
Citation: Luppi, I.; Bhatt, N.P.;

Hashemi, E. Consensus-Based

Information Filtering in Distributed

LiDAR Sensor Network for Tracking

Mobile Robots. Sensors 2024, 24, 2927.

https://doi.org/10.3390/s24092927

Academic Editors: Daniel Galan,

Ramon A. Suarez Fernandez and

Francisco Javier Badesa

Received: 9 April 2024

Revised: 30 April 2024

Accepted: 30 April 2024

Published: 4 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Consensus-Based Information Filtering in Distributed LiDAR
Sensor Network for Tracking Mobile Robots
Isabella Luppi † , Neel Pratik Bhatt and Ehsan Hashemi *

Department of Mechanical Engineering,University of Alberta, Edmonton, AB T6G 1H9, Canada;
luppi.isabella@gmail.com (I.L.); npbhatt@ualberta.ca (N.P.B.)
* Correspondence: ehashemi@ualberta.ca
† Current address: The Charles Stark Draper Laboratory, Inc., Cambridge, MA 02139, USA.

Abstract: A distributed state observer is designed for state estimation and tracking of mobile robots
amidst dynamic environments and occlusions within distributed LiDAR sensor networks. The
proposed novel framework enhances three-dimensional bounding box detection and tracking utilizing
a consensus-based information filter and a region of interest for state estimation of mobile robots.
The framework enables the identification of the input to the dynamic process using remote sensing,
enhancing the state prediction accuracy for low-visibility and occlusion scenarios in dynamic scenes.
Experimental evaluations in indoor settings confirm the effectiveness of the framework in terms of
accuracy and computational efficiency. These results highlight the benefit of integrating stationary
LiDAR sensors’ state estimates into a switching consensus information filter to enhance the reliability
of tracking and to reduce estimation error in the sense of mean square and covariance.

Keywords: distributed sensor networks; information filters; consensus filters; LiDAR-based state
estimation; perception

1. Introduction

The evolution of distributed sensor networks (DSNs) and remote sensing has led
to their application in motion planning and for the control of mobile autonomous sys-
tems for surveillance, environmental monitoring, warehouse management, and intelligent
transportation [1–6].

Comprising spatially distributed sensors installed on infrastructures or mobile robots,
DSNs can process local environmental data and generate a comprehensive scene overview
through centralized or distributed state estimation [7–11], while maintaining asymptotic
stability of the estimation error dynamics. As beneficial as these networks may be, the chal-
lenge is reliable estimation/sensing at the node (e.g., visual inference, point cloud cluster-
ing), particularly when it comes to target tracking in dynamic environments subject to par-
tial or full occlusion [12–15]. Additionally, emerging research suggests that radar-based and
UWB (Ultra-Wideband)-based distributed sensor networks offer promising alternatives for
the localization and state estimation of mobile robots/vehicles [16,17], potentially enhanc-
ing accuracy and robustness in environments where LiDAR may encounter limitations.

The complexity and time-sensitivity of visual and LiDAR-based tracking of moving
targets demand distributed observer design using continuous communication or event-
triggered architecture [18–22], as accurate detection and pose estimation are integral for
the robust and scalable tracking which is required for distributed motion planning and
control of multiple mobile robots. In this regard, computationally efficient LiDAR-based
state estimation at the edge (i.e., stationary sensing units), which provides accurate depth
measurements provided by point clouds (removing the complexity of depth estimation and
disparity map generation with a stereo/monocular camera), and maintains privacy (due to
not processing of any images in the scene), has been the focus of the recent literature on
remote estimation in DSNs [23–26].
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However, processing the LiDAR point cloud data to obtain robots’ three-dimensional
bounding boxes, including their headings, and removing outliers are challenging and
have been addressed through geometrical (i.e., model-based), filter-based, and end-to-end
learning methods [27–29]. Despite this, the inherent variability in mobile robots’/ground
vehicles’ sizes and occlusion in dynamic scenes are the main challenges for reliability in
detection and heading estimation in both model- and learning-based clustering and pose
estimation approaches [30–33]. After reliable inference and pose estimation at the sensor
node level, distributed estimation based on the Kalman consensus filter provides accurate
estimates and convergence [34,35], depending on the topology of the networked sensors,
guaranteeing the optimality of the variance and the stability of the error dynamics. Existing
estimation methods in sensor networks, which centralize processing or use micro Kalman
filters at each sensor node, impose considerable computational loads and require extensive
inter-node communication during tracking and state estimation. These challenges are
exacerbated in dynamic environments with multiple mobile robots and occlusion cases,
impacting scalability and efficiency. Additionally, conventional L-shape fitting techniques
for LiDAR-based tracking of mobile robots/vehicles are restricted to 2D data and necessitate
sensors at the same vehicle height, limiting sensor placement flexibility and adaptability.

