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Abstract: Alzheimer’s disease causes chronic neurodegeneration and is the leading cause of dementia
in the world. The causes of this disease are not fully understood but seem to involve two essential
cerebral pathways: cholinergic and amyloid. The simultaneous inhibition of AChE, BuChE, and
BACE-1, essential enzymes involved in those pathways, is a promising therapeutic approach to treat
the symptoms and, hopefully, also halt the disease progression. This study sought to identify triple
enzymatic inhibitors based on stereo-electronic requirements deduced from molecular modeling
of AChE, BuChE, and BACE-1 active sites. A pharmacophore model was built, displaying four
hydrophobic centers, three hydrogen bond acceptors, and one positively charged nitrogen, and
used to prioritize molecules found in virtual libraries. Compounds showing adequate overlapping
rates with the pharmacophore were subjected to molecular docking against the three enzymes and
those with an adequate docking score (n = 12) were evaluated for physicochemical and toxicological
parameters and commercial availability. The structure exhibiting the greatest inhibitory potential
against all three enzymes was subjected to molecular dynamics simulations (100 ns) to assess the
stability of the inhibitor-enzyme systems. The results of this in silico approach indicate ZINC1733
can be a potential multi-target inhibitor of AChE, BuChE, and BACE-1, and future enzymatic assays
are planned to validate those results.

Keywords: Alzheimer’s disease; molecular docking; molecular dynamics; pharmacophore model;
triple inhibitors

1. Introduction

Alzheimer’s disease (AD) is a disorder characterized by a progressive loss of memory
and consequent loss of skills to perform common tasks [1]. AD is responsible for about 60 to
80% of non-regressive dementia cases in the world [2] but, despite its wide distribution and
the resources so far dedicated to its study, its pathogenesis has not been fully elucidated.
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Several hypotheses have been proposed to explain AD, and the ones having so far yielded
therapeutic approaches are the cholinergic and amyloid hypotheses [3,4].

The cholinergic hypothesis states that cognitive symptoms characteristic of AD are
due to the loss of cholinergic neurons, with consequent reduction of acetylcholine levels
in the brain. Acetylcholine levels are partially regulated by acetylcholinesterase (AChE,
E.C. 3.1.1.7) and butyrylcholinesterase (BuChE, E.C. 3.1.1.8), which are responsible for the
hydrolysis of excess acetylcholine released in the synaptic cleft [5]. The inhibition of those
enzymes has been shown to be useful in the treatment of patients with AD [3] as it allows
higher concentrations of acetylcholine to act for longer on its receptors.

The amyloid hypothesis associates AD symptoms with the formation of extracellular
deposits of the β-amyloid (βA) peptide, produced by the action of proteolytic enzymes
(alpha, beta, and gamma secretases) on the amyloid precursor protein (APP) [4,6]. Beta-
secretase 1 (BACE-1, E.C. 3.4.23.46) starts the enzymatic process by hydrolyzing APP,
producing fragments that undergo further transformation by gamma secretase to form
the βA peptide. The aggregation of these peptides in extracellular clusters promotes the
formation of structures that are deposited in the environment of the neuronal tissue, and
contribute to progressive synaptic dysfunction, neurodegeneration, and neuronal death.

Despite representing the main form of dementia all over the world, the options
for pharmacological treatment of AD patients are woefully limited, mostly based on
cholinesterases and symptomatic, with low therapeutic efficacy and presenting serious
adverse effects such as hepatotoxicity, hypertension, and weight loss [7,8]. A recent break-
through was achieved with the FDA approval in 2021 of the first monoclonal antibody
targeting β-amyloid aggregates [9], followed by a second one in 2023 [10]. They seem to
slow down the progression of the disease and are the first examples of treatments effectively
addressing the amyloid hypothesis.

Given the current scenario, the search for new drugs capable of treating symptoms,
slowing down, stopping, or even reversing neurodegeneration has become one of the
priorities of modern medicine. Failures in the development of anti-Alzheimer’s drugs are
mainly related to the fact that much is still unknown about its causes, physiopathology,
and druggable targets. Also, most approaches typically involve only one of the few known
pathological pathways and disregard the multifactorial aspect of the disease [11]. The
changes observed in AD patients have been shown to be interconnected, which reinforces
the need for treatments capable of modulating several targets and biological systems
simultaneously [12–15].

The standard therapeutic approach to reach different targets in the same disease state
is to use a combination of drugs [16,17]. This approach, though proven effective throughout
the years, has its own inherent risks, including the potential for adverse drug interactions
and reduced patient compliance [18]. These risks are even greater in AD, as it mainly affects
the elderly, who usually have associated comorbidities.

One strategy to minimize these risks is the development of drugs capable of interacting
simultaneously with more than one target involved in a disease. These drugs, known
as multi-target drugs [16,17,19], have shown superior results when compared to drug
combination therapy in the treatment of patients with complex diseases such as cancer,
with lower risk of adverse events, higher effectiveness, and lower vulnerability to biological
resistance. Some multi-target drugs have been discovered by serendipity, but a more
rational approach would be to use the rapidly evolving technology of molecular modeling
to identify and map pharmacophores in different targets and overlap known structures, or
plan the synthesis of new ones, fitting those pharmacophoric maps [17,20].

This synthetic approach, also known as molecular hybridization, creates a new chemi-
cal entity by joining two or more pharmacophore units through a ligand in order to obtain
a molecule fitting the mapped pharmacophoric pockets and capable of targeting two or
more enzymes or receptors [19,20]. It resembles the concept of chimeric molecules [21], but
is more specific to multiple intracellular targets.
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Despite the potential benefits presented by hybrid construction, this technique has
limitations. Those hybrid molecules are built in a reduced chemical space, mostly limited
to molecules with known activity, which were used to build/validate the pharmacophoric
mapping [22]. They also tend to present structural complexity and unfavorable physico-
chemical properties, which make them poor drug candidates.

