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Abstract: Demonstrating biosimilarity entails comprehensive analytical assessment, clinical pharma-
cology profiling, and efficacy testing in patients for at least one medical indication, as required by the
U.S. Biologics Price Competition and Innovation Act (BPCIA). The efficacy testing can be waived if
the drug has known pharmacodynamic (PD) markers, leaving most therapeutic proteins out of this
concession. To overcome this, the FDA suggests that biosimilar developers discover PD biomarkers
using omics technologies such as proteomics, glycomics, transcriptomics, genomics, epigenomics,
and metabolomics. This approach is redundant since the mode-action-action biomarkers of approved
therapeutic proteins are already available, as compiled in this paper for the first time. Other potential
biomarkers are receptor binding and pharmacokinetic profiling, which can be made more relevant
to ensure biosimilarity without requiring biosimilar developers to conduct extensive research, for
which they are rarely qualified.

Keywords: FDA; omics technology; pharmacodynamic biomarkers; biosimilars; proteomics;
glycomics; receptor binding; pharmacokinetics

1. Introduction

Biosimilars require more extensive testing than generic chemical drugs, owing to
the structural variability of recombinant proteins resulting from innate in vivo translation
variations. As of August 2023, 42 biosimilars were approved in the United States of America
(US), and 74 were approved in the European Union (EU), accounting for approximately
11 molecules and 18 in the EU out of 266 FDA-licensed choices, the majority of which are
off-patent [1]. The higher number of approvals in the EU comes from a longer time and
the classification of peptides as proteins in the EU. Despite much anticipation, the current
downward trend in approving biosimilars (Figure 1) [2] is alarming and is attributed to the
high development cost, predominantly towards clinical efficacy testing (Figure 2).

When the European Medicines Agency (EMA) and the United States Food and Drug
Administration (FDA) issued their first guidelines, biosimilars were treated as new bio-
logical drugs. They were expected to demonstrate clinical efficacy and safety. With the
availability of new data, these guidelines have undergone many revisions, reducing, or
eliminating testing where justified [4]. In 2005, the FDA withdrew its pivotal guideline,
“Statistical Approaches to Evaluate Analytical Similarity” [5] and replaced it with another
guideline that has reduced stringency in testing critical quality attributes [6]. In 2019, the
FDA issued guidelines suggesting that the immunogenicity testing of biosimilars is unnec-
essary if differences in immune responses do not alter the pharmacokinetic (PK) profile [7],
specifying that in silico approaches can be used to establish immunogenicity profiles [8].
In 2023, an amendment to the US Biological Products Competition and Innovation Act
(BPCIA) replaced the term “animal toxicology” with “nonclinical” testing [9,10]. While it is
not the purview of regulatory agencies to amend guidelines for reducing developmental
costs, their responsibility is to avoid unnecessary exposure to humans [11].
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Figure 1. The number of biosimilars approved in the EU and US (as of June 2023) shows a downward 
trend (source: FDA and EMA). 

 
Figure 2. Cost distribution of testing of 246 biosimilars approved in the US, EU, and Japan from 2006 
to 2021 [3]. 
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However, one major hurdle in rationalizing the regulatory pathway for biosimilars
comes from the requirements mandated in the following statute governing the BPCIA:

“(cc) a clinical study or studies (including the assessment of immunogenicity and
pharmacokinetics or pharmacodynamics) that are sufficient to demonstrate safety, pu-
rity, and potency in 1 or more appropriate conditions of use for which the reference
product is licensed and intended to be used and for which licensure is sought for the
biological product.” [12]
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While the FDA guidelines have suggested that if residual uncertainty exists after
analytical and clinical pharmacology assessments, “additional clinical studies” may be
required, whether additional studies indicate efficacy testing in patients is still unclear.
This could refer to further clinical pharmacology studies, but this perception is clouded by
mentioning “. . .in 1 or more appropriate conditions of use”; this could only mean testing in
patients, which is considerably less sensitive in differentiating a biosimilar candidate from
its reference product [13].

This misconception has generally led to the clinical efficacy testing of biosimilars in
patients, enrolling a median of 538 participants (interquartile range, 372–644 patients) at a
median cost of USD 27.6 million each (USD 18.0 million–USD 36.7 million), with an average
price per enrollee of approximately USD 55,000. Moreover, these trials last a median of
55 weeks (46–78 weeks) [14]. Oncology drugs have the highest testing costs. More complex
trial protocols take longer to design, obtain approval for (institutional and FDA), recruit
patients from contracted providers, analyze the resulting data, and submit the results.

As of April 2023, 94,910 participants had been enrolled in 170 active or completed
phase 3 biosimilar trials with study sizes ranging from 3 to 4994 participants; among these,
100 studies were marked for cancer (26, 34, 25, 21, and 16 studies for lymphoma, breast
cancer, metastatic, HER2, and adenocarcinoma, respectively), 18 for macular degeneration,
31 for rheumatoid arthritis, 24 for psoriasis, and 17 for osteoporosis. All completed trials
met the equivalence criteria [15]. Current studies cost more than USD 5 billion based on the
average cost per enrollee. Reducing these costs may significantly impact the affordability
of biosimilars.

To justify this stage of the development process, the FDA has already proposed that
under specific conditions, clinical pharmacokinetic (PK) and pharmacodynamic (PD) data
that establish comparable exposure and response between a proposed biosimilar product
and the reference product may be satisfactory for a comprehensive evaluation of any
clinically significant distinctions between the products. This is despite the requirement
for a thorough assessment of immunogenicity [16]. However, this concession excludes
most biological drugs, such as monoclonal antibodies, which do not exhibit traditional
pharmacodynamic (PD) responses.

In 2018, the FDA embarked on a scientific plan to simplify the approval process for
biosimilars under the Biosimilars Action Plan [17]. The primary element of this plan
involved the creation of information resources and development tools aimed at aiding
biosimilar sponsors in the production of biosimilar and interchangeable goods of superior
quality, utilizing cutting-edge techniques. Furthermore, the commitment letter for Biosimi-
lar User Fee Amendments III explicitly addresses the inclusion of PD biomarker utilization
as a component of the regulatory science pilot program [18].

In September 2022, the FDA organized its first program to expedite biosimilars’ entry,
“FDA Workshop: Increasing the Efficiency of Biosimilar Development Programs” [19].
A subsequent significant change was detailed in a publication by the FDA’s Division of
Applied Regulatory Science (DARS) [20], which recommended waiving clinical efficacy
testing [21] for molecules with prominent PD biomarkers, which need not correlate with
clinical efficacy [22]. Examples include the absolute neutrophil count area under the effect–
time curve, which is a more reliable endpoint than the clinical-efficacy endpoint for the
duration of severe neutropenia [23].

The DARS made these conclusions based on investigations [24] and clinical studies [25–27]
to identify the best practices for characterizing PD biomarkers for various drug classes.
These studies evaluated the use of human plasma proteomic and transcriptomic analyses
to identify novel biomarkers that could be used to secure a waiver for efficacy testing
in patients [28].

The FDA has also suggested that PD biomarkers can be identified using technologies
such as large-scale proteomic approaches [29], which are not readily available. The FDA
has also confirmed that PD biomarkers need not correlate with a clinical response to allow
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their use for establishing biosimilarity. This conclusion is based on the understanding that
similar PD responses lead to identical efficacy responses.

In September 2023 [30], the FDA held a workshop with major regulatory agencies
to discuss how patient efficacy testing requirements can be rationalized and harmonized.
One regulatory agency, the MHRA, clearly declared that no such testing is required; others
suggested that the developers can present arguments to seek such waivers.

2. Understanding Pharmacodynamic Biomarkers

A pharmacodynamic marker is a measurable biochemical, physiological, or molecular
variable that provides information on a drug’s mechanism of action, efficacy, and safety.
In drug development and medical research, pharmacodynamic markers help understand
how a drug affects a target organism, which can be at the cellular, tissue, or systemic level.

Without a comparative clinical efficacy study, the FDA guidance documents outline
how biosimilars may be approved based on pharmacokinetic (PK) and PD biomarker data.
Reliance on PK and PD data allows for shorter and less costly clinical studies that can
often be conducted in healthy participants. The PD biomarkers are indicators of a drug’s
pharmacological effect on its target or targets. For example, the target might be a receptor
molecule that initiates a complex signaling cascade. Changes in the levels of proteins along
the signaling cascade or modifications to them could be considered pharmacodynamic
responses. Therefore, these proteins could be regarded as PD biomarkers and used to help
establish biosimilarity.

Pharmacodynamic markers are crucial for various phases of drug development, including:

• Dose determination—they can help determine the optimal dosage of a new drug by
showing its effects at different concentrations;

• Mechanism of action—understanding the changes in pharmacodynamic markers can
help elucidate how a drug exerts its therapeutic or adverse effects;

• Efficacy—these markers can provide early indications of a drug’s effectiveness, often
before clinical endpoints can be measured;

• Safety—monitoring pharmacodynamic markers can give insights into potential side ef-
fects or toxicities, enabling researchers to make informed decisions during clinical trials;

• Personalized medicine—in some cases, pharmacodynamic markers can also help in
patient stratification, identifying which subgroups of patients are most likely to benefit
from a particular treatment.

A functional PD marker is a specific type of biomarker that reveals a drug’s biochemical
or physiological effects on its target or a downstream pathway. Unlike general biomarkers,
that might indicate the presence or risk of a disease, a functional PD marker specifically
illustrates the drug’s mechanism of action in the body and how the body reacts to it.

PD biomarkers, like hematocrit or WBC count, are pharmacological markers. Since
the FDA does not require a correlation between the PD biomarker and the clinical re-
sponse, a significant issue is created; if a product meets the biomarker profile, does
this mean it will also yield the same clinical response? The answer is no; it has been
established. Additionally, if a product fails to meet the biomarker profile due to the non-
linearity of the marker vs. the PK profile, does this mean that a product is not equivalent?
The answer is no; it has not been established. Both possibilities lead to the limited utility
of newly discovered biomarkers but do not apply to pharmacological markers related
to response.

PD biomarkers indicate the effects of a drug on its intended target or a downstream
pathway. In simpler terms, they give insights into how the drug works in the body and
how the body responds to the drug. The term “functional,” in the context of a PD marker,
usually suggests that the marker has a direct link or relevance to the drug’s therapeutic
response or mechanism of action, as shown in Table 1.
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Table 1. Biomarker functions for biological drugs.

Function Usage Example

Demonstrate drug activity
To provide early evidence of a

drug’s effect before overt clinical
outcomes manifest.

In treating chronic myeloid leukemia (CML), the BCR-ABL
tyrosine kinase inhibitor imatinib is used. The decline in

BCR-ABL transcript levels in patients’ blood is a functional PD
marker of the drug’s activity on its target [31].

Guide dosing
To ensure optimal drug dosing

using the
dose–response relationship.

For cholesterol-lowering drugs like statins, the low-density
lipoprotein cholesterol (LDL-C) levels in the blood serve as a

PD marker to guide dosing and assess efficacy [32].

Select patients To identify patients likely to
benefit from a specific treatment.

In some breast cancers, overexpression of the HER2 protein is
observed. HER2 status serves as a functional PD marker to
select patients who might benefit from trastuzumab, which

targets HER2 [33].

Monitor resistance To track the development of
resistance to treatments.

In HIV treatment, the emergence of specific viral mutations can
serve as PD markers indicating resistance to specific

antiretroviral drugs [34].

Determine the drug
mechanism of action

To confirm action through its
intended mechanism.

In Alzheimer’s disease, the buildup of beta-amyloid plaques is
considered a hallmark. Drugs designed to reduce beta-amyloid
levels in the brain might use CSF (cerebrospinal fluid) levels of

beta-amyloid as a PD marker to show the drug’s effect [35].

Validate target
engagement

To demonstrate that a drug is
successfully engaging with and

modulating its target.

For multiple sclerosis drugs like fingolimod, a PD marker such
as the number of circulating lymphocytes can indicate the

drug’s effect on immune cell egress from lymph nodes [36].

Evaluate drug-induced
toxicity

To monitor potential adverse
effects of a drug.

In chemotherapy, monitoring the levels of liver enzymes like
AST and ALT in the blood can serve as PD markers for

drug-induced liver damage [37].

Optimize therapeutic
window

To establish the range between the
minimum effective dose and the

onset of adverse effects.