This paper develops a computationally efficient remote state estimation using a dis-
tributed architecture over LiDAR sensor networks, to address the limitations mentioned
above and occlusion and limited visibility for the detection and tracking of mobile robots,
through two key contributions:

• A generic LiDAR-based 3D bounding box detection and tracking method is designed
to accommodate a wider range of sensor locations within DSNs;

• A distributed switching observer is designed to handle dynamic and occluded scenarios,
to reduce overall computational cost, and to introduce short-term predictive capacity.

The remainder of the paper is organized as follows: Section 2 presents the back-
ground and point cloud processing. Section 3 introduces the designed distributed observer.
Section 4 evaluates the performance and computational efficiency of the developed re-
mote sensing framework in several experiments including occluded and dynamic scenes.
Section 5 concludes this paper.

2. Background and Point Cloud Processing

The position vector pr of a mobile robot centroid and the orientation or of the bounding
box of the tracked robot are defined by

pr =
[
xr yr zr

]⊤, or =
[
ϕr ψr θr

]⊤, (1)

where xr, yr, and zr represent the coordinates of the centroid in the fixed world frame {G},
while ϕr, ψr, and θr are the bounding box (roll, pitch, and yaw) orientation angles. In order
to develop the state observer and point cloud clustering, the following assumptions are
made in this paper: (i) any variations in the z-value of the robot position are negligible
(i.e., our case study is for the pose estimation and tracking of wheeled robots as shown in
Figure 1); and (ii) the position ps and orientation os of the sensor nodes are known in the
global frame {G}. There is also no prior knowledge of the environment and dimensions of
the robot. The computational challenge posed by high-dimensional point clouds is miti-
gated through voxelization (for dimensionality reduction). Given a point cloud C ∈ RN×3,
where N is the number of points, each represented by (x, y, z), the application of the Voxel
Grid Filter can be represented as

Cv = VoxelGrid(C, α), (2)

in which α ∈ R is the parameter controlling the size of the voxels, and Cv ∈ RNv×3 is
the resulting filtered point cloud with Nv < N points. This divides the point cloud into
a three-dimensional grid and selects a single representative point from each grid cell,
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discarding the rest. Each voxel vi is a cubic region of volume α3, and each point p ∈ C is
assigned to a voxel based on its coordinates, determined by (ix, iy, iz) =

(⌊ x
α

⌋
,
⌊ y

α

⌋
,
⌊ z

α

⌋)
,

where (ix, iy, iz) are the voxel indices in the grid corresponding to each point p, defining
the voxel vi to which the point is assigned. All points p within each voxel vi are then
represented by the centroid ci, which is the arithmetic mean of the points in the voxel
calculated by ci =

1
N (vi)

∑p∈vi
p, where N (vi) is the number of points in the voxel. This

approach effectively reduces the data volume while preserving the essential structural
features of the point cloud.

Figure 1. Experimental setup for evaluation of the LiDAR-based distributed state observer: un-
manned ground vehicle (UGV) setup (left), and solid-state LiDAR used for remote sensing (right).

The point cloud data (obtained from the solid-state Robosense LiDAR shown in Figure 1)
require transformation for alignment with the global frame {G}. The transformation of all
points p ∈ Cv involves rotation performed using a rotation matrix R ∈ R3×3 derived from
the Euler angles

R = Rz(θs) · Ry(ψs) · Rx(ϕs), (3)

where Rx(ϕs), Ry(ψs), and Rz(θs) represent the rotation matrices around the x-, y-, and
z-axes, respectively. The point cloud in the global frame is then expressed by

CG = R · Cv + tG, (4)

in which t =
[
xs ys zs

]⊤ is the translation vector. Considering the first assumption, we
employ a thresholding technique to identify and eliminate ground points from the point
cloud as

C′ = {p ∈ CG | z > h f + ϵ}, (5)

in which C′ ∈ RN′×3 includes the ground-less point cloud, h f is the elevation of the ground
floor in the frame G, and ϵ is a slack variable to deal with potential noise or deviations
from the ideal floor plane. While this approach effectively removes the majority of the
ground points, it may also remove low-elevation non-ground points. Since the geometry of
other operating robots in the environment is known and the aim of this research is accurate
clustering and reliable distributed robot state estimation (not generating a cost/occupancy
map), even the unexpected exclusion of some low-elevation points due to thresholding will
not significantly affect the performance of the proposed framework.