As previously mentioned, computer simulation techniques are becoming increasingly
important in rational drug development, especially if several computational tools are used
in tandem to complete and reinforce each other [23]. Computational strategies can identify
essential stereo-electronic requirements for inhibition of more than one target simulta-
neously, using virtual screening for pharmacophore models, evaluation of interactions
between molecules and the target active site and finally, molecular docking, which predicts
the spatial orientation of an active compound within its binding site [24,25]. A further
computational approach, molecular dynamics (MD) simulation, describes the variation in
molecular behavior as a function of time, considering the system’s flexibility [26,27]. Those
strategies combined can lead to more efficient structures and evaluate the potential activity
of compounds not yet synthesized, based only on their chemical structure.

Employing the power of those computational tools combined, the objective of this
study was to identify potential triple inhibitors against AChE, BuChE, and BACE-1 by
using hierarchical virtual screening (pharmacophore models and molecular docking) and
filtering by physicochemical, toxicological parameters, as well as commercial availability.

Structures evaluated in this study were retrieved from the following databases: Sigma
Aldrich® (St. Louis, MO, USA) (n = 214,446), FDA approved drug bank (n = 1615), Our Own
Chemical Collection (OOCC) at the Federal University of São João del-Rey—UFSJ (n = 618),
collection of thiazolidine derivatives at the Federal University of Pernambuco—UFPE
(n = 112), and the opnMe platform from Boehringer Ingelheim (n = 42).

2. Results
2.1. Pharmacophore Models Building and Validation

Known inhibitors (n = 50) showing inhibition higher than 30% (at 10.0 µM) and/or
IC50 < 10.0 µM (n = 16) of the three targets were selected to compose the training and test
sets. The compounds were clustered according to 2D structural similarity based on the
Tanimoto coefficient (>0.70) [28]. From each group, molecules with the best profiles were
selected for the composition of the training set (n = 9), and the GALAHADTM module was
used to generate pharmacophore models, selecting ten of them as potential triple inhibitors
(Table 1).

Table 1. GALAHAD™ internal statistical parameters for pharmacophore models of AChE, BuChE,
and BACE-1 inhibitors.

Model Energy (kcal/mol) Pareto Sterics HBond Mol_qry

01 * 1450.77 0 876.2 126.8 41.05
02 62.98 0 796.1 128.0 32.26

03 * 8.71 × 109 0 813.6 134.4 39.55
04 * 154.37 0 766.5 129.7 31.13
05 17.39 0 686.0 123.4 36.62
06 60.38 0 719.8 126.2 33.27
07 27.95 0 799.4 125.9 20.92
08 26.64 0 791.3 118.6 35.18
09 17.97 0 785.6 120.7 28.20

10 * 1343.38 0 811.9 118.9 36.97
* Excluded pharmacophore models.

In addition to the GALAHADTM parameters, we evaluated the pharmacophore mod-
els’ ability to differentiate active compounds (true positives) from inactive compounds
(false positives = decoys), through the Receiver Operating Characteristic Curve (ROC curve)
and the Area Under the ROC Curve (AUC-ROC) (Figure 1) [29].
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Figure 1. ROC curves obtained for pharmacophore models of AChE, BuChE, and BACE-1 inhibitors
(A = AUC ROC).

These pharmacophore models were evaluated on their ability to identify active com-
pounds against decoys and to assign a higher score to true positives in the initial phases
of the alignment process [30,31] with the aid of early enrichment by Boltzmann-enhanced
discrimination of ROC (BEDROC), presented in Table 2.

Table 2. Evaluation of the early enrichment rate of pharmacophore models for the AChE, BuChE,
and BACE-1 inhibitors.

Model BEDROC (α = 20)

02 0.24
05 0.25
06 0.17
07 0.33
08 0.75
09 0.22

Based on the AUC and BEDROC data, model 08 (AUC = 0.72/BEDROC = 0.75) met
the requirements for a reliable pharmacophore model (AUC > 0.7, BEDROC > 0.5) and was
selected for the virtual screening step (Figure 2).
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Figure 2. Representation of the best pharmacophore model for AChE, BuChE, and BACE-1 inhibitors
(cyan spheres: hydrophobic centers; green: H-bond acceptors; red: positively charged center). The
size of the spheres varies according to the tolerance radius calculated by GALAHADTM. Numbers
represent distances in Angstroms.

This pharmacophore model was previously built and validated by our group [32] and
applied to a different set of databases. The results obtained here are consistent with the
ones from our previous study and will expand our choices of potential triple inhibitors for
synthesis, testing and further validation of our computational methods.

2.2. Hierarchical Virtual Screening

The structures selected were aligned to the best pharmacophore model, with 1941 show-
ing partial overlap with QueryFit (QFIT) higher than 0.0 (2.69 < QFIT < 69.32). Seventy-one
molecules meeting the criteria for mean and standard deviation (QFIT > 30.88) were selected
for molecular docking assays.

A validated method [30] was used to evaluate the interactions of ligands against
cholinesterases, showing the efficiency of the Auto-Dock Vina 1.1.2 program for these en-
zymes (RMSDAChE = 1.97 Å/AUCAChE = 0.88 and RMSDBuChE = 1.77 Å/AUCBuChE = 0.86).
The tests with BACE-1 were conducted using the GOLD 5.8.1 program with the ASP
scoring function (RMSD = 1.13 Å/AUC = 0.78) [33]. Compounds presenting an energy
value smaller than the average of the calculated energies compared to cholinesterases
(AChE < −7.95 kcal/mol and BuChE < −4.60 kcal/mol) and higher than the average of
the scores calculated for BACE-1 (>37.8) (n = 12) were considered to have the best triple in-
hibition profile and selected for the prediction of toxicological and pharmacokinetic parameters.

This pharmacophore model was previously built by our group and applied to a
different set of databases after thorough validation of the computational methods. The
results obtained here are consistent with the ones from our previous study and will expand
our choices of potential triple inhibitors for synthesis, testing and further validation of our
computational methods; see Section 4.