For anticoagulant drugs like warfarin, the INR (International
Normalized Ratio) serves as a PD marker to ensure the drug’s

effect is within a therapeutic range, minimizing the risk of
bleeding and clot formation [38].

Predict long-term
drug effects

To predict longer-term therapeutic
or adverse effects using early

changes in PD markers.

In osteoporosis treatments, reducing bone resorption markers
like CTX (C-terminal telopeptide) can predict longer-term

benefits in bone mineral density and fracture risk [39].

Assess immune response
For immunotherapies, to gauge
the body’s immune response to

the treatment.

In cancer immunotherapy, the presence and proliferation of
tumor-infiltrating lymphocytes (TILs) in the tumor

microenvironment can serve as a PD marker to indicate the
activation and targeting of the immune system against

tumor cells [40].

Indicate drug
combination efficacy

In combination therapies, to show
the synergistic or additive effects

of the combined drugs.

In treatments for tuberculosis, monitoring bacterial load in
sputum samples can serve as a PD marker for the combined

efficacy of multiple antimicrobial agents [41].

Track reversal of
disease progression

To indicate whether a drug is not
just halting but reversing

disease progression.

In fibrotic diseases like idiopathic pulmonary fibrosis,
measuring levels of collagen-derived peptides in blood or

bronchoalveolar lavage fluid can act as PD markers, indicating
the repair or degradation of fibrotic tissue [42].

Evaluate neural activity
and plasticity

To track neural activity or
connection changes in neurologic

disorders and treatments.

For treatments aimed at Alzheimer’s or other
neurodegenerative conditions, the levels of synaptic proteins or

neuronal activity markers in CSF can indicate neural activity
and synaptic plasticity [43].

Monitoring metabolic
responses

To help track changes in
metabolic pathways.

In diabetes management, measuring C-peptide levels alongside
insulin can give insights into endogenous insulin production

and pancreatic function [44].
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Table 1. Cont.

Function Usage Example

Monitoring cellular
senescence and aging

In treatments aiming to affect
aging processes or cellular health,

to track cellular senescence.

Measured levels of senescence-associated beta-galactosidase or
p16ˆINK4a expression can act as PD markers for cellular aging

or the efficacy of anti-aging treatments [45].

Evaluating epigenetic
changes

To track changes in DNA
methylation, histone modification,

or other epigenetic markers.

In oncology, when treating with drugs targeting DNA
methyltransferases, the global or gene-specific changes in DNA

methylation levels can serve as PD markers [46].

Assessing
drug-induced autophagy

For therapies inducing autophagy
as a mechanism, to monitor

the process.

When monitoring LC3B lipidation, a critical step in
autophagosome formation can serve as a PD marker for

autophagy activation [47].

Monitoring immune
checkpoint inhibition

In cancer immunotherapy, target
immune checkpoints to gauge the

effectiveness of
checkpoint inhibition.

In patients receiving PD-1 or PD-L1 inhibitors, monitored
circulating tumor DNA (ctDNA) levels can serve as a PD

marker to indicate response to therapy [48].

3. Omics Technologies

Omics technologies refer to the comprehensive, high-throughput characterization of
biological molecules in an organism, cell, or tissue. Genomics is the most widely known
“omics” technology, which studies an organism’s entire set of genes. However, there are
several other “omics” technologies, each focusing on different types of molecules. Omics
studies can be broadly categorized into targeted and untargeted approaches. (Table 2).

Table 2. Description of omics technologies and related analytical methods.

Analytical Method Description

Genomics

DNA sequencing Determines the order of nucleotides in DNA [49].

Microarray analysis Measures gene expression using hybridization to microarrays [50].

Whole genome sequencing Sequences the entire genome of an organism [51].

Comparative genomics Compares genomes of different species to identify similarities and differences [52].

Transcriptomics

RNA-Seq Sequences and quantifies RNA transcripts to study gene expression [53].

Microarray analysis Measures gene expression using hybridization to microarrays [54].

Single-cell RNA-Seq Analyzes gene expression at the single-cell level for cell heterogeneity [55].

Isoform sequencing Focuses on the identification and quantification of alternative RNA-splicing events [56].

Proteomics

Mass spectrometry Identifies and quantifies proteins based on their mass-to-charge ratio [57].

2D gel electrophoresis Separates proteins based on charge and size, allowing protein profiling [58].

Liquid chromatography (LC) Separates proteins before mass spectrometry analysis [59].

Protein microarrays Allows high-throughput screening of protein interactions and activities [60].

Metabolomics

Nuclear magnetic resonance (NMR) Measures metabolite concentrations and elucidates chemical structures [61].

Gas chromatography–mass
spectrometry (GC-MS) Separates and quantifies metabolites in the gas phase before mass spectrometry [62].

Liquid chromatography–mass
spectrometry (LC-MS) Separates and quantifies metabolites in the liquid phase before mass spectrometry [63].

Targeted metabolomics Focuses on specific metabolites of interest for quantification [64].
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Table 2. Cont.

Analytical Method Description

Epigenomics

DNA methylation analysis Studies DNA methylation patterns to understand epigenetic regulation [65].

ChIP-Seq Maps protein-DNA interactions, such as histone modifications [66].

Bisulfite sequencing Analyzes DNA methylation status by treating DNA with bisulfite [67].

Lipidomics

Mass spectrometry Identifies and quantifies lipids, elucidating lipid profiles in biological samples [68].

Liquid chromatography (LC) Separates lipids before mass spectrometry analysis [69]

Thin-layer chromatography (TLC) Separates and identifies lipids based on their mobility on a thin layer [70].

The omics technologies compare chemical profiles to identify, characterize, and profile
peptides, proteins, glycans, lipids, and other unknown entities resulting from administering
a therapeutic protein. The targeted approaches in omics applications involve the analysis
of a pre-defined set of molecules or pathways. The researcher knows in advance which
specific molecules or features they are interested in, such as targeted genomics (PCR assays
for gene sequences) and targeted proteomics (multiple reaction monitoring (MRM), where
specific proteins or peptides of interest are quantified). Targeted metabolomics [71] focuses
on a particular class of metabolites, such as lipidomics, using methods like selected reaction
monitoring (SRM).

The untargeted approaches broadly analyze as many molecules as possible in a sample
without a pre-defined focus. The aim is often discovery or to obtain a global overview of a
system, for example, untargeted genomics (whole genome sequencing), untargeted tran-
scriptomics (RNA sequencing which quantifies all mRNA transcripts in a sample), untar-
geted proteomics (mass-spectrometry-based approaches like shotgun proteomics whereas
many proteins as possible are identified and quantified), and untargeted metabolomics
(high-resolution mass spectrometry or nuclear magnetic resonance (NMR) spectroscopy,
aiming to detect as many metabolites in a sample as possible). Table 3 lists the common
analytical technologies used in omics technology applications.

Table 3. List of examples of analytical technologies broadly used.

Technology Application

Affinity chromatography Purification and target binding analysis.

Biacore (SPR-based technology) Label-free interaction analysis [72].

Bottom-up MS Mass spectrometric analysis for primary sequence analysis, evaluation of
N/O-glycosylation sites, and quantification of methionine oxidation [73].

Capillary electrophoresis (CE) Biosimilar comparability studies [74].
High-resolution separation of glycans [75].

Capillary electrophoresis–mass spectrometry Quality control and stability of recombinant proteins in
biopharmaceuticals [76,77].

Chromatography coupled with multi-angle
light scattering Absolute molar mass, size, and conformation [78].

Chemical cross-linking coupled with MS Studying spatial arrangement and interactions within protein complexes [79].

Circular dichroism In vivo and in vitro stability analyses [79].

Differential scanning calorimetry Thermal stability analysis [80].

DLS Size distribution analysis of glycoproteins [81].

Dynamic light scattering (DLS) Size and stability analysis [82]
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Table 3. Cont.

Technology Application

Electron microscopy Visualizing glycan structures and localization [83]

Enzyme-linked immunosorbent
assay (ELISA)

Detection of specific glycan–protein interactions [84].
Specific protein quantification and immunogenicity studies [85].

Enzyme-linked lectin assay Quantitative glycan analysis [86].

Exoglycosidase sequencing Structural characterization of glycans [87].

Flow cytometry Cell line development and monitoring of protein expression [88].

Fluorescence spectroscopy Sensitivity enhancement in glycan analysis [89].
Folding and conformational analysis [90].

Fourier transform infrared
spectroscopy (FTIR)

Secondary structure analysis and stability monitoring [91,92].
Designing more effective protein-based therapies through metabolite profiling [82].

Analysis of glycan structure [93].

Gas chromatography–mass spectrometry
Analysis of volatile derivatives of glycans [94].

Understanding host-pathogen interactions for recombinant
vaccine development [95,96]

Gel electrophoresis, 2D Separation and identification of proteins [97,98].

Glycan microarrays High-throughput analysis of protein–glycan interactions [99].

Glycan sequencing using MS/MS Sequential identification [100].

Glycoproteomic analysis Integrative approach for comprehensive glycoprotein study [101].

High-performance liquid
chromatography (HPLC) Separation of glycan structures [102].

Hydrogen–deuterium exchange
mass spectrometry Conformational dynamics and higher-order structure analysis [103].

Hydrophilic interaction liquid
chromatography (HIC)

Separation of polar glycans [88].
Analysis of hydrophobicity and aggregation [104].

IEF Separation of glycoproteins by isoelectric point [105].

Immunoassays Pharmacokinetic and pharmacodynamic studies [106].

Immunohistochemistry Localization of specific glycans in tissues [107].

Immunoprecipitation and pull-down assays Protein interaction studies [108].

Ion exchange chromatography Charge heterogeneity analysis [109].

Isoelectric focusing (IEF) Protein separation based on isoelectric point [110].

Lectin affinity chromatography Separation of glycans using specific binding proteins [111].

Liquid chromatography–mass spectrometry
Comprehensive protein characterization [112].

Improving industrial protein production yields
Environmental stress response in recombinant protein production [113].

Mass spectrometry (MS) Characterization and post-translational modification analysis [114].
Structural analysis of glycan [115].

Mass spectrometry and NMR The optimization of expression systems for protein production [116].

Mass spectrometry selected
reaction monitoring Targeted protein quantification in biosimilar development [117].

Mass spectrometry, tandem Sequential fragmentation for glycan structure elucidation [118].

Mass spectrometry, ultra-performance
liquid chromatography Assessing the impact of protein therapeutics on metabolic pathways [119].

Matrix-assisted laser desorption/ionization
(MALDI-MS)

Mass determination of glycan [120].
Rapid identification and characterization of proteins [121].
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Table 3. Cont.

Technology Application

Multi-angle light scattering (MALS) Molar mass and size distribution [122].
Characterizing size and composition [123].

Multi-angle light scattering (MALS) Molar mass and size distribution [122].

N-Terminal sequencing Analysis of protein sequence and modifications [124].

Mass spectrometry, native Structural characterization and complex formation analysis [125].

NMR spectroscopy
Detailed structural analysis of glycan [126].

Conformational dynamics and structural analysis [127].
Investigating protein–metabolite interactions [128].

Optical glycan biosensors Real-time monitoring of glycan–protein interactions [129].

Peptide mapping and fingerprinting Identification and characterization of proteins [130].

Protein microarrays High-throughput analysis of protein functions and interactions [131].

Reverse-phase liquid chromatography Separation of glycopeptides and glycoproteins [132].
Analysis of protein purity and heterogeneity [133].

Size-exclusion chromatography Protein aggregation and purity assessment [134].

SPR Real-time glycan–protein interaction analysis [135].

Stable isotope labeling Quantitative glycomics [136].
Quantitative proteomics for expression analysis [137].

Surface plasmon resonance (SPR) Protein interaction studies [138].

X-ray crystallography and nuclear magnetic
resonance (NMR) spectroscopy

3D structure determination of glycoproteins [139].
Structural analysis and 3D modeling [140].

Yeast two-hybrid system Protein–protein interaction mapping [141].

Proteomics

Proteomics is the most relevant application for characterizing and quantifying biomark-
ers based on the action of proteins as functional molecules in the cell: performing most
of the cellular functions and contributing to most of the cell’s structure. Proteomics aims
to identify a chemical, such as a protein, carbohydrate, or another entity, which becomes
evident only when the reference product is administered compared to a placebo. Detect-
ing these chemical entities requires sophisticated technologies, as listed in Table 4, along
with examples of these technologies used to characterize proteins, unknown proteins, and
unusual protein structures [57,142].