Clustering and Principle Component Analysis

To partition the point cloud into different groups, Euclidean clustering is employed.
Given the point cloud C′, Euclidean clustering involves finding the set of clusters
Cc = {C1, C2, . . . , Ck} that best represents the underlying structure of points p ∈ C′, where
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each cluster Ci is defined as a set of neighboring points that are close to each other in the
3D space, as in

Ci = {pj | pj ∈ C′ and di,j ≤ ρ}, (6)

where i = {1, . . . , k} denotes the cluster index, j = {1, . . . , N′} represents individual points
within the point cloud, and ρ is a predefined distance threshold. It is important to note
that the value of ρ must be at least as large as the leaf α of the voxels. If ρ ≤ α, no clusters
will be formed due to the inability of points to meet the proximity criteria. Each cluster
Ci is characterized by computing the spans between the maximum and minimum values
for height and length along the x- and y-axes. The selection of the clusters corresponding
to the robot is achieved by comparing these dimensions to the prior geometry/size infor-
mation of the robot operating in the environment. This comparison specifically considers
the robot’s shortest side and its longest diagonal to ensure the dimensions fall within
predefined thresholds.

By comparing the current clusters with the previous estimates, we associate each
selected cluster (mentioned above) with the corresponding object through maximum
likelihood data association. For each cluster Ci ∈ Cc, the association likelihood is calculated
by evaluating the distance di between the centroid of the cluster and the prior estimated
position pr. The cluster with the centroid closest to the past position estimate has the
highest likelihood considering the bounds on the robot’s speed and acceleration. The
chosen association is where Li is maximal, as in

i∗ = arg max
i

Li, Li =
1
di

. (7)

The aim is to fit a 3D bounding box around each cluster of points obtained, accurately
representing the shape and dimensions of the robot in the scene. The proposed method
modifies the conventional L-shape fitting [36,37], which is effective when the robot’s point
cloud consists of points belonging to the primary two edges of the moving robot. The
LiDAR’s bird’s-eye-view estimated pose reveals the robot’s top in the point cloud.

To isolate the robot’s edges, the cluster Ci is projected onto the xy-plane and encapsu-
lated by a convex hull, CH(Ci), which is the smallest convex polygon encompassing all
points in cluster Ci as shown in Figure 2. This method both identifies the mobile robot’s
edges and regularizes its shape. If the robot shape is not a complete box (due to protruding
wheels or a manipulator), the convex hull algorithm normalizes the estimated cluster edges
into rectangles. Let ph denote each point on the convex hull, where h = {1, 2, . . . , N},
and N is the total number of points constituting the convex hull CH(Ci). To classify the
remaining points, we analyze the angle βh for each point ph ∈ CH(Ci) with respect to the
infrastructure-mounted LiDAR position ps. By finding the lower bound βmin = min{βh}
where βh = tan−1( yh

xh
), the corresponding point pβmin can be identified. Similarly, by

finding the upper bound, βmax = max{βh}, the point pβmax can be determined. Hence,
the points pβmin and pβmax correspond to the two primary edges of the mobile robot, as
they represent the most laterally external points within the point cloud based on their
angular positions.

Figure 2. The xy-projection of the UGV robot’s clustered point cloud in real time for zs ≤ zr (left), for
zs > zr (center), and the convex hull of the cluster xy-projection (right).
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To classify whether each ph ∈ CH(Ci) belongs to the main edges, we examine the
relative position of each ph with respect to the LiDAR position ps and the line segment
defined by the two points pβmin and pβmax . Initially, the vector v that links the two points is
computed by v = pβmax − pβmin . Subsequently, the scalar product wj of the vector v and
the vector from the sensor position ps to each point pj ∈ Ci is defined by wj = v · (pj − ps).
As schematically represented in Figure 3a, the scalar dot product wj is then used as an
indicator of the position of pj with respect to ps.

Figure 3. (a) Lateral-external points and L-shape reduction: (i) if wj ≥ 0, the point pj lies on the same
side of the decision boundary (dashed blue line) as the sensor, or is collinear with the line segment
defined by pβmin and pβmax (it is considered to be part of the main edges and is retained), and (ii) if
wj < 0, the point pj is removed from Ci; (b) closest point and RANSAC line fitting.