2.3. Prediction of Toxicological and Physicochemical Parameters and Evaluation of
Interaction Maps

The molecules prioritized by the pharmacophore model and molecular docking
(n = 12) were evaluated for mutagenic potential through the AMES test in silico predic-
tion [34]. Three of them showed potential mutagenicity and were discarded. The physico-
chemical properties of the nine remaining molecules were evaluated, and the results are
presented in Table 3.
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Table 3. Physicochemical properties of the 9 molecules selected by hierarchical virtual screening.

MW (g/mol) cLogP Rot. Bond HBA HBD PSA (Å2)

ZINC6063 495.542 3.0711 13 6 3 101
ZINC1733 318.424 3.8045 5 4 1 42
ZINC1958 697.924 * 6.2240 * 13 * 10 2 139
ZINC5368 509.647 * 5.4016 * 17 * 6 2 106
ZINC6214 557.054 * 5.9325 * 11 * 7 3 113
ZINC1219 480.948 4.7006 6 7 0 85
ZINC1221 480.48 4.7006 6 7 0 85
ZINC1223 480.948 4.7006 6 7 0 85
ZINC6949 409.534 3.7990 8 7 0 65

* Penalized parameters; MW = Molecular weight; cLogP = calculated partition coefficient; Rot. Bond = Number
of rotatable bonds; HBA = Hydrogen Bonding Acceptors; HBD = Hydrogen Bonding Donors; PSA = Polar
Surface Area.

Three of the structures present more than one penalty regarding the parameters MW,
cLogP, and number of rotatable bonds (ZINC1958, ZINC5368 and ZINC6214), as postulated
by Lipinski [35] and Weber [36], and were eliminated from the study. Of the remaining
six candidates, only ZINC1733 and ZINC6063 (Figure 3) are commercially available as
a single enantiomer. Finding compounds commercially available is important to set the
stage for future in vitro assays towards the validation of the pharmacophore model and
establishment of lead structures for SAR studies. The values generated on their hierarchical
virtual screenings are presented in Table 4.
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Table 4. Virtual screening parameters of ZINC1733 and ZINC6063.

QFIT ScoreAChE
(kcal/mol)

ScoreBuChE
(kcal/mol) ScoreBACE-1

ZINC1733 31.95 −9.3 −8.9 38.83

ZINC6063 31.67 −8.0 −8.1 43.55

Three-dimensional maps were generated to describe and evaluate intermolecular
interactions established by ZINC1733 and ZINC6063 at the binding sites of the three targets
(Figures 4–6). For those, and all subsequent interaction maps, the following color scheme
is used:
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Figure 4. Representation of the intermolecular interactions of the crystallographic ligand dihydrotan-
shinone I (a), ZINC1733 (b) and ZINC6063 (c) at the AChE binding site.

Structures: white = carbons of the ligand;
blue = nitrogen; red = oxygen;
green = fluorine; yellow = sulfur;
gold = carbons of amino acid residues in the AChE active site;
blue = carbons of amino acid residues in the BuChE active site;
purple = carbons of amino acid residues in the BACE-1 active site.
Interactions: white sphere = aromatic center; yellow sphere = charged center;
blue line = hydrogen bond; green dashed line = pi stacking interaction;
gray dashed line = hydrophobic interaction;
yellow dashed line = ion-ion interaction.
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Figure 5. Representation of the intermolecular interactions of the crystallographic ligand tacrine (a),
ZINC1733 (b) and ZINC6063 (c) at the BuChE binding site.

The AChE inhibitor and crystallographic ligand, dihydrotanshinone I (PDB ID: 4M0E),
has its intermolecular interactions at the binding site presented in Figure 4a. Hydrophobic
interactions are observed with residues Tyr72, Trp286, Phe297, Tyr337, Phe338, and Tyr341.
Aromatic centers establish pi-stacking interactions with Trp286, and one of the oxygen
atoms on the aromatic ring acts as hydrogen bond acceptor with Phe295.

The replacement of the crystallographic ligand for ZINC1733 at the AChE binding
site (Figure 4b) maps hydrophobic interactions between the phenyl-quinazoline group and
Trp286, Phe338, and Tyr341 and pi-stacking interactions with Trp286 and Tyr341.

Replacement of the crystallographic ligand for ZINC6063 shows hydrophobic interac-
tions with Tyr72 and Tyr341 residues (Figure 4c) and pi-stacking between the catecholic
ring and Trp286. The hydroxyl group forms hydrogen bonds with Tyr72 and Thr75.
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Figure 6. Representation of the intermolecular interactions of the crystallographic ligand 6UWP (a),
ZINC1733 (b) and ZINC6063 (c) at the BACE-1 binding site.

Tacrine (PDB ID: 4BDS) is the BuChE crystallographic ligand. Its heteroaromatic ring
establishes pi-stacking interactions with Trp82 (Figure 5a) and hydrophobic interactions
with Trp82, Ala328 and Trp430. When tacrine is replaced by ZINC1733 in the active site
of the crystallographic model, its 2-phenyl-quinazoline nucleus establishes hydrophobic
interactions with Trp82, Ala328, Tyr332, Trp430 and Tyr440, as well as pi-stacking also with
Trp82 (Figure 5b). At the same time, the pyrrolidine group interacts with Thr120 and Asp70,
a residue with which an ion-ion bond can also be observed. ZINC6063, in turn, shows
interactions of a hydrophobic nature with Trp82 andAsp70 (Figure 5c). Its indoline group,
on the other hand, establishes hydrophobic interactions with Phe329 and Tyr332.