The technologies for proteomics research, especially the nano-LC and mass spectrome-
try, have experienced unprecedented development; currently, the proteome of the single cell
can be identified in its totality, despite many shortcomings that are fast resolved, leaving a
great future for proteomics in drug development; whether they are suitable for biosimilars
is another matter that is discussed later in the article.

Table 4. Examples of applications of proteomic biomarkers.

Examples of Use of Proteomics Biomarkers

Antibody-drug
conjugates (ADCs)

Brentuximab vedotin, an ADC used for Hodgkin’s lymphoma and systemic anaplastic large cell
lymphoma, delivers the cytotoxic drug monomethyl auristatin E (MMAE) to CD30-expressing cells,

and the measurement of MMAE can serve as a marker of target engagement [143].

Antigen-antibody complex

The formation of antigen–antibody complexes provides direct evidence of target engagement. For
example, in the case of adalimumab, an anti-tumor necrosis factor (TNF)-α antibody, the serum levels

of the adalimumab-TNFα complex can be measured as evidence of the drug binding
to its target [144].
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Table 4. Cont.

Examples of Use of Proteomics Biomarkers

Antigenic modulation

This refers to the downregulation or loss of antigen expression on the cell surface in response to
antibody binding and can be used as a marker of monoclonal antibody (mAb) engagement.

Rituximab, a monoclonal antibody against the CD20 antigen on B cells, causes antigenic modulation,
decreasing CD20 expression and indicating rituximab engagement [145].

Binding of mAbs to
Fc receptors

The Fc region of mAbs can bind to Fc receptors on immune cells. This binding can modulate the
activity of these cells, making Fc-receptor occupancy a valuable PD marker. The occupancy of RIIIa

on natural killer cells by rituximab can be used as a PD marker [146].

Cell proliferation markers mAbs may also be designed to inhibit cell proliferation. Here, decreased cell proliferation markers,
such as Ki-67, can indicate successful target engagement [147].

Circulating tumor
antigen levels

In cancer therapy, mAbs are often designed for binding to specific tumor antigens. A reduction in the
levels of these circulating antigens following mAb therapy can serve as a marker of target

engagement. For instance, CA-125 levels in patients with ovarian cancer have been treated with
mAbs targeting the CA-125 antigen [148].

Complement system
alterations

mAbs can modulate the complement system. Eculizumab, a mAb that inhibits complement
component C5, reduces hemolytic activity and can be used as a PD marker [149].

Cytokine release syndrome

mAbs, particularly those targeting immune cells, increase the release of specific cytokines. For
instance, administration of the anti-CD28 mAb TGN1412 releases many cytokines, such as

interleukin (IL)-2 and interferon (IFN)-γ, which could be monitored as PD markers. Measuring
cytokines, such as IL-2, IL-6, or TNF-α, can estimate target engagement. This is particularly relevant
for immunomodulatory mAbs such as ipilimumab, which can increase circulating cytokine levels

upon engagement with its target, cytotoxic T lymphocyte-associated (CTLA-4) [150].

Fluorescent tag

Flow cytometry can be a valuable tool for assessing target engagement when the target of a mAb is
expressed on cell surfaces. Labeling the mAb with a fluorescent tag confirms its binding to the target
cells in a sample. This has been utilized in therapies, such as those using rituximab, wherein binding

to CD20+ B cells can be confirmed using flow cytometry [151].

Gut microbiota alterations
Specific mAb therapies can alter gut microbiota, serving as functional response markers.

Vedolizumab, a mAb against the α4β7 integrin used in treating inflammatory bowel disease, can
restore gut microbial diversity, indicating a functional response to therapy [152].

Immune response markers

Some mAbs stimulate immune responses against specific antigens. Hence, increased antibodies
against the target antigen in the patient’s serum can serve as a target engagement marker. For

instance, palivizumab, a mAb that prevents respiratory syncytial virus (RSV) infection in high-risk
infants, engages its target through anti-RSV antibodies in the patient’s serum [153]. Immune

response can be measured as a functional response marker. For instance, ipilimumab, a mAb that
targets the immune checkpoint protein CTLA-4, is the most widely used mAb.

4. Glycomics

Glycomics is a comprehensive study of all glycan structures (sugars and carbohy-
drates) in each cell type or organism, including the identity of individual glycans and
the overall glycan profile. Glycans are crucial components of various biological systems.
They play roles in numerous biological processes, including cell–cell communication,
immune responses, infection, inflammation, and cancer progression. Glycans are often
added post-translationally to proteins and lipids, altering their functions and properties.
They also play a critical role in protein folding and stability [154,155]. These patterns can
affect therapeutic proteins’ stability, solubility, and biological activity. Understanding
glycosylation is vital for developing, producing, and approving biosimilars because even
slight variations in glycosylation can result in different clinical outcomes. The evaluation
of glycosylation is the second most frequently applied ‘omics’ technology to compare
molecules for biosimilarity.

Table 5 lists common analytical approaches to identify and qualify glycans.
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Table 5. Methods of identifying glycans and their applications.

Application Example

Bioanalytical and bioinformatics

Data integration at different structural levels to identify
various glycoforms of recombinant human chorionic

gonadotropin (r-hCG), urinary hCG (u-hCG), and
recombinant follicle stimulating hormone (r-hFSH)

revealed that these biopharmaceuticals differ
considerably in their glycosylation patterns [156].

Resolution discrepancies
Between high-resolution native and glycopeptide-centric
mass spectrometric approaches for the glycosylation of

erythropoietin variants [157].

Glycan microheterogeneity

To identify multiple glycosylation sites in the vascular
endothelial growth factor IgG (VEGFR-IgG) fusion

protein to understand the functional significance of each
glycosylation pattern [158].

Glycoforms

Several glycoforms using hybrid high-performance
liquid chromatography–MS approaches [159], such as

24 glycoengineered erythropoietin variants with varying
glycan branching and sialylation levels, are crucial

parameters for biotherapeutic efficacy.

NMR Identification of glucose-induced glycation in mAbs and
other proteins using NMR spectroscopy. [160].

Novel glycoforms Identification of novel glycosylations in
human-serum-derived factor IX. [161].

Mass spectral profiling

The N-linked, O-linked, ganglioside, and
glycosaminoglycan compound classes and the tandem

mass spectrometry of glycans have led to
spectral glycoproteomics [162].

N-glycosylation profile

Analysis of trastuzumab biosimilar candidates using
normal-phase liquid chromatography and

matrix-assisted laser desorption/ionization
time-of-flight MS [163].

Microheterogeneity
Composite glycosylation profiles and other

microheterogeneities in intact mAbs via high-resolution
native MS using a modified Orbitrap [164].

Targeted site-specific quantitation N-and O-glycopeptides using 18O-labeling and product
ion-based MS [165].

Hybrid MS Approaches in glycoprotein analysis and their usage in
scoring biosimilarity [166].

Understanding the complex structures of glycans is essential for understanding gly-
comics. Techniques such as MS and nuclear magnetic resonance (NMR) have been used
for this purpose. Glycans often bind to proteins, affecting their functions. Studying these
interactions can provide insights into numerous biological processes and diseases to learn
how cells synthesize glycans and how these structures contribute to cellular functions and
broader physiological processes. Changes in glycosylation patterns are often associated
with diseases, including cancer, making them potential biomarkers for disease diagnosis
and progression. The glycan profile also establishes high similarity for protein function,
stability, and efficacy.

5. Transcriptomics

Metabolomics and transcriptomics are branches within systems biology, focusing on
comprehensive analyses of biological molecules in an organism, cell, or tissue. However,
they target different levels of the cellular molecular hierarchy. Metabolomics studies the
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complete set of small-molecule metabolites within a biological sample. Its primary focus is
on metabolites, including amino acids, sugars, lipids, and other small molecules that are
products or intermediates of cellular metabolism [167].

Transcriptomics involves studying the complete set of RNA transcripts produced by
the genome under specific circumstances. Its primary focus is messenger RNA (mRNA),
but other non-coding RNAs can also be studied. It provides insights into the gene
expression patterns, revealing which genes are upregulated or downregulated in particu-
lar conditions [168].

Transcriptomics is the scientific discipline investigating the comprehensive collection
of RNA transcripts generated by the genetic material (genome) of a cell, tissue, or organism
during distinct circumstances or at stages of development. RNA transcripts, encompassing
various types such as mRNA, rRNA, tRNA, and non-coding RNA, serve as intermediaries
in transmitting genetic information from DNA to proteins. The transcriptome composition
exhibits variability based on cell type, developmental stage, environmental circumstances,
or pathological conditions. Hence, it is imperative to comprehend the transcriptome to inter-
pret the functional components of the genome, unveil the molecular constituents of cells and
tissues, and gain insights into the progressions of diseases. Transcriptomics encompasses
many methodologies, such as microarray analysis, RNA sequencing (RNA-Seq), and serial
gene expression analyses, employed to investigate gene expression patterns. RNA-Seq has
emerged as the predominant technique in current scientific research due to its substantial
capacity for high-throughput analysis and comprehensive data acquisition [169] (Table 6).

Table 6. Applications of transcriptomics.

Application Example

Gene expression profiling Simultaneous measurement of the expression levels of several genes
to create a global picture of cellular functions.

Optimization of host cells for protein expression Optimize host cells to improve recombinant protein expression [170].

Identifying suitable expression systems Selection of optimal expression system [171].

Understanding protein function and interactions How proteins function and interact within cellular networks [172].

Monitoring quality control in
biopharmaceutical production Manufacturing QC [173].

Improving protein solubility and folding Enhance the solubility and folding of recombinants [174].

Tailoring protein post-translational modifications (PTMs) To produce proteins with the desired PTMs [175].

Enhanced yield in industrial protein production To enhance the yield of recombinant proteins for
industrial applications [176].

Studying protein stability and degradation Design recombinant proteins with enhanced stability [177].

Personalized medicine and therapeutics Patient-specific proteins based on individual gene
expression profiles [178].

6. Genomics

Genomics is the comprehensive study of an organism’s genes or genomes. It involves
sequencing and analysis of genomes’ structure, function, and evolution and provides
insights into gene expression, function, regulation, and interactions. Genomics incorpo-
rates elements from genetics, but its primary focus is the collective characterization and
quantification of genes that direct protein production assisted by enzymes and messen-
ger molecules. Genomic techniques vary from the traditional polymerase chain reaction
(PCR) and gene sequencing methods to modern next-generation sequencing (NGS) tech-
nologies. These methods have allowed the sequencing of entire genomes, such as in the
Human Genome Project, which sequenced the whole human genome and revolutionized
biomedical research [179,180].
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For recombinant proteins and biosimilars, genomics aids in identifying the genes
responsible for desired protein functions, optimizing gene expression, and ensuring quality
and consistency in production.

One characteristic feature of eukaryotic aging is the degradation of epigenetic in-
formation. This phenomenon can be counteracted through a process known as ectopic
induction. In mammals, the Yamanaka factors OCT4, SOX2, and KLF4 (OSK) have been
found to restore DNA methylation patterns, transcript profiles, and tissue function asso-
ciated with youthfulness. Importantly, this restoration occurs without compromising the
cellular identity, necessitating the active removal of DNA methylation. High-throughput
cell-based assays, such as transcription-based aging clocks and real-time nucleocytoplasmic
compartmentalization assays, can differentiate between young and old and senescent cells.
These assays can be employed to identify compounds that have the potential to reverse
cellular aging and rejuvenate human cells while maintaining the integrity of the genome.
Consequently, six chemical cocktails have been identified in less than a week, restoring a
youthful genome-wide transcript profile and reversing transcriptomic age without compro-
mising cellular identity; thus, genetics and chemical means can achieve rejuvenation by
age reversal [181].

The following are some aspects of the use of genomics:
Structural genomics—this area of genomics involves the characterization and mapping

of genomic structures, including the sequencing of whole or significant parts of the genome;
Functional genomics—the study of gene and protein functions and their interactions.

The techniques used in functional genomics include transcriptomics (gene expression
analysis), proteomics (protein expression analysis), and metabolomics (metabolic pro-
file analysis);

Comparative genomics—comparative genomics involves comparing the genomes of
different species to understand the similarities and differences in structure and function.
This can be used to infer evolutionary relationships among organisms;

Genomic medicine—the application of genomics in health and disease research can
help identify disease-susceptibility genes, develop diagnostic tests, and enable personalized
treatment strategies based on a patient’s genetic makeup, often called precision medicine.