The nearest corner point pn, which corresponds to the point with the minimum
Euclidean distance between all points in the target robot and the sensor position ps, is
identified by

pn = arg min
pj∈Ci

∥ pj − ps∥. (8)

The cluster Ci is then divided into two distinct subsets, namely CA
i and CB

i , based on
the angle each point forms with respect to the corner point pn. The angle γj between point

pj and pn is computed by γj = tan−1
( yj−yn

xj−xn

)
. Consequently, the points with γj ≤ π/2 are

included in the set CA
i , while the remaining points are included in the set CB

i , as in

CA
i = {pj ∈ Ci|γj ≤

π

2
}, CB

i = {pj ∈ Ci|γj >
π

2
}. (9)

The lines lA
i and lB

i are then fitted to the point sets CA
i and CB

i using Random Sample
Consensus (RANSAC) as shown in Figure 3b. The orientation difference between the
two lines is denoted by

δθi :=
∣∣∣ θA

i − θB
i

∣∣∣, (10)

where θA
i and θB

i are the orientations of lines lA
i and lB

i , respectively. If the difference δθ
exceeds a predetermined threshold δ̄θ, the lines lA

i and lB
i are accepted as the two edges of

the target mobile robot. Consequently, the orientation of the robot, θr, is determined by the
longer of the two fitted lines, lA

i or lB
i . The scale of the bounding box is then determined by

lr = max{
∥∥∥lA

i

∥∥∥,
∥∥∥lB

i

∥∥∥}, wr = min{
∥∥∥lA

i

∥∥∥,
∥∥∥lB

i

∥∥∥}. (11)

If the angular difference δθ is within the threshold δ̄θ, it suggests that points align
along a single robot edge. This results in inaccurate bounding box identification using
conventional L-shape detection methods. Afterwards, in the augmented LiDAR-based
state clustering module (of the proposed estimation framework) in this paper, principal
component analysis (PCA) is used to identify the bounding box’s major axis based on the
first principal component of the point cloud transformed to a new coordinate system; the
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second and third components denote the bounding box minor axes. This transformation
is achieved through the eigenvectors and eigenvalues of the cluster Ci covariance matrix
using Wi ∈ R3×3 and

CPCA,i = WiCi, i = {1, . . . , N′} (12)

in which Wi = V( 1
Ni

C⊤
i Ci) and V(·) denotes the eigenvector matrix of (·). The orientation

θr of the robot in the new coordinates is given by the angle of the first principal component,
as in θr = tan−1(

W2,1
W1,1

), where Wn,m denotes the element in the n-th row and m-th column
of the eigenvector matrix Wi. The length lr and width wr of the bounding box correspond
to lengths of the bounding box along the x- and y-axes in the new coordinate system,
respectively, and are determined as

lr = max (XPCA,1)− min (XPCA,1),

wr = max (XPCA,2)− min (XPCA,2) (13)

in which XPCA,1 and XPCA,2 denote the column number of XPCA.

3. Distributed Estimator Design

To achieve consistent robot pose estimates and reliable dynamic object tracking, a
distributed estimation framework is designed in this section using a consensus filter. The
designed consensus filter utilizes covariance dual-rate self-tuning, and provides a compu-
tationally efficient solution through the integration of short-term prediction and resource
allocation in the distributed LiDAR sensor network for the estimation of robots’ states.
The state estimation is conducted for each detected robot, allowing for the simultaneous
tracking of robots’ states in dynamic environments. The architecture of the distributed state
observer is provided in Figure 4 for each network node.

Initialization 
x?, B0

 si = Bk?

Yes

No

? yj ?  Si?

Yes

No

Fuse data and 
compute estimate x?i

Compute 
estimate x?i

Update Filter 
xi, Pi

Find next base 
Bk+1

Broadcast
x?i, xi, Pi, Bk+1

? yi?

Yes

Receive 
x?i, xi, Pi, Bk+1

Send yi to Bk

No

? yi?

Yes

Compute 
predictive 
estimate x?i

No

Figure 4. Overview of the distributed state observer on each node si in the sensor network.