The BACE-1 crystallographic ligand (PDB ID: 6UWP) has the chemical name (1R, 2R)-
2-[(4aR,7aR)-2-amino-6-(pyrim-idin-2-yl)-4a,5,6,7-tetrahydropyrrolo-[3,4-d]-[1,3] thiazin-7a-
(4H)-yl]-N-{[(1R,2R)-2-methylcyclopropyl]methyl}cyclopropane-1-carboxamide (Figure 6a).
Nitrogens in the thiazinamide ring form hydrogen bonds with the catalytic residues, Asp32
and Asp228, and the side chain nitrogen forms hydrogen bonds with the Gly230 residue.
The pyrimidine ring forms a hydrogen bond with Trp76, and also establishes hydrophobic
interactions with Val69 and Arg128, just as the pyrrole-thiazinamide nucleus establishes
hydrophobic interactions with Leu30, Tyr71, and Ile118 residues.

When 6UWP is replaced by ZINC1733 in the active site of the BACE-1 crystallographic
model (Figure 6b), its phenyl-quinazoline group establishes pi-stacking interactions with
Tyr71 and hydrophobic interactions with Val69, Tyr71, Phe108, and Trp115. The pyrrolidine
ring establishes hydrophobic interactions with Tyr198 and Ile226. The pyrrolidinyl nitrogen
forms an ion-ion bond with the catalytic Asp228 residue.
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ZINC6063, in turn, establishes hydrophobic interactions with Leu30, Tyr71, Gln73,
Phe108, Trp115, and Ile118 (Figure 6c). It forms hydrogen bonds with Trp76, Asn233, Tyr71,
and Gly230. It also forms an ion-ion bond between the tertiary amine of the ligand and the
Asp32 residue.

2.4. Molecular Dynamics (MD)

MD simulations with AChE, BuChE, and BACE-1 apo and the top-ranked molecule
(ZINC1733) with the three targets were performed. The systems were initially evaluated
for structural stability based on the Root Mean Square Value (RMSD) along the 100 ns
trajectory, and the results are shown in Figure 7.
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The evaluation of the trajectories allows us to affirm that the systems achieved the
equilibrium state at different times for the simulations (AChE apo: 15 ns; AChE complexed:
25 ns; BuChE apo: 20 ns; BuChE complexed: 30 ns; BACE-1 apo: 10 ns; BACE-1 complexed:
40 ns).

Those simulation steps were considered as the initial time for the productive phase for
each one of the systems, until the final simulation time, 100 ns (except for the BuChE apo
form, which was considered as a productive phase from 20 until 95 ns).

Besides RMSD analysis, we evaluate the atomic fluctuations of the residues individ-
ually by calculating their root-mean-square fluctuation (RMSF). The fluctuation plots of
the residues were generated for the apo form and compared with those of the respective
complexes with ZINC1733, during the productive phase from each simulation (Figure 8).
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Figure 8. RMSF (Å) (backbone) of APO structures and complexes of AChE (a), BuChE (b), and
BACE-1 (c) with ZINC1733 during the respective productive phase. The blue highlights correspond
to the binding site regions.

Atomic fluctuation of the complex with AChE (RMSF = 0.9 ± 0.5 Å) and the APO
form (RMSF = 0.8 ± 0.4 Å) in absolute terms are statistically equivalent (Figure 8a), sim-
ilar to what is observed for the BuChE APO form (RMSF = 1.0 ± 0.5 Å) and complex
(RMSF = 0.9 ± 0.5 Å) (Figure 8b). By graphical analysis, fluctuations are more evident
for the APO form in the active binding sites of both cholinesterases, especially at the
residues Tyr72, Asp74, and Trp86 from AChE and Asn68 and Asp70 from BuChE. The
BACE-1 atomic fluctuations in apo form (RMSF = 1.1 ± 0.6 Å) and in the complexed form
with ZINC1733 (RMSF = 1.0 ± 0.6 Å) also reveal that the system fluctuations are similar
(Figure 8c) and catalytic residues show similar behavior in both systems. Similar structural
behavior can be seen by PCA plot (see Supplementary Material Figure S1), in which higher
fluctuation regions are preserved.

After evaluating the system’s stability, we analyzed the interactions observed during
the MD simulations. Initially, the number and permanence of hydrogen bonds established
between the amino acids of AChE, BuChE, and BACE-1 active sites and ZINC1733 during
the MD productive phase were evaluated (Figure 9).
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Figure 9. Permanence rate of hydrogen interactions (hbond) of ZINC1733 in the active site of AChE,
BuChE and BACE-1 during the production phase and identification of the involved pairs.

At the AChE active site, only one hydrogen bond was observed for a period greater
than 10%, established between the ligand nitrogen N2 and the residue Ser293 (79.88%). In
BuChE, on the other hand, none of the residues was involved in hydrogen bonding with
permanence greater than 10%. In the BACE-1 complex, H interactions occurring for more
than 10% of the simulation time are reported with Gly34 (34.28%), Gln73 (12.48%), and
Trp76 (60.73%).

In addition to the information obtained from the hydrogen bonds observed during the
MD simulation productive phase, we evaluated other interactions that can be established
between the ligand-protein. We selected a graphical simulation representation through
the analysis of different RMSD values to determine a cutoff point at the maximum RMSD
value between the conformations. The evaluations indicated that, for the AChE-ligand
complex, the most appropriate RMSD value for use as a cutoff point was 1.3 Å, while for
the ligand complexed to BuChE and BACE-1 systems, the value was 1.2 Å. Thus, selected
structures were the conformations at the time 69.65 ns for AChE-ZINC1733, 45.70 ns for
BuChE-ZINC1733, and 90.60 ns for BACE-1-ZINC1733. Graphical representations are
shown in Figures 10–12.
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Figure 12. Interactions of ZINC1733 at the BACE-1 binding site obtained from the MD simulation
representative structure (90.60 ns).

The representative structure interaction map of the ZINC1733 complex in AChE
(Figure 10) shows that the phenyl ring linked to the quinazoline establishes hydrophobic
interactions with residues Tyr72, Tyr124, Trp286, Phe338, and Tyr341. In addition, the side
chain nitrogen acts as a hydrogen bond donor to Ser293.