The following techniques highlight genomics’ broad and powerful impact on recom-
binant protein research, including improvements in design, production, stability, and
therapeutic applications:

• Whole genome sequencing;
• RNA-Seq—analyzing the quantity and sequences of RNA [53];
• Quantitative PCR—quantitative measurement of specific DNA or RNA levels [181];
• Microarrays—high-throughput gene expression analysis [54];
• Comparative genomic hybridization—detecting and mapping chromosomal im-

balances [182].

Combining traditional monitoring techniques with omics technologies represents a
unique opportunity to characterize the host cell culture state better and shift from an empir-
ical to a rational approach for process development and optimizing bioreactor cultivation
processes. A few examples of genomics applications in the field of recombinant proteins
are presented in Table 7.

Table 7. Examples of genomics applications in recombinant therapeutic protein development.

Application Example

Improving expression systems Researchers can optimize expression systems for recombinant
protein production by studying host cell genomes [183].

Designing recombinant proteins Genomics can be used to identify and design recombinant
proteins with the desired functions [184].
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Table 7. Cont.

Application Example

Enhancing protein stability Understanding the genomic context can aid in designing
recombinant proteins with enhanced stability and activity [185].

Personalized medicine
Personalized genomics allows the development of

recombinant proteins tailored to the genetic profiles of
individual patients [186].

Metabolic engineering
Genomic insights can guide the redesign of metabolic

pathways to efficiently produce recombinant proteins in
microbial systems [187].

Biomarker discovery
Genomics aids in the identification of biomarkers that can be

targeted with recombinant proteins for diagnostic or
therapeutic purposes [188].

Understanding protein function Comparative genomics can elucidate the functions of proteins
by identifying conserved sequences and structures [189].

Enhanced protein folding Genomic data can be used to understand and improve the
folding of recombinant proteins [190].

Development of
novel therapeutics

Genomics is used to identify potential targets of therapeutic
recombinant proteins [191].

Cell line optimization

Cell line optimization results from: (i) research applied to
parental, non-recombinant cell lines; (ii) systems-level

datasets generated with recombinant cell lines; (iii) datasets
linking phenotypic traits to relevant biomarkers; (iv) data

depositories and bioinformatics tools; and (v) in silico
model development [192].

7. Epigenomics

Epigenomics studies a complete set of epigenetic modifications in DNA or associated
proteins other than the DNA sequence, termed the epigenome, that cells use to control
gene expression. Epigenetic modifications can influence gene expression without altering
the underlying DNA sequence. These modifications play critical roles in cell differenti-
ation and disease, and unlike DNA sequences, they can be changed by environmental
conditions. Epigenomics often involves NGS technologies such as whole-genome bisulfite
sequencing for DNA methylation and chromatin immunoprecipitation sequencing for
histone modifications [193–195].

The following are the major types of epigenetic modifications:

• DNA methylation—in mammals, DNA methylation typically occurs at cytosine
residues in the cytosine-phosphate-guanine context and is an essential process for
normal development. Changes in DNA methylation patterns are associated with
several key processes, including carcinogenesis;

• Histone modification—histone proteins can be modified post-translationally by methy-
lation, acetylation, and ubiquitination. These modifications can alter the chromatin
structure and affect gene expression;

• Studying the extent to which combinations of DNA-, RNA-, and PTM-level variations
contribute to the complexity of the human proteome.

The application of epigenomics to recombinant proteins is an evolving area of research.
Table 8 lists a few examples of the applications of epigenomics.
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Table 8. Applications of epigenomics in the development of therapeutic proteins.

Application Example

Optimization of expression systems Understanding and manipulating epigenetic markers can enhance recombinant
proteins’ expression in host cells [196].

Production of recombinant proteins with
specific modifications

Epigenomic control enables the production of recombinant proteins with
functionally essential PTMs [197].

Development of recombinant proteins for
epigenetically targeted therapies

Epigenomics guides the discovery and development of recombinant proteins that
target specific epigenetic modifications involved in various diseases [198].

Studying the epigenetic control of
protein function

Recombinant proteins can be used to study how epigenetic modifications regulate
endogenous proteins, providing insights into their functions and control [199].

Recombinant epigenetic modifiers
for research

Producing recombinant proteins involved in epigenetic modifications, such as
methyltransferases, may be helpful for research and drug development [200].

Modeling diseases
Using epigenomic information for modifying host cells to produce recombinant

proteins allows the creation of more accurate disease models, particularly for
conditions in which epigenetic alterations play a crucial role [201].

Quality control and stability
of biopharmaceuticals

Epigenomic control may improve the quality and stability of recombinant proteins
for biopharmaceutical applications [75].

8. Metabolomics

Metabolomics is the large-scale study of small molecules within cells, biofluids, tissues,
or organisms, commonly known as metabolites. These metabolites are the end products
of cellular processes and form a significant part of the metabolome, which comprises all
metabolites in a biological organism. Metabolomics is a compelling approach in systems
biology, as metabolites are often the end products of cellular processes, and changes in their
concentrations can be more representative of the current biological status than changes in
other biomolecules. Metabolomics is used for various purposes, including studying disease
mechanisms, biomarker discovery, drug discovery, and understanding drug effects. This
is a critical field in precision medicine and personalized healthcare [202–204]. Integrating
metabolomics with recombinant protein research offers a multifaceted approach to im-
proving protein production, understanding protein function, and creating more effective
therapies. These applications are continually evolving with advancements in analytical
techniques and technologies (Table 9).

Table 9. Examples of metabolomics applications.

Application Example

Immune response against tumor cells in
patients with melanoma

Increases in absolute lymphocyte counts are observed in response to therapy and can be
a marker of functional immune response [205].

Lab values alteration

Changes in specific laboratory values can serve as functional response markers for
certain conditions. For example, in patients with rheumatoid arthritis treated with the

anti-TNFαmAb, adalimumab, reductions in serum C-reactive protein levels and
erythrocyte sedimentation rate, which are markers of inflammation, indicate a positive

response to therapy [206].

Modulation of T-cell response
Some mAbs, particularly immune checkpoint inhibitors such as pembrolizumab,
function by modulating the T-cell response, which can be measured using T-cell

activation markers, such as CD137, or by enumerating antigen-specific T-cells [207].

Alteration in serum
immunoglobulin levels

Some mAbs can cause changes in the serum levels of immunoglobulins, which can serve
as PD markers. Rituximab, an anti-CD20 mAb, decreases serum immunoglobulin levels,

which can be monitored clinically [208].
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Table 9. Cont.

Application Example

PK and PD correlation

The correlation between PK properties, such as serum drug concentration and PD
markers, is a significant component of mAb engagement. This elucidates the

dose–response relationship for adjusting the dosing regimens. For instance, with
infliximab, an anti-TNFαmAb used in treating autoimmune diseases, measuring the

serum drug concentration and correlating this with the clinical response and anti-TNFα
activity can indicate effective drug-target engagement [209].

9. FDA Omics Perspective

The FDA recommends using omics technologies to identify PD markers for biologicals
that do not possess known PD markers, such as hematocrit content on exposure to ery-
thropoietin or white blood cell count on the administration of filgrastim, to waive efficacy
testing in patients. Omics refers to comprehensive testing involving high-throughput,
large-scale, and integrative approaches for studying and analyzing various components
of biological systems. The major omics technologies include genomics, transcriptomics,
proteomics, metabolomics, and epigenomics. The FDA has recently conducted investiga-
tions and demonstrated how to apply omics technologies to identify novel PD biomarkers
without known biomarkers, which can be used for the similarity assessment of biosimilars
to waive the need for efficacy testing in patients [28].

9.1. FDA Research

The FDA has undertaken empirical research on biomarkers associated with Parkin-
son’s disease (PD) to expedite the development of biosimilars [210]. This study encom-
passes clinical pharmacology investigations wherein participants are administered different
biological dosages of a drug, and researchers assess the corresponding biomarker response.
The correlation between the dose administered and the response of the biomarker may
suggest that the biomarker is suitable for a pharmacodynamic similarity investigation.

The omics exercises can result in functional biomarkers that are part of the mechanism
of action, as shown below, or a result of the activity of the administered protein, whether
associated or not with the mechanism of action.

9.1.1. PCSK9 Inhibitor Markers (Lipidomic Exercise)

The FDA has approved two cholesterol-lowering drugs, alirocumab, and evolocumab,
in a class of biologics known as PCSK9 inhibitors. These inhibitors block PCSK9, which
prevents the body from removing excess cholesterol. In an FDA study, 72 healthy par-
ticipants received different doses of evolocumab (21, 35, 70, or 140 mg), alirocumab (15,
25, 50, or 100 mg), or a placebo [211]. The researchers analyzed two serum biomarkers:
low-density lipoprotein cholesterol (LDL-C) and apolipoprotein B (apoB). The primary
outcome measures consisted of the areas under the effect curve (AUEC), which quantified
the temporal biomarker response and the most significant deviation from baseline values
of LDL-C and apoB in serum. The study’s findings exhibited a clear and direct relationship
between the dosage of alirocumab and evolocumab and the pharmacodynamics-associated
biomarkers. This relationship was evidenced by a substantial alteration in LDL-C and
apoB levels compared to the initial measurements as the doses were escalated. Never-
theless, it was shown that apoB demonstrated greater variability in response compared
to LDL-C in the study subjects. Therefore, low-density lipoprotein cholesterol (LDL-C)
and apolipoprotein B (apoB) have the potential to serve as appropriate biomarkers for
comparative investigations of alirocumab and evolocumab in the context of Parkinson’s
disease (PD) [212].
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9.1.2. IL-5 Antagonists Biomarkers [26] [Functional Markers]

The class of biologics known as anti-IL-5 has been authorized to treat severe eosinophilic
asthma, a condition distinguished by an overabundance of eosinophils, a type of white
blood cell. Interleukin-5 (IL-5) is the primary cytokine responsible for activating eosinophils,
thus leading to airway inflammation. Interleukin-5 (IL-5) antagonists effectively inhibit the
activation of eosinophils by preventing IL-5 from binding to its receptors. Three biologics,
namely benralizumab, mepolizumab, and reslizumab, have received approval within the
IL-5 class of anti-asthma drugs. In a research investigation, a total of 72 individuals who
were in good health were randomly assigned to one of two groups. The first group received
a placebo, while the second group received a dosage of either mepolizumab (ranging from 3
to 24 mg) or reslizumab (ranging from 0.1 to 0.8 mg/kg), both of which were administered at
a lower level than the therapeutic dose. In this investigation, eosinophils in circulation were
utilized as biomarkers for Parkinson’s disease (PD). The study’s primary objectives were
the highest change observed from the baseline measurement and the area under the effect
curve (AUEC). A dose-response association for eosinophil counts was not identified due
to the significant heterogeneity in data across the study participants. The administration
of the maximum dosage of mepolizumab at 24 mg and reslizumab at 0.8 mg/kg demon-
strated observable therapeutic effects. The researchers refrained from doing the intended
dose–response analysis due to the significant variability observed in the data. The present
work employed pre-existing models and simulations to investigate the impact of various
dosages of IL-5 antagonists, including doses up to the therapeutic threshold, on the levels
of circulating eosinophils. The findings indicated that administering greater doses, namely
therapeutic dosages, might sufficiently discern the distinctions between products using
circulating eosinophils as biomarkers in research assessing pharmacodynamic similarities.

9.1.3. IFNβ-1a Biomarkers [213] [Proteomics Markers]

In a particular investigation, the FDA examined the application of proteomics, which
involves the comprehensive analysis of proteomes or sets of proteins, to uncover biomark-
ers for Parkinson’s disease (PD) in biological treatments such as IFNβ-1a and pegylated-
IFNβ-1a (pegIFNβ-1a). These products are used to treat multiple sclerosis; however, their
mechanisms of action and the relevant PD biomarkers are still unclear, although there are
potentially reported candidates. To address this issue, proteomics evaluated circulating
biomarkers by assessing more than 7000 proteins from plasma samples to identify potential
PD biomarkers. In the present investigation, a total of 84 individuals who were in good
health were administered a therapeutic dosage of IFNβ-1a, pegIFNβ-1a, or a placebo.
During the preliminary examination, data exclusively from the 36 participants who were
administered either a placebo or the highest dosage (30 µg IFNβ-1a or 125 µg pegIFNβ-1a)
were assessed. Baseline blood samples were obtained, followed by further collections
at many time points. The proteins were evaluated using the proteome test SOMAscan
(version 4.1). This investigation successfully identified 248 differentially expressed proteins
in the treatment group compared to the placebo group for IFNβ-1a and 528 differentially
expressed proteins for pegIFNβ-1a. The researchers prioritized 31 proteins that exhibited
the most notable distinctions from the placebo group. Among these proteins, eight had a
maximal change from the baseline that exceeded a factor of four. The identification of can-
didates, both previously reported and newly discovered, was accomplished by researchers.
This study showcases the utility of proteomics in identifying potential biomarkers for
Parkinson’s disease (PD). These biomarkers can be employed in clinical pharmacology
studies to facilitate the creation of biosimilars. This is especially valuable when the products
exhibit intricate mechanisms of action or when only a limited number of PD biomarkers
have been identified.