In this regard, the state variable vector of the dynamical system in discrete time is
defined as

x(k) = [xr(k), yr(k), θr(k), vx,r(k), vy,r(k), θ̇r(k)]⊤, (14)

where xr(k), yr(k), and θr(k) are the translational position of the robot’s centroid and
its yaw angle (about the z-axis) in the world frame {G} at time k ∈ {0, 1, 2, . . . }, while
ẋr(k), ẏr(k), and θ̇r(k) are the translational velocities of the robot centroid and its yaw rate,
respectively. The dynamic process in discrete time, which is used for the remote state
estimation alongside the depth measurement in the distributed observer, is

x(k + 1) = Ax(k) + Bu(k) + ϑ(k), (15)

where ϑ(k) is the bounded noise of the process. This motion model is also used to address
occluded scenes and intermittent cluster identification. The assumption of the constant
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acceleration is valid between two consecutive frames (within the sample time Ts = 50 ms,
which is sufficiently small for the robot maximum speed of vx = 1.2 m/s to warrant this
approximation) and the acceleration is updated at every time step using a moving horizon
forecasting method described at the end of this subsection. The state and input matrices
then yield

A =

[
I3 TsI3
03 I3

]
, B =

[
T2

s
2 I3

TsI3

]
, (16)

in which Ts is the sample time between two consecutive frames, and I is the identity matrix.
The sensor model of the stationary sensing unit i to track the state of the target/robot within
the LiDAR sensor network with communication topology G = (V , E ) is

yi(k) = Hi(k)x(k) + w(k), (17)

where w(k) is the measurement noise of the sensor i and Hi(k) is the observation matrix
of the sensor i. Process and measurement noises within the distributed sensor setting are
assumed to be uncorrelated, i.e., E

{
ϑkw⊤

k
}
= 0. The input u(k) = [ax(k), ay(k), θ̈r(k)]⊤

has the perceived longitudinal/lateral translational and rotational accelerations of the
clustered point cloud centroid, and is obtained over a moving horizon using position and
speed gradients. In this regard, the acceleration input is estimated remotely using a moving
horizon nh ∈ N over past estimated states, as in u(k) ≜ E{ak}, where

ak =

{
d
dt

ṗr,q : ṗr,k ∈ R3, k − nh + 1 ≤ q ≤ k
}

, (18)

where the finite difference of ṗr,k = [vr,x, vr,y, ψ̇k]
⊤ over sample time Ts is used to

approximate the time derivative d
dt ṗr,k. For ease of notation, the updated values of the state

variable and information matrices, which will be introduced in the next subsection, are
denoted by x+, and subscripts k are dropped. As a result, the process dynamics (15) and
the sensor model of the stationary sensing unit i of the network are written as

x+ = Ax + Bu + ϑ, yi = Hx + wi. (19)

The motion model dynamically incorporates changes in the system response over time by
continuously updating the control inputs for the consensus filter, and enables reliable tracking
of the robot in the designed consensus filter in case of occlusion in dynamic environments.

3.1. Consensus Information Filter

The observer tracks the robot over the distributed sensor network, and the aim is for
the network to provide a set of state estimates x̂i(k) of the robot through the local exchange
of messages among close/neighboring sensing units. At each time instance k, the state
observer allocates the resource to only one stationary sensing unit denoted by the base node
B(k) for state estimation in the global frame using a consensus information filter, in which
the measurement yi (with covariance Ri) of the stationary sensing unit si is used to calculate
the information vector zi = H⊤

i R−1
i yi and the information matrix Ii = H⊤

i R−1
i Hi. If the

stationary sensing unit si, which has the robot in its field of view, matches the base node
allocation B(k) for time k, it checks for any available measurements yj (with covariances
Rj) from the following set:

Si = {j |j ∈ Ni, lr,j ≥ l̄r ∧ wr,j ≥ w̄r}, (20)
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where Ni denotes the neighbors of node i on the network (with topology G(k), which could
be a dynamic/switching graph). If found, the sensing unit i receives the pair from the other
sensing unit j ∈ Si, and transforms them into the following information form:

Īi = ∑
j∈S̄i

Ij, ȳi = ∑
j∈S̄i

zj, S̄i = Si ∪ {i}. (21)

Then, the following distributed observer scalable in n (developed in [35,38]) is used to
estimate the robot pose with x̌i as the set of prior estimates (predictions) of the state x(k):

x̂i = x̌i + Li(ȳi − Īi x̌i) + ξPi ∑
j∈Si

(x̌j − x̌i),

x̌+i = Ax̂i + Bui, P+
i = ALi A⊤ + BQB⊤, (22)

in which Li = (P−1
i + Īi)

−1 is the consensus information filter gain, x̌+i is the state update
of the local information filter, and ξ = ι

1+∥Pi∥
. The small constant ι > 0 is chosen in the

order of the (integration) time interval Ts used for discretization of the continuous-time

constant-acceleration motion model. ∥Pi∥ =
√

tr(P⊤
i Pi) denotes the Frobenius norm of

the matrix Pi. It should be mentioned that the distributed state observer in (22) is an
information filter form of the Kalman consensus filter provided in the following:

x̂i = x̌i +Ki(yi − Hi x̌i) + ηi ∑
j∈Si

(x̌j − x̌i),

P+
i = AEi A⊤ + BQB⊤, (23)

with the update of the prior estimates x̌+i = Ax̂i +Bui, and the Kalman gainKi = PiH⊤
i (HiPiH⊤

i +

Ri)
−1. The error covariance matrix (associated with x̂i) is denoted by Ei = SiPiS⊤i +KiRiK⊤

i
with Si = I−KiHi, where I is the identity matrix with proper dimensions.