The representative structure of the ZINC1733 complex with BuChE (Figure 11) il-
lustrates the occurrence of hydrophobic interactions between the phenyl ring linked to
quinazoline and residues Phe73, Ala328, and Trp430. In addition, we observe hydrophobic
interactions between the pyrrolidine ligand group and Ile69 residue.

The interactions map of the ZINC1733 complex representative structure in BACE-1
(Figure 12) shows one hydrogen bond established between the N atom of the quinazoline
group with residue Trp76, in which the ligand acts as an acceptor. The quinazoline group is
also involved in hydrophobic interactions with Val69, Tyr71, Ile126, and Tyr198, while the
phenyl ring linked to this group establishes similar interactions with Phe108 and Ile118.
In addition, a hydrophobic interaction is observed between the pyrrolidine ring and the
residue Val332, and one hydrogen bond is established between the N side chain and Gly41,
which acts as an acceptor.

Additionally, the MM/PBSA method was applied to production phases of simulations
of complexes and results are presented in Table 5.
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Table 5. Binding free energy and components calculated by g_mmpbsa tools.

System EvdW (kJ/mol) Eelec (kJ/mol) GMM (kJ/mol) Gpolar (kJ/mol) Gnonpolar
(kJ/mol)

∆Gbinding
(kJ/mol)

AChE-ZN1733 −120.938 −1.557 −122.495 66.866 3.569 −67.980
BuChE-ZN1733 −144.441 −17.825 −162.266 96.478 3.516 −80.487
BACE-ZN1733 −190.126 −28.716 −218.842 132.305 3.443 −104.466

3. Discussion
3.1. Pharmacophore Model Building and Validation

The use of pharmacophore models is a widely recognized method for fast and efficient
virtual screening of potential new drugs. It presents up to 30% success in recognizing bioac-
tive molecules and can evaluate chemically diverse ligands in extensive databases [37,38].
Additionally, it does not need the full three-dimensional structure of the biological target
elucidated [39], which increases its applicability.

The quality of pharmacophore models is directly associated with the original set of
molecules. In our case, they need to show different chemotypes and affinity towards the
three targets simultaneously. In this study, we clustered the “actives” set in groups based
on the Tanimoto coefficient, as this strategy guarantees more accurate pharmacophore
models [40]. Nine molecules were selected with diverse structural nuclei after the similarity
assessment allowed that choice.

The GALAHADTM module was used to generate pharmacophore models and we eval-
uated the statistical parameters provided to select the best one (Table 1). Previous studies
showed that pharmacophore models generated by energetically unfavorable conformations
of the ligands are unreliable and should be excluded [41,42]. In this context, the pharma-
cophore models 01, 03, 04, and 10 presented an energy penalty (Energy > 100.0 kcal/mol)
and were excluded. However, this parameter was not sufficient to select a single pharma-
cophore model. The PARETO value, which represents a normalization of the values of the
quality components of the pharmacophore models (STERICS, HBOND, and MOL_QRY),
was then evaluated and demonstrated that no pharmacophore model is statistically su-
perior compared to the others [43], since all values were equal to zero. This measure
was also insufficient to select the best pharmacophore model to be used in the stages of
virtual screening.

Our next step was to apply enrichment metrics AUC ROC and BEDROC (Figure 1;
Table 2). An ideal ROC curve grows vertically along the Y axis, symbolizing the iden-
tification of true positives (active), and proceeds horizontally to the right after reaching
the maximum point, which means that decoys are not flagged by the pharmacophore
model [44]. Under these ideal conditions, the value of the area under the curve would
be equal to 1.0. In contrast, an area under the curve less than 0.5 corresponds to pharma-
cophore models with lower performance than a randomized trial [45]. To be considered
predictive, a pharmacophore model must have AUC > 0.7 [46] and BEDROC value (α = 20)
> 0.5 [47]. Pharmacophore model 8 (AUC = 0.72 and BEDROC = 0.75) met the requirements
for a reliable pharmacophore model and, therefore, was selected for virtual screening.

Model 8 (Figure 2) has three acceptor centers for hydrogen bonding, four hydrophobic
centers, and one positively charged center, characteristics described as important for activ-
ity [30,48–53]. The construction of a single pharmacophore model for the identification of
potential triple inhibitors for the treatment of patients with AD consists of an innovative
approach, in view of the unavailability of such models for AChE, BuChE, and BACE-1
described in the literature. Virtual screening guided by our model allows the evaluation
of large libraries of compounds, which expands the chemical search space, in addition to
identifying less complex molecules than classic hybrids, increasing the chances of success.
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3.2. Hierarchical Virtual Screening

Pharmacophore model 8 was used for virtual screening of molecules present in diverse
libraries, from which 71 were selected. However, this technique has limitations, such as
the absence of efficient scoring metrics, based mainly on the deviation between the model
and the aligned molecules, without considering compatibility with the receptor [54]. The
technique also depends on databases of pre-existing conformations, allowing molecules
to be neglected in screening because they do not have a specific conformation. To work
around these limitations, target-based methods such as molecular docking were employed.

The combination of strategies based on ligands and target structure has been shown to
be efficient in the identification of bioactive molecules, where commonly banks of molecules
are subjected to filters with less computational demand, such as pharmacophore models,
and then directed to computationally costlier strategies, such as molecular docking [55,56].
Thus, we subjected the 71 molecules selected through pharmacophore model virtual screen-
ing to molecular docking assays against AChE, BuChE, and BACE-1 and, with the aid of
this technique, it was possible to evaluate not only the stereo-electronic characteristics nec-
essary for triple inhibition, but the ability of the selected molecules to establish connections
with the respective binding sites.

After the docking simulations, the molecules with the best score parameters (n = 12)
were selected to predict toxicological and physicochemical parameters and evaluation of
interactions established at the active site.

3.3. Prediction of Toxicological and Physicochemical Parameters Predictions and Evaluation of
Interaction Maps

Toxicological evaluation is fundamental in the initial phase in order to optimize the
drug development process. It is justified when we consider that this process is slow and
expensive, taking an average of 15 years and an approximate cost of 1.3 billion dollars from
the initial research phases until the market launch [57].