9.1.4. Model-based Testing Markers [214] [Functional Markers]

The FDA has also presented results on a model-based approach for the dose selection
(MBADS) of pegfilgrastim, which treats neutropenia (low white blood cell count) caused
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by anticancer medications. Multiple biosimilars have received approval, and to support
their approval, pharmacokinetic (PK) and pharmacodynamic (PD) approaches have been
employed. These approaches have utilized the biomarker of absolute neutrophil count.
Several projects utilized a dosage of 6 mg for pharmacokinetic (PK) and pharmacodynamic
(PD) similarity investigations, while alternative programs employed a dosage of 2 mg.
Pegfilgrastim exhibits a non-linear pharmacokinetic profile, indicating that the elimination
of the drug from the body is influenced by the dosage administered. This factor makes
calculating the optimum dose for PK and PD similarity tests more complex—the present
work employed model-informed drug development (MIDD) methodologies to address
this issue. MIDD approaches employ quantitative methods and data sources to facilitate
drug development and regulatory decision-making. In this work, the researchers modified
an existing model by incorporating data from two phase I trials. These trials involved
administering a single dosage of either 30, 60, or 100µg/kg of pegfilgrastim to healthy
volunteers. The researchers conducted simulations with two doses, specifically 2 and
6 mg. The findings from the simulation analyses indicate that the administration of 6 mg
of pegfilgrastim is adequate for detecting distinctions between a proposed pegfilgrastim
biosimilar and the reference product in studies examining pharmacokinetic (PK) and
pharmacodynamic (PD) similarities. The findings of this study demonstrate that the
utilization of simulations can effectively facilitate the process of dose determination for
biosimilars exhibiting non-linear pharmacokinetics.

The FDA has demonstrated the use of omics technologies to discover pharmacody-
namic markers for drugs like the mAbs that do not demonstrate functional pharmaco-
dynamic biomarkers. To enable applications of the FDA suggestions, we need to review
the role of omics technologies, how they are used in the development of new drugs, and
their current status, and to analyze whether there is a need to use omics technologies to
demonstrate biosimilarity, given the available biomarkers, the difficulties in applying omics
technology for the development of biosimilars, the complexities created by individualized
omics applications and finally, the scientific rationale of using the omics approach.

9.2. The Practicality of Omics Technologies

While the FDA’s suggestions for engaging in omics technologies to identify PD markers
are scientifically sound, their application is complex, and it is questionable if this should be the
responsibility of developers. The selection of a PD biomarker requires several considerations:

• Relevance to the mechanism of action;
• Sensitivity to differences between the proposed biosimilar and the reference product;
• Analytical validity;
• Time of onset correlated with dosing;
• The dynamic range over the exposure range.

Large-scale proteomic methods allow for simultaneous study of the expression of
several proteins after administering the reference product; however, it will always be a
random choice, varying among developers. Without a specific criterion to compare one PD
marker against another, it will always be uncertain if biosimilarity based on one set of PD
markers is more robust than that with another set of PD markers. The same applies to other
omics platforms like glycomics, transcriptomics, and metabolomics.

Because developers plan these studies separately, their findings may differ, although
all will be relevant. Additionally, these considerations for qualifying biomarkers require
extensive testing and validation, which will likely consume more time and investment than
conducting efficacy testing on patients, leaving little incentive for developers to engage in
omics technology [215].

However, it is inappropriate to expect developers to identify proteomic profiles for
several reasons:

• Proteins located remain unidentified, and these may well be testing-process dependent;
• Proteins may not be related to clinical efficacy and only represent a clinical pharmaco-

logical profile;
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• The expertise of proteomic technology is limited to biosimilar developers who are not
necessarily research entities; expecting them to use these technologies may result in
conclusions that may be less reliable than the standard technologies.

9.3. Biosimilars and Omics Technologies

With their comprehensive and high-resolution data outputs, omics technologies can
be crucial in biosimilars’ efficacy testing and characterization (Table 10).

Table 10. Role of omics technologies and their rationale in the development of biosimilars.

Omics Technology Role Rationale

Proteomics

Determining the protein expression profile,
post-translational modifications (like

glycosylation), and protein–protein interactions of
the biosimilar compared to the reference product.

Minor differences in protein structure or
modifications can impact the efficacy.

Transcriptomics

Analyzing the gene expression profile of cells
producing the biosimilar ensures that the cellular
machinery has the therapeutic protein in a manner

consistent with the reference product.

Differences in gene expression may hint at
differences in protein product production, folding,

or modification.

Metabolomics Examining the metabolic profile of the
biosimilar-producing cells.

The metabolic state of a cell can influence the final
product’s quality and consistency. For instance,

changes in nutrient levels can impact the
glycosylation patterns of proteins.

Genomics Ensuring the genetic stability of the cell line
producing the biosimilar.

Over time, cell lines might undergo genetic drift,
which can impact the product’s quality,

consistency, and efficacy.

Microbiomics
Understanding the microbiome can be essential if
the biological product has a microbial origin (like
some recombinant proteins produced in bacteria).

Microbial contaminants or shifts in the microbial
population can influence the final product’s quality

and safety.

Phosphoproteomics
Analyzing phosphorylation patterns on proteins

can be critical for some biologics’ function
or stability.

Changes in phosphorylation can affect protein
activity, stability, or interaction with other proteins.

10. Omics Alternatives

These PD biomarkers, like hematocrit or WBC count, are pharmacological markers
that correlate with clinical response, but the precursors to the pharmacological markers,
the PD markers, need not correlate with the clinical response, creating a major issue; if a
biosimilar meets the PD biomarker profile, does this mean it is also going to yield the same
clinical response? The answer is not necessarily; it has been established. Additionally, if a
product fails to meet the biomarker profile due to the nonlinearity of the marker vs. the PK
profile, does this mean that a product is not equivalent? The answer is no; it has not been
established. These possibilities show the limited utility of newly discovered biomarkers
but do not apply to response-related pharmacological markers.

While FDA efforts have introduced many scientific ideas to improve the assessment
of biosimilarity, these may not be the most practical, especially when several other more
straightforward comparative testing possibilities are available [216,217]. New robust ana-
lytical tests, such as MS, can be used to perform orthogonal biosimilarity testing, such as
multiple-receptor binding comparisons, as this is the primary mechanism that triggers PD
biomarkers (if available).

10.1. Receptor Binding

In the cascade of events, before a PD response is triggered, the protein molecule
first binds to its receptors, a well-known and established mechanism of action. The clinical
response to biological drugs is based on their mechanism of action, which begins with re-
ceptor binding. Current science has made this testing highly accurate and objective. mAbs
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can also interact with multiple receptors and can be evaluated using orthogonal analytical
methods. The primary receptors involved in the activity of the therapeutic proteins include
(parenthetical entry shows the number of such receptors). The primary receptors for ap-
proved protein therapeutics include: glucagon-like peptide 1 receptor (3), insulin receptors
(3), heat-stable enterotoxin receptors (2), adrenocorticotropic hormone receptor, angiotensin
II type 2 (AT-2) receptor, corticotropin-releasing factor receptor 1, glucagon-like peptide
2 receptor, gonadotropin-releasing hormone receptor, notch signaling pathway, oxytocin re-
ceptor, parathyroid hormone receptor, parathyroid hormone/parathyroid hormone-related
peptide receptor, prothrombin, receptor tyrosine-protein kinase erbB-2, secretin receptor,
somatostatin receptor 2, somatostatin receptor 5, type-1 angiotensin II receptor, vasopressin
V1a receptor, vasopressin V1b receptor, vasopressin V1a receptor, vasopressin V1b receptor,
vasopressin V2 receptor [218] (Table 11).

Table 11. Binding receptors for pharmacodynamic markers.

mAb (Brand) Receptor

Abciximab (ReoPro) [219] GPIIb/IIIa

Adalimumab (Humira) [220] TNFα

Alemtuzumab (Lemtrada) [221] CD52

Atezolizumab (Tecentriq) [222] PD-L1

Basiliximab (Simulect) [223] CD25

Belimumab (Benlysta) [224] BLyS

Bevacizumab (Avastin) [225] VEGF

Cetuximab (Erbitux) [226] EGFR

Daclizumab (Zinbryta) [227] CD25

Daratumumab (Darzalex) [228] CD38

Denosumab (Prolia) [229] RANKL

Dupilumab (Dupixent) [230] IL-4Rα

Eculizumab (Soliris) [149] C5

Infliximab (Remicade) [231] TNFα

Ipilimumab (Yervoy) [232] CTLA-4

Nivolumab (Opdivo) [233] PD-1

Obinutuzumab (Gazyva) [234] CD20

Ofatumumab (Arzerra) [235] CD20

Omalizumab (Xolair) [236] IgE

Palivizumab (Synagis) [237] RSV F protein

Pembrolizumab (Keytruda) [238] PD-1

Rituximab (Rituxan) [239] CD20

Sarilumab (Kevzara) [240] IL-6R

Secukinumab (Cosentyx) [241] IL-17A

Tocilizumab (Actemra) [242] IL-6R

Trastuzumab (Herceptin) [33] HER2/neu

Vedolizumab (Entyvio) [243] α4β7 integrin

An orthogonal approach to establish comparable receptor binding would be substan-
tially more robust and objective than finding an unknown PD marker, qualifying it, and
testing it to establish biosimilarity. This powerful test demonstrates functional similarity
when PD biomarkers such as mAbs are unavailable.
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10.2. Pharmacokinetic Profiling

While receptor binding leads to PD response, determining the clinical response, the
PK profile is one of the strongest PD- and clinical-biomarker surrogates.

The use of pharmacokinetics (PK) as a surrogate for pharmacodynamic (PD) markers
in the development and evaluation of biological drugs is a topic of increasing interest.
Traditionally, PK and PD have been viewed as separate, yet interconnected, disciplines:
PK focuses on the absorption, distribution, metabolism, and excretion of a drug, while PD
investigates the drug’s physiological and biochemical effects [244]. However, numerous
studies suggest that PK parameters can serve as surrogate PD markers, particularly in
establishing the biosimilarity of a candidate drug to a reference product [244].

For instance, the PK profile provides a comprehensive overview of a drug’s disposition
kinetics, often indicating its effectiveness or safety [245]. Key PK parameters like Cmax
(peak serum concentration of the drug) and AUC (area under the curve, reflecting overall
drug exposure) are frequently employed as surrogate endpoints in clinical studies for
biological drugs [246].

In monoclonal antibodies (mAbs), PK measures such as clearance rate and volume of dis-
tribution have shown strong correlations with efficacy markers like tumor-size reduction [247].
Likewise, PK parameters are commonly used as surrogates for PD endpoints in other classes
of biological drugs, including erythropoiesis-stimulating agents and interferons [248].

Regulatory agencies like the FDA are increasingly recognizing the potential of PK as
a surrogate for PD markers. For example, the FDA’s guidance for biosimilars acknowl-
edges that comparative PK and PD data may suffice to demonstrate biosimilarity without
additional clinical studies under certain conditions [249].

It is essential, however, to recognize that the utility of PK as a surrogate for PD
markers is not universally applicable. Its appropriateness depends on the complexity of the
biological drug and the robustness of the PK/PD relationship [250]. Therefore, employing
PK as a surrogate for PD markers should be predicated on a comprehensive understanding
of both the drug’s mechanism of action and its PK/PD correlation.