Remark 1. The (global) asymptotic stability of the error dynamics of the Kalman consensus filter
(23) with the choice of consensus gain ηi = ξSi is proved in [35], Theorem 2, where all sensor node
estimators asymptotically reach a consensus x̂1 = x̂2 = · · · = x̂n = x.

In the case where no measurement is available through stationary sensors (i.e., S̄ = ∅),
the state estimate is the predicted pose by the motion model (15), with u(k) as the behaviour-
based input obtained over a horizon nh using (18). The base node B(k) for the next time
step is selected based on a distance function d(sj) that measures the Euclidean distance
between the estimated state and the positions of the stationary sensing units:

d(sj) = ∥x̂(1:2)
j − p2D

sj
∥2, ∀j ∈ S (24)

where x̂(1:2)
j ≜ [x̂r,j(k), ŷr,j(k)]⊤ includes the first two elements of the estimated state x̂j in

the 2D plane at time k. Then, the sensor node closest to the predicted state is chosen as the
next allocated resource B(k + 1) ≜ sj, where j = arg min d(sj). The stationary sensor si
broadcasts the updated and predicted state estimates, the updated covariance, and the base
node B(k + 1) for the next time step. The decision to allocate resources based primarily on
spatial distance arises from the inherent spatial distribution observed among both the robot
and the sensor nodes in the scene. This spatial distribution emerges as a result of factors
such as the physical dimensions of robots and environmental constraints in dynamic scenes,
which collectively ensure a dispersion of robots across the operational environment.

If sensor node si is not assigned as the base node B(k), it functions as a contributing
node within the network. Non-base nodes with available measurements transmit the
measurement vectors yj and the corresponding measurement covariance matrices Rj to
B(k). Independently of their measurement status, all nodes subsequently receive the most
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recent state estimates x̂, the prediction state x̌, the covariance P, and the identifier Bk+1 of
the next node scheduled for base status from Bk.

3.2. Covariance Dual-Rate Self-Tuning

The need for a dual-rate tuning method is that the noise in the proposed distributed
state observer (due to LiDAR-based sensing and point cloud clustering) is time-varying
and changes depending on the distance of the target vehicle/robot from the stationary
sensing unit (i.e., the solid-state LiDAR sensor). Therefore, two initial covariances are used
for the information filter: Σc, associated with dc, which is the closest Euclidean distance
(for close-range measurements); and Σ f , associated with the farthest Euclidean distance d f

from the sensing unit (for far-range measurements). The covariance allocation during the
measurement update in the consensus filter is then a linear interpolation Rk = a1Σ f + a2Σc,
using the measured distance d (obtained by clustering and lr, wr) with d̃ = d f − dc.

4. Experimental Results and Discussion

Several experiments were conducted in an indoor setting comprising various static
and dynamic objects (with the operator walking around the robot) to evaluate the perfor-
mance and computational efficiency of the developed LiDAR-based remote sensing and
distributed estimation framework. The experimental methodology included testing in
(i) full occlusion and (ii) partial occlusion in dynamic environments to evaluate the pro-
posed distributed estimator’s accuracy, convergence, and computational efficiency using
one and two LiDAR remote sensing units. Furthermore, high-fidelity simulations using
Matlab (2023b) Automated Driving Toolbox were conducted for the (i) state estimation of
multiple skid–steer mobile robot models using a network of solid-state LiDAR sensors (as
shown in Figure 5), and (ii) identification of optimal coverage areas. The global frame of
reference {G}, which located its origin at one of the corners of the testing hall/room, was
established for all test scenarios.
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Figure 5. High-fidelity simulation of LiDAR coverage in indoor setting.

