
partially suppressed by lower background doping after additional samples’ annealing. In
the narrow bandgap material (Sample MW), the intrinsic concentration at high temperature
is significantly higher than the background doping. Thus, the increase in carrier lifetime
due to composition homogenization is not only due to reduced background donor doping
(increased Auger 1 lifetime) but mainly due to a significant increase in the SRH lifetime.
After additional annealing, τp0 increases from 5 µs to 30 µs. The SRH mechanism deter-
mines the carrier lifetime in the annealed Sample SW and is much shorter (by an order
of magnitude) than in the annealed Sample MW. However, what is worth pointing out is
that it has a strong temperature dependence. Thus far, the SRH lifetime calculated using
Equation (A8) is valid only for neutral defects, i.e., when τp0 = τn0. This approach causes an
underestimation of the minority carrier lifetime temperature > 200 K (Figure 5b). A good
agreement of the total carrier lifetime was obtained, assuming a temperature-dependent
SRH lifetime above 200 K. According to Equation (A10), τn0 >> τp0 and equals to 200 µs,
and the effective energy trap level lies of about 81 meV above the edge of the valence
band. In an n-type semiconductor, the SRH lifetime is temperature dependent for strongly
charged acceptor defects [28].
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Figure 5. Measured and calculated minority carrier lifetime versus temperature for the Hg1−xCdxTe
Sample SW after growth (a) and after additional annealing (b).

4. Conclusions

In summary, the residual in-depth oscillations of composition in the HgCdTe layers
grown by the IMP MOCVD epitaxy and their influence on the photoelectric properties of the
material were studied. Significant in-depth oscillations of composition are easily observable
in the SWIR and MWIR epilayers grown at 350 ◦C with high-resolution in-depth SIMS
measurements. The oscillations disappear with the 400 ◦C annealing for 30 min, indicating
practically complete homogenization of the material. The annealing highly improves
the structural and photoelectric properties of the layers and can be used to manufacture
infrared photodetectors. Incomplete homogenization of IMP pairs results in increased
background doping, decreased carrier lifetime, and a red shift in the absorption edge.
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Appendix A

The radiative carrier lifetime is given by van Roosbroeck and Schockley expression [29]:

τR =
1

B(n0 + p0)
, (A1)

where n0 and p0 are the equilibrium electron and hole concentrations, respectively, and

B = 5.8·10−13ε∞
1
2

(
m0

m∗
e + m∗

hh

) 3
2
(

1 +
m0

m∗
e
+

m0

m∗
hh

)(
300
T

) 3
2
E2

g. (A2)

ε∞ is the high frequency permittivity, m0 is the free electron mass, where m∗
e and m∗

hh
are the electron and hole effective mass, respectively.
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Eg is the semiconductor energy gap at a temperature T. For Hg1−xCdxTe, the energy
gap is given by the empirical relation [30]:

Eg(x, T) = −0.302 + 1.93x − 0.81x2 + 0.832x3 + 5.35·10−4(1 − 2x)T, (A3)

where x is Cd molar composition.
For the n-type material, Auger 1 is the primary mechanism due to the interaction of

two electrons and one hole, and is given by

τA1 =
2τAi1n2

i
n0(n0 + p0)

, (A4)

where ni is the intrinsic carrier concentration, for Hg1−xCdxTe given by [30]:

ni =
(
5.585 − 3.82x + 1.753·10−3T + 1.364·10−3xT

)
×

×1014E3/4
g T3/2 exp

(
− Eg

2kBT

) , (A5)

τAi1 is the Auger 1 lifetime in intrinsic material [31]:

τAi1 = 3.8·10−18ε2(1 + µ)
1
2 (1 + 2µ)

(
m0

m∗
e

)
exp

(−q(1 + 2µ)Eg

(1 + µ)kBT

)
|FF|−2

(
kBT
qEg

)− 3
2
, (A6)

where kB is the Boltzmann constant, ε is the dielectric constant, q stands for the electron
charge, µ must be taken as m∗

e /m∗
hh, and FF is the overlap integral for Bloch functions.

The carrier lifetime associated with a single SRH defect level is expressed as [32,33]:

τSRH =
τp0(n0 + n1) + τn0(p0 + p1)

n0 + p0
. (A7)

where τp0 and τn0 are the defect capture time constants for electrons and holes.

n1 = Ncexp
[
(ET − Ec)

kBT

]
, (A8a)

p1 = Nvexp
[
−(ET − Ev)

kBT

]
, (A8b)

where Nc and Nv are the densities of states in the conduction band and valence band,
respectively. ET is the effective energy level of traps, and Ec and Ev are the energies of the
conduction band and valence band, respectively.

The optimum thermal transition, i.e., the shortest SRH lifetime, occurs through defects
located approximately at the intrinsic energy level in the semiconductor bandgap, where
n1 = p1 = ni. Assuming the same defect capture time constants for electrons and holes,
τp0 = τn0, Equation (A7) in n-type semiconductor becomes:

τSRH =
τp0(n0 + 2ni)

n0
. (A9)

At low temperatures, where n0 > ni, τSRH = τp0. At high temperatures, where
n0 = p0 = ni, τSRH = 2τp0. So can be seen, for the neutral SRH centers, τSRH is nearly
temperature independent.

The SRH lifetime can be large when ET does not coincide with Ei. For example,
for charged acceptor-type defects in n-type semiconductor, where τp0 << τn0, the SRH
lifetime becomes:

τSRH ∼ τn0exp
[
−(ET − Ev)

kBT

]
= τn0exp[−β]. (A10)
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Considering all three mechanisms, the total minority carrier lifetime in n-type semi-
conductor is given as

1
τ
=

1
τR

+
1

τA1
+

1
τSRH

(A11)
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