The burgeoning body of evidence supports the notion that PK can serve as a viable
surrogate for PD markers, streamlining the development of biosimilar and biobetter treat-
ments. For example, PK metrics have been employed as predictors for long-term outcomes
in treatments for rheumatoid arthritis [251]. PK parameters like Cmax and Tmax also
predict toxicity in specific cancer treatments [252].

Nonetheless, limitations exist. One challenge is the often-unclear relationship be-
tween PK variables and complex biological responses, particularly for drugs with intricate
mechanisms of action or those used in polytherapy [253].

The volume of distribution (Vd) as a function of time offers another exciting dimension.
Unlike in traditional PK, where Vd is often treated as a constant, recognizing Vd as a time-
dependent function allows for incorporating factors like tissue perfusion rates, varying
clearance rates, and organ-specific uptake or release over time [254]. Such considerations
are particularly pertinent for biological drugs, which may exhibit nonlinear kinetics and
more complex distribution patterns than small molecule drugs [255].

Several applications have been noted in both pre-clinical and clinical research:

• Cancer chemotherapy—modeling Vd(t) can lead to better predictions of drug concen-
trations in tumor tissue versus surrounding tissues, potentially optimizing dosing
schedules for maximum efficacy and minimal toxicity [256];

• Infectious diseases—understanding Vd(t) can help in designing dosage regimens
that ensure sufficient drug concentrations at the infection site while minimizing sys-
temic exposure [257];

• Autoimmune diseases—for monoclonal antibodies used in conditions like rheumatoid
arthritis, Vd can change over time due to factors like target-mediated drug disposition.
Understanding Vd(t) can inform individualized dosing [258];
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• Geriatric pharmacology—age-related physiological changes can impact Vd, and
considering Vd as a function of time provides insights into drug disposition in
elderly patients [259];

• Drug development—during the pre-clinical phase, understanding Vd(t) can guide
decisions about advancing a drug candidate to the next stage, potentially saving time
and resources [260].

In conclusion, the role of PK as a surrogate for PD markers is increasingly supported
by scientific evidence and accepted in both academic and regulatory settings. While its
application depends on various factors, the potential advantages—including accelerated
approval processes and reduced development costs—are significant. As the biosimilar land-
scape evolves, regulatory agencies like the FDA should consider expanding the contexts
where PK can be a surrogate for PD markers.

So far, none of those mentioned above technologies—receptor binding, PK profiling,
or the long list of potential biomarkers listed in Appendix A that biosimilar developers
have used to claim biosimilarity; the reason for this lack of innovation comes from the
absence of recognition of these biomarkers by the FDA.

11. Finding Biomarkers for Biosimilars

Understanding their PD markers is a significant aspect of developing and validating
antibodies [261]. These markers, representing a drug’s bioactivity and physiological
effects, are critical for guiding dosage regimens, monitoring efficacy, and predicting
adverse responses [262]. However, these biomarkers have not yet been used to estab-
lish biosimilarity.

The approval of biosimilars predominantly relies on a restricted set of evidence about
pharmacokinetic (PK) and pharmacodynamic (PD) similarities. Biomarkers in pharmaco-
dynamic (PD) studies, which accurately reflect the underlying mechanisms of action of
biological products, hold promise in serving as more sensitive endpoints for detecting clini-
cally significant differences between two such products. This presents potential avenues
for biomarkers previously employed as secondary and exploratory endpoints to assume
crucial functions in biosimilar development initiatives. Additionally, creative approaches
can be employed to develop new biomarkers for Parkinson’s disease (PD) in cases where
information regarding a relevant PD biomarker is unavailable [263].

Pharmacodynamic biomarkers play an essential role in drug development as they
can demonstrate the biological response of a drug on a target. For protein drugs, several
biomarkers can help understand the drug’s mechanism of action, efficacy, and, sometimes,
safety profile. The selection of appropriate pharmacodynamic biomarkers is essential for
accurately evaluating a drug’s mechanism of action and therapeutic efficacy. Moreover,
combining several biomarkers might offer a more comprehensive understanding of the
drug’s effects, especially in multifactorial conditions. Harnessing these biomarkers for ther-
apeutic and diagnostic applications requires robust experimental design, reliable analytical
techniques, and a thorough understanding of the studied disease or condition. As the un-
derstanding of cellular processes deepens, the catalog of potential biomarkers will continue
to expand, offering increased precision in drug development and therapeutic monitoring.

Incorporating these biomarkers effectively requires a multidisciplinary approach,
where clinicians, molecular biologists, pharmacologists, and statisticians work together
to evaluate the pharmacodynamic impacts of a given protein drug. Additionally, with
advances in technology and an increased understanding of biology at the molecular level,
newer biomarkers are continually being identified and validated.

It is essential to note that the appropriateness of a biomarker is highly dependent
on the specific drug and its mechanism of action. Always, thorough validation of a
biomarker for a specific context of use is critical to ensure its utility in drug development
and clinical application.

The selection and validation of a pharmacodynamic biomarker will vary based on
the specific protein drug and its intended therapeutic indication. The above list provides
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a diverse range of potential biomarkers. Still, the key is always to match the biomarker’s
sensitivity and specificity with the drug’s mechanism of action and the intended clinical
application. A biomarker that works well for one protein drug in a specific disease state
might not be suitable for another, even if they target the same pathway. Hence, rigorous
validation is essential for each specific scenario.

A broad approach to biomarker discovery, validation, and implementation is cru-
cial. Technological advancements, particularly in omics fields (genomics, proteomics,
metabolomics), enable a more comprehensive evaluation of drug impacts. Integration of
these technologies and data types, often termed “systems pharmacology,” holds promise
for a deeper understanding of drug action and individualized therapeutic interventions.

A practical example of a functional pharmacodynamic marker is the phosphorylation
of a protein in a signaling pathway targeted by a kinase inhibitor drug. If the drug’s
intended action is to inhibit a kinase, then decreased phosphorylation of its substrates after
treatment would be a functional PD marker, showing that the drug is effectively inhibiting
its target kinase.

It is essential to differentiate between a functional pharmacodynamic marker and
other types of biomarkers. Not all biomarkers are functional in the sense of directly
reflecting drug action. Some might be prognostic (indicating the likely course of a disease)
or predictive (indicating the likelihood of responding to a specific treatment) but do not
necessarily show the drug’s effect on the body.

New biological drug development involves extensive studies of the mode of action,
the identity and function of PD biomarkers, and the factors that can alter the dose–response
relationship. Table 12 lists the types of biological drugs licensed by the FDA.

Table 12. Current licensed biological drugs by the FDA (https://drugs.ncats.io/ (accessed on 12
August 2023).

Type Count

Fab 1

Toxin 1

Carrier protein 1

Single-domain antibody 1

Fusion proteins 1

Bispecific antibody 3

Coagulation factor 4

Cytokine 4

Peptide 4

Growth factor 4

Enzyme 9

Enzyme inhibitor 11

Hormone 11

Monoclonal antibody conjugate 13

Monoclonal antibody 96

Total 164

More specifically, the modes of action and prospective pharmacodynamic markers
identified for all FDA-licensed drugs are compiled and reported for the first time in the
literature. These data are reported in Appendix A.

https://drugs.ncats.io/
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12. Conclusions

The FDA is actively advancing science-based approaches, leading to significant mod-
ifications in the approval process for biosimilars. These changes include streamlining
analytical assessments, eliminating animal toxicology testing, dispensing with immuno-
genicity testing where it has no impact on disposition kinetics, and waiving patient testing
when pharmacodynamic (PD) markers are present. As a result, the largest category of
potential biosimilars, primarily monoclonal antibodies (mAbs), may still require extensive
patient testing, as mandated by the BPCIA.

While novel ‘omics’ methodologies offer considerable value in developing new prod-
ucts, their utility for establishing biosimilarity is limited. These approaches often necessitate
exhaustive research, potentially making them more cumbersome than traditional efficacy
testing in patients. Nearly all biological drugs undergo investigations into their mecha-
nisms of action when developed as new entities. In most cases, these findings can serve
as potential PD biomarkers. This paper enumerates these potential PD biomarkers for all
FDA-approved therapeutic proteins.

However, the FDA should select these PD biomarkers as appropriate for establishing
biosimilarity rather than leaving the choice to individual developers. Such regulatory
oversight would ensure a standardized and consistent assessment of biosimilar efficacy.
Receptor binding, often considered a precursor to the PD response, provides a more
sensitive, objective, and readily available method for evaluating the similarity between a
biosimilar candidate and its reference product. Moreover, the pharmacokinetic (PK) profile
often serves as a more reliable “PD biomarker” than any other identified PD markers since
all PD markers are initiated in response to the disposition profile.

It is anticipated that the FDA will take decisive action—initially declaring that efficacy
testing in patients is unnecessary and subsequently recommending specific PD markers, if
available, for comparison in PK/PD studies. These steps would serve as the final criteria
for establishing biosimilarity. This shift in scientific perspective would eliminate barriers to
approving numerous biosimilars without compromising patient safety. With approximately
200 molecules identified in this paper, poised to enter the market as biosimilars, such
progress would remain unattainable unless the FDA implements the suggested changes,
which it has the authority to do.
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Appendix A

Table A1. Mode of action of therapeutic proteins.

Mode of Action Biomarker Potential

AMPK and mTORC1 Signaling Monitoring these central energy sensors and regulators can be vital for drugs
targeting cellular energy status or metabolic health. [264]

Angiogenesis Indicators If a protein drug affects blood vessel formation, angiogenic factors like VEGF can
be used as biomarker. [265]

Apoptosis Markers
Evaluation of cell death can be instrumental for drugs designed to induce or
inhibit apoptosis. Markers such as caspase activation or phosphatidylserine

externalization can be employed. [266]

Autophagy Markers LC3-II and p62/SQSTM1, for drugs modulating autophagic activity. [267]



Pharmaceuticals 2023, 16, 1556 25 of 53

Table A1. Cont.

Mode of Action Biomarker Potential

Autophagy-lysosomal Pathway Markers Monitoring markers like p62/SQSTM1 or LAMP1 can give insights into the
autophagy-lysosomal activity upon drug treatment. [268]

Blood Coagulation Factors For protein drugs affecting hemostasis, measurement of specific clotting factors or
clotting times might be used. [269]

Bone Turnover Markers For protein drugs acting on the skeletal system, bone resorption or formation
markers can provide insight into their effect. [270]

Calcium Signaling Monitoring intracellular calcium flux and associated proteins can be important for
drugs that modulate calcium homeostasis or signaling pathways. [271]

Cell Cycle Regulators Drugs aiming at modulating the cell cycle might alter levels or activities of cyclins,
cyclin-dependent kinases, or associated inhibitors. [272]

Cell Metabolism Assessing the metabolic profile of cells or tissues after drug treatment, for instance,
glucose uptake, lactate production, or ATP level. [273]

Cell Surface Markers These markers can be evaluated for drugs targeting cell surface proteins or for
those that induce phenotypic changes in cells. [274]

Cellular Apoptosis or Proliferation Some protein drugs may induce or inhibit apoptosis or cell proliferation, which
can be quantified. [275]

Cellular Signaling Pathways Assessment of downstream or upstream signaling pathways that might be affected
by the protein drug. MAPK, PI3K/AKT, or JAK/STAT pathways. [276]

Changes in specific cell populations Especially in immunology, a protein drug can lead to the proliferation or reduction
of specific cell populations. [277]

Circadian Rhythms For protein drugs affecting cellular or physiological rhythms, markers related to
circadian clock genes such as PER, CRY, or CLOCK might be relevant. [278]

Complement Activation For specific therapeutic proteins, activation or inhibition of the complement
system can serve as a pharmacodynamic readout. [279]

Cytokine Levels Many protein drugs target specific cytokines or have effects on
cytokine levels. [280]

DNA Damage and Repair Markers γH2AX and other proteins associated with DNA damage response can be relevant
for drugs targeting genomic stability. [281]

Drug Concentration

Although this is more of a pharmacokinetic parameter, the concentration of the
drug in the bloodstream can sometimes serve as a surrogate for its

pharmacodynamic effects, significantly when the concentration closely correlates
with the drug’s effect. [282]

Endocannabinoid System Markers Components include CB1 and CB2 receptors or endocannabinoids (anandamide,
2-AG) for drugs affecting this system. [283]

Endocrine Biomarkers For protein drugs affecting the endocrine system, hormones or hormone
precursors might be potential pharmacodynamic indicators. [284]

Endocytosis and Exocytosis Metrics Protein drugs targeting cell trafficking mechanisms might alter the rates of
endocytosis or exocytosis, which can be tracked using various cellular assays. [285]

Endogenous Antioxidant Enzymes Superoxide dismutase (SOD), catalase, and glutathione peroxidase levels can be
tracked for oxidative stress modulation. [286]

Endoplasmic Reticulum (ER) Stress Markers GRP78/BiP, CHOP, XBP1, ATF6 for drugs influencing ER homeostasis or targeting
diseases related to protein misfolding. [287]

Endosome Trafficking Protein drugs that interfere with endosomal pathways can be monitored for their
effects using markers of early, late, and recycling endosomes. [288]

Endothelial Activation Markers For drugs impacting vascular inflammation or barrier function, such as E-selectin,
ICAM-1, and VCAM-1. [289]

Enzyme Activity If the protein drug targets an enzyme, measuring the change in enzyme activity
can be an effective biomarker. [290]
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Table A1. Cont.