The mobile test platform was a Clearpath’s Husky skid–steer UGV, with a maximum
speed of 1.2 m/s for the conducted indoor tests in dynamic environments. The experiments
employed a dual solid-state LiDAR setup (with horizontal and vertical fields of view of
120◦ and 25◦, respectively, a range of 150 m, a region of interest (ROI) feature for better
resolution around fields of view limits, and accurate line separation, i.e., 3–4 cm detection
range), each paired with an embedded Jetson Xavier NX. The first LiDAR was oriented at a
pitch of 25◦ and a yaw of −90◦; the second LiDAR had a pitch of 15◦ and a yaw of 170◦

degrees. This arrangement ensured comprehensive coverage of the area. The experimental
methodology was designed to investigate two distinct scenarios (mentioned above), each
tested five times in dynamic scenes under similar nominal control inputs to the UGV during
navigation with obstacle avoidance. Throughout all testing scenarios, the UGV performed
dynamic motion planning, as well as followed a consistent navigational path, and operated
without any communication with the distributed sensor network.
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The qualitative/quantitative experimental results are provided in the following sub-
sections for two main scenarios: with only one stationary LiDAR sensor (to evaluate the
clustering, tracking, and pose estimation), and with two remote sensing units. In this
section, (i) “KCF-L” denotes the Kalman consensus filter architecture [35,39] which utilizes
the proposed point cloud processing and pose estimation from Section 2; and (ii) “Obs.”
denotes the developed consensus information filter, including point cloud processing and
LiDAR-based distributed pose estimation (i.e., the whole pipeline proposed in this paper).

4.1. Occlusion with One Remote Sensing Unit

In the first test scenario, only LiDAR 1 was used for state estimation. The estimation
results for this scenario are graphically illustrated in Figure 6. The results are consis-
tent throughout the entire set of runs; therefore, only one run is displayed in the figure.
Subsequently, the quantitative data presented are mean values computed from all runs.
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1

Figure 6. Tracked position and its absolute error over time in Scenario 1, where S is the starting point
for the trajectory.

In the event of measurement unavailability, both the Kalman consensus filter (KCF-L)
and the designed distributed observer use the predicted state as the estimation until
the updated measurements for the subsequent step. However, KCF-L uses a general
dynamics model without input estimation, resulting in constant velocities throughout the
occluded area. Contrarily, the proposed framework estimates the input acceleration (for
the dynamical process) using a moving horizon and the velocity magnitude right before
the occlusion instance. This allows the designed framework to make accurate predictions
of changes in the robot heading angle, thus reducing the estimation error after being
updated by measurements from LiDAR 1. The point cloud representation of the scene
partially occluded by a moving obstacle (i.e., operator) is shown in Figure 7, which confirms
consistent clustering and state estimation using one remote sensing unit.

Position and orientation estimation errors are in Table 1, where MAE, MSE, and RMSE
denote mean absolute error, mean squared error, and root mean square error, respectively.
These values are mean quantitative results derived from the entire set of runs, which were
five consecutive tests in the environment with dynamic objects and similar nominal control
inputs (for the purpose of obstacle avoidance. The experimental studies confirm that as
long as the robot trajectory does not change drastically between sample times for occluded
scenes, the constant-acceleration motion model can be used for full occlusion.

Furthermore, it is important to note that the original bounding box L-shape fitting
method fails to function under bird’s-eye-view conditions. This method was designed for
sensors positioned at the same height as the vehicle; it effectively utilizes angled views to
estimate dimensions and orientation.
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Figure 7. Point cloud clustering in (a) a dynamic scene with moving objects, (b) partial occlusion,
and (c) full occlusion by an operator moving alongside the robot (in blue).

Table 1. Position/heading estimation errors in Scenario 1.

Method MAE (m) MSE RMSE

Obs. 0.074 0.019 0.138
KCF-L 0.199 0.192 0.438

Method MAE (°) MSE RMSE

Obs. 5.2 64.3 8.0
KCF-L 12.5 509.4 22.6

4.2. Two Sensor Nodes

In Scenario 2, the performance of the developed framework is evaluated using two
sensor nodes. Initially, the environment does not present any significant occluding obstacles.
Subsequently, the presence of the moving operator in Areas 1 and 2 leads to the formation
of two occluded areas, discernible in Figure 8 between points A1 and A2 and between B1
and B2.

For occlusion A instances, the alteration is not significant as the robot maintains a
straight path throughout the occlusion. In contrast, occlusion B presents more noticeable
differences as the robot follows a curve and transitions into the second area, necessitating a
shift in the sensors’ field of view (from L1 to L2). Although occlusion B incites an increase
in the absolute error, the maximum estimation error by the proposed method does not
exceed 11 cm for the position estimation, as shown in Figure 8.