The main approaches to assess toxicity involve in vitro and in vivo assays, which
depend on the synthesis of compounds and are not viable in large libraries [58]. For this
reason, computational assays for predicting toxicity have been employed to discard those
molecules with toxic potential in the initial stages. In this study, we have evaluated toxicity
through in silico prediction by the Ames test, which is able to assess the possible mutagenic
effects of a compound [59].

We also use in silico strategies for prediction of physicochemical parameters, as
they influence the pharmacokinetics of a compound, another factor often contributing to
failure in the drug development process [60]. Several computational approaches have been
developed in order to predict absorption, distribution, metabolism and excretion (ADME)
during the initial stages of the drug discovery [61].

The evaluation of physicochemical parameters based on Lipinski’s and Veber’s rules
can predict the ability of molecules to cross biological barriers, present appropriate oral
availability, and establish interactions capable of triggering a biological response [35,36].
The molecules filtered through virtual screening and Ames prediction had their physico-
chemical parameters evaluated and the ones with more than one penalty were discarded.

Finally, the commercial availability of the three final structures was evaluated, aiming
to prioritize molecules easily accessible for preliminary biological assays of model valida-
tion. We discarded compounds produced and commercialized as a racemic mixture, as
different enantiomers can promote differences in pharmacodynamics and pharmacological
activity, and, at the initial stages of drug discovery, racemic mixtures are not advanta-
geous [62].

The prioritized molecule ZINC1733 (Figure 3a) has no penalties for the physicochemi-
cal characteristics analyzed, suggesting oral bioavailability, which is fundamental in view
of the chronic nature of AD and the need to establish patient compliance. From a struc-
tural point of view, it has a 2-phenyl-quinazoline nucleus that seems to be important for
biological activity.
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The second prioritized molecule ZINC6063 (Figure 3b) is the FDA approved drug
Silodosin. It is an orally administered drug, alpha-1 adrenergic receptor antagonist, used to
relieve benign prostatic hyperplasia symptoms [63]. From a structural point of view, the
molecule presents an indoline group and a benzene ring that are superimposed on the aro-
matic centers of the triple inhibitor pharmacophore model. Regarding the physicochemical
parameters, ZINC6063 presents values considered appropriate with regard to the essential
characteristics of oral bioavailability, with a penalty only on the number of rotatable bonds.
However, this penalty does not preclude its potential use as a drug to treat patients with
Alzheimer’s, since this drug is orally administered. In addition, previous studies have
shown drugs with oral bioavailability with more than 19 rotatable bonds [64].

When assessing ZINC1733 interactions at the AChE binding site (Figure 4b), it was pos-
sible to observe that the phenyl-quinazoline nucleus preserves the hydrophobic interactions
profile observed at the crystallographic ligand map (with Trp286, Phe338, and Tyr341) and
pi-stacking interactions (Trp286 and Tyr341). This profile is considered important for AChE
inhibition, since similar interactions involving Trp286 and Phe338 are observed in AChE
inhibitors with inhibitory biological activity on a nanomolar scale [65]. ZINC6063 also re-
peated hydrophobic and pi-stacking interactions observed with the crystallographic ligand
(Tyr72, Tyr341, and Trp286) (Figure 4c). In addition, hydrogen bonds were established with
Tyr72 and Thr75, which are reported to be important for AChE inhibition [66].

The BuChE crystallographic ligand (PDB ID: 4BDS) corresponds to tacrine, one of the
first drugs used to treat patients with AD. The prioritized molecules repeated some of the
interactions established at the BuChE active site, which reveals their potential to inhibit
this target. Furthermore, the other interactions observed are described as fundamental for
BuChE inhibition because the establishment of interactions with the Asp70 and Tyr332
(peripheral site) and Trp82 (anionic site) residues prevents the substrate from reaching the
catalytic site of the enzyme [67]. In addition, interactions with Thr120, Phe329, Tyr332, and
Tyr440 have been observed in potent BuChE inhibitors [68,69].

At the BACE-1 active site, the prioritized molecules demonstrated ability to establish
interactions similar to the crystallographic ligand, although interacting only with one of
the two catalytic Asp (ZINC1733 with Asp228 and ZINC6063 with Asp32). However, this
fact does not imply they are not capable of inhibiting the target. Although interactions with
the catalytic dyad residues (Asp32 and Asp228) in BACE-1 are remarkable for biological
activity [70], interaction with at least one of the two residues is able to block the enzyme’s
catalytic cycle [71]. The interactions with Tyr71 observed in the prioritized molecules,
in turn, are fundamental for inhibitory activity because they promote changes in the
conformation of the site, blocking it and preventing access of the substrate. Additionally,
interactions established between inhibitors and residues Leu30, Val69, Phe108, Trp115,
Ile118, and Ile126 are cited as important for BACE-1 inhibition [70,72,73].

In view of the discussed aspects, it is possible to state that the prioritized molecules
(ZINC1733 and ZINC6063) have the stereo-electronic requirements, affinity, physicochemi-
cal requirements, and safety profile (Ames negative) appropriate to act as triple inhibitors
against AChE, BuChE, and BACE-1. However, molecular docking assays do not reproduce
the dynamic nature of processes occurring in a biological environment. For this reason,
in order to confirm/refute the data obtained, molecular dynamics simulations were per-
formed for the Apo forms of proteins and for the target complexes with ZINC1733, as it
presents a better affinity profile towards the targets, compared to ZINC6063.

3.4. Molecular Dynamics (MD)

MD simulations describe in detail the variation in molecular behavior as a function of
time [26]. In this study, we did simulations in order to assess the stability of the prioritized
compound ZINC1733 in the active site of the enzymes AChE, BuChE, and BACE-1 as well
as to evaluate the established interaction patterns.