Mode of Action Biomarker Potential

Epigenetic Markers Changes in DNA methylation, histone modification, or other epigenetic markers
might indicate a response to certain protein drugs. [290]

Exosome Release and Composition Certain protein drugs can influence exosomes and their cargo (RNA, protein,
lipids), especially those impacting intercellular communication. [291]

Extracellular Matrix (ECM) Components Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases
(TIMPs) are relevant for tissue remodeling or cancer invasion. [292]

Fatty Acid Oxidation (FAO) Rates Drugs targeting metabolic states might shift cells between carbohydrate and fatty
acid metabolism. [293]

Flow Cytometry This is particularly relevant for drugs that target cells of the immune system. Flow
cytometry can provide insights into cell numbers, phenotypes, and functions. [273]

Functional Assays
Depending on the intended drug action, functional assays can be developed. For
instance, if a protein drug aims to inhibit a specific cellular function, assays can be

set up to measure that specific function. [155]

Gene Expression Profiles Transcriptomics can reveal the downstream effects of a protein drug on cellular
gene expression. [294]

Glycolytic versus Oxidative Metabolism Assessing the switch between glycolytic and oxidative metabolism can be crucial
for drugs targeting metabolic diseases or cancer. [295]

Glycosylation Patterns Alterations in the glycosylation patterns of cells or proteins can directly or
indirectly affect some protein drugs. [296]

Gut Microbiota Composition Sequencing or metabolomic profiles of gut bacteria can be helpful for drugs
impacting the gut environment. [297]

Heat Shock Proteins (HSPs) As molecular chaperones, changes in HSP levels can indicate cellular stress
responses or protein homeostasis disruptions. [298]

Heat Shock Proteins (HSPs) These proteins respond to cellular stress and can be targets or indicators for
several drugs, especially in protein-misfolding diseases. [298]

Histone Modifications Epigenetic changes, like histone acetylation or methylation, can be markers for
drugs targeting chromatin remodeling or gene expression. [299]

Hormone Levels Assessment of specific hormone levels, like insulin, glucagon, or thyroid
hormones, can indicate drug impact on endocrine systems. [300]

Hypoxia Indicators For protein drugs affecting cellular responses to oxygen deprivation, markers like
HIF-1α can be interesting. [301]

Imaging Biomarkers Techniques like MRI, PET, and CT can be used to measure the effects of protein
drugs at the tissue or organ level. [302]

Immune Response Markers
The immune system might mount an antibody response for protein drugs,

especially those foreign to the human body. Monitoring anti-drug antibodies
(ADAs) can be a biomarker for potential immunogenicity issues. [303]

Inflammasome Activation Monitoring inflammasome components can be helpful in drugs targeting
inflammatory conditions or diseases like Alzheimer’s. [304]

Ion Channel Activity For protein drugs targeting ion channels, the measurement of ion flux or electrical
properties of cells could directly indicate drug action. [305]

Iron Metabolism Markers Ferritin, transferrin, and hepcidin for drugs modulating iron homeostasis. [306]

Levels of circulating drug target If the target of the protein drug circulates in the bloodstream (like a soluble
receptor or ligand), measuring its levels can serve as a biomarker. [246]

Ligand-Receptor Interactions Investigating a protein drug’s binding dynamics and affinity to its target receptor
can provide insights into its effectiveness. [307]

Lipidomic Profile Analyzing the cellular lipid composition can be informative, especially for drugs
impacting lipid metabolism or signaling. [308]
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Mode of Action Biomarker Potential

Lipophagy Markers Indicators of lipid droplet autophagy crucial for lipid
metabolism-related conditions. [309]

Lysosomal Enzymes The levels and activity of the specific lysosomal enzymes can be essential
biomarkers for enzyme replacement therapies in lysosomal storage disorders. [310]

Markers of Fibrosis
In conditions like liver or lung fibrosis, protein drugs might target fibrogenesis,
and thus, markers such as tissue collagen or specific matrix proteins can serve

as indicators. [311]

Metabolic Enzymes
Monitoring the levels or activities of critical metabolic enzymes, such as those

involved in glycolysis or the TCA cycle, can provide insights into the metabolic
state of cells upon drug treatment. [312]

MicroRNAs (miRNAs)
Changes in the expression of specific miRNAs can serve as biomarkers since they

play pivotal roles in gene regulation and might be influenced by
protein drugs. [313]

Mitochondrial Dynamics Assessing mitochondrial morphology and dynamics can indicate cellular health
and metabolism, especially for drugs targeting these organelles. [314]

Mitophagy Indicators Monitoring mitophagy, a process to degrade damaged mitochondria, can be
helpful in drugs targeting cellular health. [315]

mRNA Splicing Markers Such as components of the spliceosome for drugs modulating RNA splicing or
targeting splicing-related diseases. [316]

mTOR Signaling
The mechanistic target of the rapamycin (mTOR) pathway, central to cell growth

and metabolism, might be affected by certain protein drugs. Monitoring
components like p70S6 kinase or 4E-BP1 can be informative. [317]

Myelination Markers Proteins like MBP or PLP can be tracked for drugs targeting neurodegenerative
diseases or demyelinating conditions. [318]

NAD+/NADH Ratio A marker for cellular redox state and metabolism, especially relevant for aging

Neural Activity Markers c-Fos, Arc, or immediate early genes can be indicators of neural activity and
synaptic plasticity. [319]

Neurotransmitter Levels If the drug has a neurological target, neurotransmitter levels in the central nervous
system or peripheral tissues can be evaluated. [320]

Neurotrophic Factors In neurodegenerative diseases, protein drugs might aim to modulate the levels of
neurotrophic factors like BDNF, NGF, or GDNF. [321]

NO (Nitric Oxide) Production Relevant for cardiovascular or immunomodulatory drugs, NO levels can indicate
endothelial function and inflammatory states. [322]

Nrf2-Keap1 Pathway Tracking the Nrf2-Keap1 pathway components can be vital for drugs that
modulate oxidative stress. [323]

Nucleotide Metabolites Monitoring the levels of specific nucleotide metabolites can indicate cellular
activity or stress in response to certain protein drugs. [324]

Oxidative Phosphorylation
(OXPHOS) Metrics

OXPHOS or mitochondrial health markers can be relevant for protein drugs
targeting mitochondrial function. [325]

Oxidative Stress Markers Oxidative stress plays a role in numerous diseases, and markers like reactive
oxygen species (ROS) or antioxidant levels can be used to assess drug effects. [326]

Oxysterols Such as 24(S)-hydroxycholesterol 27-hydroxycholesterol for drugs targeting
cholesterol metabolism or diseases like Niemann-Pick type C. [327]

Peroxisome Proliferators-Activated
Receptors (PPARs)

As metabolic regulators, PPARs can be markers for drugs impacting lipid
metabolism or inflammation. [328]

Pharmacogenomic Biomarkers Some patients might respond differently to protein drugs based on genetic
variations. Exploring these can provide insights into efficacy and safety. [329]

Phosphorylation status of proteins The activation or deactivation of specific signaling pathways can be tracked by
looking at the phosphorylation status of essential proteins. [330]
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Mode of Action Biomarker Potential

Proteasome Activity Assessing proteasomal activity can be insightful for protein drugs that modulate
protein degradation. [331]

Proteomic Analysis To assess broader proteome for changes in protein levels or post-translational
modifications upon drug treatment. [57]

Reactive Oxygen Species (ROS) Levels As an indicator of oxidative stress, ROS can be monitored for drugs that either
induce or counteract cellular stress. [332]

Receptor Occupancy Measuring the degree to which a protein drug binds to its target receptor can be a
direct biomarker of its activity. [333]

Senescence-associated Secretory Phenotype
(SASP) Factors

Monitoring factors associated with cellular senescence might be relevant for drugs
targeting aging or oncogenesis. [334]

Sirtuin Activity Monitoring sirtuin proteins can be essential for drugs modulating cellular
longevity or metabolic health. [335]

Telomerase Activity Telomerase activity or telomere length might be relevant biomarkers for drugs
targeting cancer or aging processes. [336]

Tight Junction Proteins Markers like claudins, occludin, and ZO-1 are relevant for drugs targeting barrier
integrity, such as in gut or blood-brain barrier conditions. [337]

Tissue Repair and Regeneration Markers For protein drugs that facilitate tissue healing, markers of tissue repair or stem cell
activation might be relevant. [338]

Tumor Microenvironment Components Factors like TGF-beta, PD-L1, and various cytokines/chemokines for drugs
targeting cancer immune evasion. [339]

Unfolded Protein Response (UPR) in the ER For protein drugs that might induce ER stress, tracking components of the UPR
can be informative. [340]

Wnt Signaling Pathway Components Tracking this pathway can be crucial for drugs that modulate developmental
processes, tissue regeneration, or certain cancers. [341]

Table A2. Reported PD Biomarkers of approved therapeutic proteins.

No Protein Drug Pharmacodynamic Marker

1. Abatacept (Orencia) T cell proliferation & co-stimulation [342]

2. Adalimumab (Humira) TNF-alpha levels & inflammatory cytokine reduction [343]

3. Aducanumab (Aduhelm) Beta-amyloid plaques in the brain [344]

4. Aflibercept (Eylea) VEGF levels, Central retinal thickness [345]

5. Agalsidase Alfa (Replagal) Lyso-Gb3 levels, Kidney function [346]

6. Agalsidase Beta (Fabrazyme) Lyso-Gb3 levels, Kidney function [347]

7. Albiglutide (Tanzeum) Blood glucose & GLP-1 levels [348]

8. Albutrepenonacog Alfa (Idelvion) Factor IX activity levels [349]

9. Aldesleukin (Proleukin) T cell count, IL-2 levels [350]

10. Alefacept (Amevive) CD4 and CD8 memory T-cell count [351]

11. Alemtuzumab (Lemtrada) CD52-expressing cell count [352]

12. Alglucerase (Ceredase) Gaucher cell count, Chitotriosidase levels [353]

13. Alirocumab (Praluent) LDL cholesterol levels [354]

14. Alpha-1-proteinase inhibitor (Prolastin, etc.) Alpha-1 antitrypsin levels, Neutrophil elastase activity [355]

15. Alteplase (Activase) Fibrinolytic activity, clot dissolution [356]

16. Amivantamab (Rybrevant) EGFR and MET signaling inhibition [357]
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No Protein Drug Pharmacodynamic Marker