The position and heading angle estimation results are compared in Table 2, which
highlights improvements in the MSE, MAE, and error covariance using the proposed
framework. Even though the performances of both state observers are very close for
this scenario, under full robot visibility, Obs. demonstrates superior performance under
pedestrian occlusion. This is attributed to the input estimation, which is a feature not
employed by the KCF-L.
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1

Figure 8. State estimation results and absolute error comparison with KCF-L for single run of Scenario
2, with full and partial occlusion.

Table 2. Position/heading estimation errors in Scenario 2 with 2 remote sensing units and occlu-
sion scenarios.

Method Pedestrians MAE (m) MSE RMSE

Obs. No 0.018 0.001 0.032
KCF-L 0.018 0.001 0.031

Obs. Yes 0.023 0.002 0.042
KCF-L 0.031 0.003 0.052

Method Pedestrians MAE (°) MSE RMSE

Obs. No 1.9 5.9 2.4
KCF-L 2.0 5.8 2.4

Obs. Yes 3.4 10.2 3.2
KCF-L 4.9 33.8 5.8

Several experimental tests and error convergence analyses in various high-/low-
excitation maneuvers with occlusion provide insightful observation on the impact of
perceptually degraded conditions on the performance of the designed LiDAR-based dis-
tributed switching state observer in this paper: (i) When the robot is fully visible by SSUs,
the developed observer and the KCF-L (which uses the developed computationally effi-
cient clustering approach, but utilizes the conventional Kalman consensus filter) perform
reliably for position estimation; however, less heading estimation error for “Obs.” offers an
advantage in terms of computational cost on a network level, making it a more efficient
choice in scenarios where computational resources are a limiting factor. (ii) The variance
in the estimation error by the proposed framework is lower than that of KCF-L in almost
all experiments. This is attributed to the utilization of the region of interest for outlier
identification/rejection in the new distributed estimation framework.

The solid-state LiDAR used for experiments features accurate line separation at a
3–4 cm detection range, generating accurate point clouds with high frequencies of 50 Hz in
indoor settings. The proposed distributed estimation framework enables processing and
publishing the pose estimates with a sample time Ts = 50 ms. Considering the maximum
robot speed of vx = 1.2 m/s, the maximum range of 70 m for indoor operation, and the
sampling time of 50 ms (including the process required for clustering/estimation), the
utilized LiDAR enables accurate estimation (RMSE < 13 cm even with occlusion) with
various robot speeds. For other outdoor settings with higher vehicle speeds, e.g., intelligent
transportation, the correlation between the speed and accuracy of LiDAR point clouds is
an important aspect and needs to be taken into account.

The computational times of the proposed distributed state observer are shown in
Figure 9 for both scenarios (with occlusions) using a 6-core NVIDIA Carmel ARM 1.9 GHz
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with 16 GB memory (available through Jetson Xavier NX embedded systems for edge com-
puting purposes), and confirm the computational efficiency of the framework, i.e., <100 ms,
which is sufficient for the accurate motion planning of mobile robots with maximum speeds
of 2 m/s, and is important for scalability in larger sensor networks.
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Figure 9. Computational time of the proposed LiDAR-based remote sensing framework for Scenario
1 (top) and Scenario 2 (bottom) subject to occlusion and dynamic objects moving around the robot.

5. Conclusions

In this paper, a remote LiDAR-based state estimation (and tracking) framework is
developed and experimentally validated for mobile robots in distributed sensor networks
by designing a consensus information filter and computationally efficient point cloud
processing. As confirmed by experiments, the proposed approach hinges on two pri-
mary contributions: a LiDAR-based 3D bounding box detection and tracking method
that expands the versatility of sensor placements in distributed sensor networks, and a
node-switching distributed observer to address occlusion and uncertainties in dynamic
environments, achieving average estimation errors as low as 2 cm and 2◦ under nominal
conditions (<4 cm and <3.5◦ under occlusions). These advancements significantly reduce
computational demands (i.e., less than 100 ms) while incorporating short-term motion
predictive capabilities, thereby enhancing the scalability and efficiency of mobile robot
tracking in dynamic scenes with human presence while maintaining privacy. Through
experimental evaluations and high-fidelity simulations in indoor settings, the effectiveness
of the framework in terms of the accuracy of the estimation and the asymptotic stability of
the error dynamics is demonstrated in normal and arduous scenarios (including occlusion,
limited visibility, and dynamic obstacles) and compared with the Kalman consensus filter.
Future work will focus on further refining the predictive modeling in large sensor networks
and exploring its applications in unstructured operational settings with multi-robot track-
ing. Additionally, research will aim to move beyond the assumption of flat terrain and
negligible z-axis variations in robot positions to handle more complex and varied terrain
for field applications with stationary sensing units.
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