The first metric used to evaluate the systems was RMSD, which analyzes the trajec-
tory of the conformational changes happening in the structure protein-ligand system in
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relation to the unbound protein. It also identifies the moment when the system reaches
equilibrium [74]. In MD simulations, it is common to experience a progressive increase in
the protein RMSD value until its stabilization [26]. Figure 7 shows the systems achieving
equilibrium state during the simulation time, and the RMSD values for all the systems
are statistically equivalent. However, it is possible to observe a greater stability of the
cholinesterases systems when in the presence of the ligand, which can be attributed to
the establishment of plenty of interactions between the ligand and their binding sites. For
BACE-1 systems, on the other hand, the apo system showed higher stability than when
bound to the ligand, which may indicate that it promotes conformational changes.

The RMSD value, however, is not sufficient to guarantee the system stability, since
it considers the entire protein structure. This data does not reveal changes occurring in
the binding sites. To overcome this limitation, we evaluated the atomic fluctuations of the
residues individually by calculating the RMSF during productive phases (Figure 8).

The RMSF values observed for apo and complex systems cannot be considered sta-
tistically significant. However, at the active site of cholinesterases, we observe that there
is greater fluctuation for the apo systems, which suggests the occurrence of interactions
between ligands and residues inducing more stability for the systems. Furthermore, pre-
vious studies have demonstrated that, on physiological conditions, BuChE changes its
conformation through coordinated movements in order to allow the substrate to access the
active site [75]. In the system containing the ligand, however, this movement is inhibited
and the entry of the substrate is blocked. The regions where the highest fluctuations peaks
are observed (Leu159-Pro166 and Gly487-Gln499 at AChE and Tyr373-Glu383 at BuChE)
correspond to loop regions, which are characterized as having conformational flexibility.
At the BACE-1 active site, the region containing the catalytic residues shows low fluctu-
ation and similar comportment in both systems, which demonstrates that there were no
significant changes in the conformation of the site in the simulations. The main changes in
the structure of BACE-1 along the trajectory must be attributed to the loop regions located
at the beginning of the chain and between Val317-Lys324, similar to what was observed at
previous studies [70].

The parameters evaluated reveal that ZINC1733 forms stable complexes with AChE,
BuChE, and BACE-1 and is capable of promoting useful intermolecular interactions. How-
ever, it is important to investigate the interactions responsible for the systems stabilization
and that will possibly contribute to the biological response. Among these interactions,
hydrogen bonding is the main interaction involved in maintaining protein structure and
folding as well as molecular recognition [76]. When considering the transient aspect of
hydrogen interactions, it is important to evaluate not only their occurrence, but their
permanence in the simulation time.

At the AChE active site, we observed a hydrogen bond established with Ser293
during 79.88% of the simulation time. This interaction is reported to be important for the
recognition of AChE inhibitors, like donepezil, since it seems to increase the ligand affinity
to the referred target [77]. The BuChE active site presented a different picture. Although
all the residues establishing hydrogen bonds with ZINC1733 are considered important
for biologic activity [78], none of them reached more than 10% of permanence and were
excluded, based on the user defined cutoff.

At the BACE-1 complex, hydrogen bonds observed occurring for more than 10% of
the simulation involve residues that, although not directly involved with the catalytic
mechanism, are located at the BACE-1 active site and are responsible for maintaining its
conformation to guarantee substrate access to the active site [70,79]. Hydrogen interactions
with Tyr71 and Gln73 have been observed in complexes with known activity BACE-1
inhibitors, where it is possible to observe the enzyme in a closed conformation blocking
access to the substrate.

Despite the information obtained from the hydrogen bonding observed during the
simulation of MD, it is important to note that other interactions can collaborate to the
stability of the system and possible inhibition of the studied targets. To evaluate these
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interactions in a dynamic system, it is necessary to evaluate a graphical representation
of the simulation through the selection of a representative structure of the process. The
representative structures selected corresponded to the most frequent ones obtained in the
groups with the highest number of conformations observed for each cutoff point.

Analysis of the interactions of AChE-ZINC1733 (Figure 10) shows the hydrophobic in-
teractions observed in the molecular docking studies were conserved. Interactions between
the phenyl ring with Tyr72 and Trp286 are described as important for the inhibitory activ-
ity [65,66], and they have been described in MD simulations involving AChE inhibitors in
a complex with the protein [80]. The hydrogen bond with Ser293, although not highlighted
in the interaction map from the molecular docking, has also been reported as important to
increase the affinity of ligands to AChE [77]. The permanence of this connection during
most of the simulation suggests it is involved in the stability of the complex.

The BuChE-ZINC1733 complex (Figure 11) reveals the establishment of hydrophobic
interactions with Ala328 and Trp430, repeating what was observed in docking studies.
The interaction with Trp82 (also observed in the molecular docking) was observed in
MD simulations with BuChE inhibitors [81]. Additionally, we observed hydrophobic
interactions between the ligand, Ile69 and Phe73, residues located at the primary entrance
of the active site gorge [82]. Those interactions may promote the active site blockade of
the substrate.

Although the interactions map of the ZINC1733 complex with BACE-1 (Figure 12) did
not show interactions with the catalytic dyad, interactions with Val69, Tyr71, and Trp76 are
reported as essential for enzymatic inhibition, since the residues are involved in attaining
the enzyme transition state and in blocking the catalytic site [71,79]. This fact indicates
the ligand is probably able to inhibit the enzyme. The inhibitory potential of the ligand
against BACE-1 is reinforced with the interactions established with Phe108, Ile118, and
Ile226, which have been previously described [83,84]. These interactions contribute to the
ligand-macromolecule complex stability and can be fundamental for the stabilization of the
system and triggering of the biological response.

In addition to the information obtained with MD simulations, we also calculated free
energy data for the complexed systems at the production phases, as a way to evaluate
the power of those biomolecular interactions. Although the most widely used method for
this end in drug design is molecular docking, binding free energy measured by docking
scores is not the most accurate, since it does not consider protein flexibility and solvation
contributions [85]. To analyze these variables, the MM-PBSA approach has been used in
association to MD simulations to compute interaction energies by combining molecular
mechanics with free energy calculations based on implicit solvent models [86,87].