17. Anakinra (Kineret) IL-1β levels [358]

18. Ancestim (Stemgen) CD34+ cell count in peripheral blood [359]

19. Andexanet Alfa (Andexxa) Reversal of factor Xa inhibitors [360]

20. Anifrolumab (Saphnelo) Type I interferon gene signature [361]

21. Anistreplase (Eminase) Fibrinolytic activity [362]

22. Ansuvimab (Ebanga) Reduction in viral load of Ebola virus [363]

23. Atezolizumab (Tecentriq) PD-L1 expression on tumor & immune cells [364]

24. Avelumab (Bavencio) PD-L1 expression & T cell activation [365]

25. Benralizumab (Fasenra) Reduction in eosinophil counts [366]

26. Bermekimab (Xilonix) IL-1α levels [367]

27. Bevacizumab (Avastin) VEGF level & microvessel density [368]

28. Bezlotoxumab (Zinplava) Reduction in C. difficile infection recurrence [369]

29. Bimekizumab (Bimzelx) IL-17A and IL-17F levels [370]

30. Bivalirudin (Angiomax) Thrombin activity [371]

31. Blinatumomab (Blincyto) CD19+ B cell count [372]

32. Bone Morphogenetic Proteins (BMPs) Bone density or new bone formation [373]

33. Botulinum Toxin Type A (Botox) Neuromuscular transmission inhibition [374]

34. Botulinum Toxin Type B (Myobloc) Neuromuscular transmission inhibition [375]

35. Brodalumab (Siliq) IL-17 receptor A occupancy [376]

36. Brolucizumab (Beovu) VEGF levels, Central retinal thickness [377]

37. Burosumab (Crysvita) Serum phosphorus levels [378]

38. Calaspargase pegol (Asparlas) Asparagine levels [379]

39. Canakinumab (Ilaris) IL-1β levels & CRP [380]

40. Cetuximab (Erbitux) EGFR expression & phosphorylation [226]

41. Chymopapain (Chymodiactin) Disc volume reduction [381]

42. Coagulation factor IX (BeneFIX) Factor IX clotting activity [382]

43. Coagulation Factor VIIa (NovoSeven) Clotting activity [383]

44. Collagenase (Santyl) Degrades necrotic tissue [384]

45. Conestat alfa (Ruconest) Bradykinin levels [385]

46. Corticotropin (Acthar) Adrenal gland stimulation [386]

47. Cosyntropin-ACTH(1-24) (Cortrosyn) Adrenal gland stimulation [387]

48. Crizanlizumab (Adakveo) P-selectin inhibition [388]

49. Darbepoetin alfa (Aranesp) Hemoglobin or hematocrit level [389]

50. Denosumab (Prolia, Xgeva) RANKL inhibition & bone turnover markers [390]

51. Denosumab (Prolia) Bone mineral density & serum C-telopeptide [390]

52. Dupilumab (Dupixent) IL-4 and IL-13 signaling pathways [391]

53. Durvalumab (Imfinzi) PD-L1 expression in tumor cells [392]

54. Eculizumab (Soliris) Complement component C5 activity [393]

55. Edrecolomab (Panorex) EpCAM expression [394]

56. Efalizumab (Raptiva) CD11a expression [395]

57. Efgartigimod alfa IgG reduction [396]
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58. Elapegademase (Revcovi) ADA enzyme activity [397]

59. Elosulfase Alfa (Vimizim) GAG reduction [398]

60. Elotuzumab (Empliciti) SLAMF7 expression in myeloma cells [399]

61. Emapalumab (Gamifant) IFNγ levels [400]

62. Emicizumab (Hemlibra) Factor IXa and factor X bridging [401]

63. Enfortumab vedotin (Padcev) Nectin-4 expression [402]

64. Erenumab (Aimovig) CGRP receptor binding and inhibition [403]

65. Erythropoietin (EPO) Hemoglobin or hematocrit level [404]

66. Eteplirsen (Exondys 51) Dystrophin production in muscle tissue [405]

67. Evolocumab (Repatha) LDL cholesterol levels [406]

68. Fibrinolysin (Elase) Fibrin degradation [407]

69. Filgrastim (Neupogen) Neutrophil count [408]

70. Follitropin (Follistim, Gonal-f) Follicular development, Estradiol levels [409]

71. Fremanezumab (Ajovy) CGRP levels [410]

72. Galcanezumab (Emgality) CGRP levels [411]

73. Galcanezumab (Emgality) CGRP binding [412]

74. Galsulfase (Naglazyme) Urinary glycosaminoglycan levels [413]

75. Gemtuzumab ozogamicin (Mylotarg) CD33 antigen expression [414]

76. Girentuximab CAIX expression [415]

77. Glatiramer acetate (Copaxone) Immune modulation; T-cell response [416]

78. Glucagon recombinant (GlucaGen) Blood glucose elevation [417]

79. Glucarpidase (Voraxaze) Methotrexate levels reduction [418]

80. Golimumab (Simponi) TNFα inhibition [419]

81. Growth Hormone IGF-1 (Insulin-like Growth Factor 1) level [420,421]

82. Guselkumab (Tremfya) IL-23 levels & PASI score [422]

83. Human C1-esterase inhibitor (Berinert, Cinryze) C1-INH levels and activity [423]

84. Ibalizumab (Trogarzo) HIV-1 viral load & CD4+ T-cell count [353]

85. Imiglucerase (Cerezyme) Glucocerebroside levels, macrophage activity [424]

86. Inebilizumab (Uplizna) B-cell depletion [425]

87. Infliximab (Remicade) TNF-alpha levels & CRP [426]

88. Inotuzumab ozogamicin (Besponsa) CD22 expression [427]

89. Insulin Regular (Humulin R, etc) Glucose levels [428]

90. Interferons Expression of interferon-responsive genes [429]

91. Ipilimumab (Yervoy) T-cell activation [430]

92. Isatuximab (Sarclisa) CD38 expression [431]

93. Itolizumab (Alzumab) CD6 expression [432]

94. Ixekizumab (Taltz) PASI score, serum IL-17A levels [433]

95. Lanadelumab (Takhzyro) Plasma kallikrein activity [434]

96. Lanadelumab (Takhzyro) Plasma kallikrein inhibition [435]

97. Laronidase (Aldurazyme) Reduction of glycosaminoglycans [436]

98. Lepirudin (Refludan) Inhibition of thrombin [437]
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99. Leuprolide (Lupron) Reduction in testosterone or estradiol [438]

100. Liraglutide (Victoza) Blood glucose & GLP-1 levels [439]

101. Lixisenatide (Adlyxin) GLP-1 receptor activation [440]

102. Loncastuximab tesirine (Zynlonta) CD19 expression [441]

103. Lucinactant (Surfaxin) Improved lung compliance [441]

104. Luspatercept-aamt (Reblozyl) Erythroid maturation [441]

105. Lutropin alfa (Luveris) LH receptor activation [442]

106. Margetuximab (Margenza) HER2 expression [443]

107. Mecasermin (Increlex) IGF-1 receptor activation [444]

108. Menotropins (Menopur) FSH and LH receptor activation [445]

109. Mepolizumab (Nucala) IL-5 neutralization [446]

110. Metreleptin (Myalept) Leptin receptor activation [447]

111. Mirvetuximab Soravtansine Folate receptor alpha targeting [448]

112. Mogamulizumab (Poteligeo) CCR4 targeting [449]

113. Moxetumomab pasudotox (Lumoxiti) CD22 expression [450]

114. Muromonab (Orthoclone OKT3) CD3 expression [451]

115. Natalizumab (Tysabri) α4-integrin saturation [452]

116. Naxitamab (Danyelza) GD2 expression [453]

117. Necitumumab (Portrazza) EGFR targeting [454]

118. Nesiritide (Natrecor) Natriuretic peptide receptor A activation [455,456]

119. Netakimab (Netakimab) IL-17A inhibition [457,458]

120. Nimotuzumab (Theraloc, h-R3) EGFR targeting [459,460]

121. Nivolumab (Opdivo) PD-1 receptor occupancy & T cell function [233]

122. Nofetumomab fmerpentan (Verluma) Carcinoembryonic antigen (CEA) targeting [461]

123. Obiltoxaximab (Anthim) Protective antigen (PA) binding of Bacillus anthracis [462]

124. Obinutuzumab (Gazyva) CD20 targeting [234]

125. Ocrelizumab (Ocrevus) CD20 targeting [463]

126. Ocriplasmin (Jetrea) Vitreomacular adhesion dissolution [461]

127. Ofatumumab (Arzerra) CD20 targeting [235]

128. Olaratumab (Lartruvo) PDGFRα phosphorylation levels [376]

129. Olipudase alfa (Xenpozyme) Acid sphingomyelinase replacement [464]

130. Omalizumab (Xolair) Free serum IgE levels & FcεRI expression on basophils [465]

131. Oportuzumab monatox (Vicineum) N-acetylgalactosamine-4-sulfatase targeting [466]

132. Oprelvekin (Neumega) Thrombopoietin receptor activation [467]

133. Oxytocin (Pitocin) Oxytocin receptor activation [468]

134. Palifermin (Kepivance) Keratinocyte growth factor receptor activation [469]

135. Palivizumab (Synagis) RSV neutralization in serum [154]

136. Pancrelipase amylase (Creon) Pancreatic enzyme replacement [470]

137. Panitumumab (Vectibix) EGFR receptor occupancy & phosphorylation [471,472]

138. Parathyroid/Preotact (Preos) Parathyroid hormone (PTH) receptor activation [473]
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139. Pegademase bovine (Adagen) ADA enzyme replacement [474]

140. Pegaspargase (Oncaspar) Asparagine depletion [475]

141. Pegcetacoplan (Empaveli) Complement C3 inhibition [476]

142. Peginterferon alfa-2a (Pegasys) Interferon alpha receptor activation [477]

143. Peginterferon alfa-2b (PegIntron) Interferon alpha receptor activation [478]

144. Pegloticase (Krystexxa) Uric acid metabolism [479]

145. Pegvisomant (Somavert) Growth hormone receptor antagonist [480]

146. Pembrolizumab (Keytruda) PD-1 receptor occupancy & PD-L1 expression [481]

147. Pertuzumab (Perjeta) HER2 receptor dimerization inhibition [481]

148. Pertuzumab (Perjeta) HER2/neu targeting [482]

149. Pramlintide (Symlin) Amylin analogue [483]

150. Protein S human (PROS) Protein S supplementation [484]

151. Ramucirumab (Cyramza) VEGFR2 targeting [485]

152. Ranibizumab (Lucentis) VEGF level & macular thickness [486]

153. Rasburicase (Elitek) Uric acid conversion to allantoin [487]

154. Reteplase (Retavase) Plasminogen activation [488]

155. Rilonacept (Arcalyst) Interleukin-1 blockade [489]

156. Rituximab (Rituxan) CD20+ B cell depletion [490]

157. Romiplostim (Nplate) Thrombopoietin receptor stimulation [491]

158. Romosozumab (Evenity) Sclerostin levels & bone mineral density [492]

159. Sacrosidase (Sucraid) Sucrase replacement for sucrose digestion [493]

160. Sargramostim (Leukine) GM-CSF receptor activation [494]

161. Sarilumab (Kevzara) IL-6 receptor blockade & CRP [495]

162. Sebelipase alfa (Kanuma) Lysosomal acid lipase replacement [496]

163. Secretin (SecreFlo) Secretin receptor activation [497]

164. Secukinumab (Cosentyx) PASI score, serum IL-17A levels [241]

165. Sermorelin (Geref) GHRH receptor activation [498]

166. Siltuximab (Sylvant) IL-6 targeting [499]

167. Somatotropin (Genotropin) GH receptor activation [500]

168. Streptokinase (Streptase) Plasminogen activation [501]

169. Tagraxofusp (Elzonris) CD123-directed cytotoxin [502]

170. Taliglucerase alfa (Elelyso) Glucocerebrosidase enzyme replacement [503]

171. Teduglutide (Gattex) GLP-2 receptor activation [504]

172. Tenecteplase (TNKase) Plasminogen activation [505]

173. Teriparatide (Forteo) Bone formation stimulation [472]

174. Terlipressin (Varpress) Vasoconstriction through V1 receptor activation [506]

175. Tesamorelin (Egrifta) GH-releasing hormone receptor activation [507]

176. Thymalfasin (Zadaxin) Immunomodulation, T-cell stimulation [508]

177. Thyrotropin Alfa (Thyrogen) Thyroid-stimulating hormone receptor activation [509]

178. Tirzepatide (Mounjaro) Dual GLP-1 and GIP receptor agonism [510]

179. Tisotumab vedotin (Tivdak) ADC targeting tissue factor [511]
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180. Tocilizumab (Actemra) IL-6 receptor blockade [512]

181. Tositumomab (Bexxar) CD20 targeting [513]

182. Trastuzumab (Herceptin) HER2/neu receptor expression [514]

183. Urofollitropin (Bravelle) Follicle-stimulating hormone stimulation [515]

184. Urokinase (Abbokinase) Plasminogen activation [516]

185. Ustekinumab (Stelara) Inhibition of the p40 subunit of interleukin-12 (IL-12) and
interleukin-23 (IL-23) [517]

186. Vasopressin (Vasostrict) V1 and V2 receptor activation [518]

187. Vedolizumab (Entyvio) α4β7 integrin receptor occupancy [519]

188. Velaglucerase alfa (Vpriv) Glucocerebrosidase enzyme replacement [520]
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