The binding free energy calculated indicates ZINC1733 has greater affinity for BACE-1
(−104.466 kJ/mol) than AChE (−67.980 kJ/mol) and BuChE (−80.487 kJ/mol). Addition-
ally, it can be observed that, in all the three analyzed systems, the van der Waals interactions
have the highest contribution for binding free energy when compared to electrostatic in-
teractions. Those results illustrate that ZINC1733 binding at active sites is dominated by
hydrophobic interactions, similar to what was observed in previous studies [33,88,89].

The divergences observed between representative structures and molecular docking
studies can be attributed to the dynamic nature of MD simulations and confirm the fact that
protein flexibility interferes with the understanding of the biological process. However, de-
spite those divergences, the data obtained through MD simulations allows us to affirm that
ZINC1733, selected by virtual screening through a pharmacophore model and molecular
docking, has the necessary structural requirements to characterize it as a potential AChE,
BuChE, and BACE-1 triple inhibitor.
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4. Materials and Methods
4.1. Pharmacophore Model Building and Validation
4.1.1. Dataset

A set of 50 triple inhibitors with biological activity data (inhibition and/or IC50) against
AChE, BuChE, and BACE-1 was collected from the literature [90–96]. The 2D structure
of the inhibitors was then generated in the program Marvin Sketch 19.9.0 [97] and later
converted to the 3D format using the CONCORD module implemented in the SYBYL-X
2.0 program [98]. Next, the 3D structure was minimized using the Conjugate Gradient
method (convergence criteria = 0.001 kcal/mol; maximum interactions = 50,000; dielectric
constant = 80.0), Tripos force field [99] and partial atomic charges were assigned using the
Gasteiger-Huckel method [100], as also available in the SYBYL-X 2.0 program [98].

The inhibitors (n = 50) were classified according to biological activity values. Those
with inhibition > 30% (at 10.0 µM) and/or IC50 < 10.0 µM against the three enzymes (n = 16)
were grouped based on structural similarity (Tanimoto coefficient > 0.70) [28] with the aid
of the Binning Cluster tool on the ChemMine Tools server [40]. From each of the groups
generated, the most active inhibitor was selected to compose the training set (n = 9, see
Supplementary Material Figure S2), while the others were used for the validation of the
generated models (see Supplementary Material Figure S3).

4.1.2. Pharmacophore Model Building and Validation

The lower energy conformers of the training set were obtained through the generic
algorithm implemented in the GALAHADTM module of the SYBYL-X 2.0 program [101].
For this purpose, population size and maximum number of generations for triple inhibitors
were maintained at their standard values (55 and 90, respectively), as well as the advanced
parameters (mutation rate = 0.4, decay rate = 1.0 and crossover rate = 1.0).

Pharmacophore models with energy values greater than 100.0 kcal/mol were dis-
carded. The remaining were evaluated by Pareto scores, and those obtaining PARETO = 0
were evaluated for their ability to differentiate true inhibitors from false positives ob-
tained through the DecoyFinder program [102], which provides 36 decoys for each known
structure inhibitor.

True inhibitors of the three targets not used for the pharmacophore models construc-
tion (n = 41) and false positives provided by DecoyFinder (n = 1476) were submitted to a
flexible alignment to the pharmacophore models with the aid of the UNITY 3D module of
the Sybyl program [103]. The alignment quality was assessed based on the overlap using
the Query Fit (QFIT) value, which ranges from 0 to 100.

These values were used to construct the ROC (Receiver Operating Characteristic)
curve [104] and calculation of the area under the ROC curve (AUC—Area Under the Curve)
with the aid of the SigmaPlot® 12.0 program [105]. In addition, the pharmacophore models
were evaluated by the early enrichment rate BEDROC (Boltzmann-enhanced discrimination
of ROC) with the help of the ROCKER server [106]. The pharmacophore model with a
value of AUC > 0.7 and BEDROC > 0.5 (α = 20) was selected for the virtual screening.

4.2. Hierarchical Virtual Screening

The best pharmacophore model was used to filter molecules contained in the Sigma
Aldrich® catalog (http://zinc15.docking.org/catalogs/sialbb/, accessed on 15 July 2019)
and in the FDA approved substance catalog (https://zinc.docking.org/substances/subsets/
fda/, accessed on 1 August 2019), both on the ZINC15 platform (http://zinc.docking.org/).
We also filtered molecules contained on the Our Own Chemical Collection (OOCC) platform
at the Federal University of São João del-Rey (UFSJ), the library of thiazolidine derivatives
from the Federal University of Pernambuco (UFPE), and the library of compounds from the
opnMe platform (https://opnme.com/, accessed on 1 March 2020), granted by Boehringer
Ingelheim. For this purpose, a flexible 3D alignment of the molecules contained in these
banks was carried out by the UNITY® 3D module, implemented in SYBYL-X 2.0. The

http://zinc15.docking.org/catalogs/sialbb/
https://zinc.docking.org/substances/subsets/fda/
https://zinc.docking.org/substances/subsets/fda/
http://zinc.docking.org/
https://opnme.com/
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molecules presenting a QFIT value greater than the average plus two times the standard
deviation were selected for virtual screening by molecular docking.

The AChE (PDB ID: 4M0E) [107] and BuChE (PDB ID: 4BDS) [108] crystallographic
structures were obtained from the Protein Data Bank and prepared using the Biopolymer
module implemented in SYBYL-X 2.0, where ions and water were removed and hydrogen
atoms were inserted in order to optimize hydrogen bonds. The receptors’ protonation
status was adjusted to pH 7.4 on the ProKa server and the conformational search and
punctuation were performed by the AutoDock Vina 1.1.2 program [109] according to
previously validated parameters [30].

Molecular docking with BACE-1 (PDB ID: 6UWP) [73] followed the same procedures
for the first two targets. In addition to the ions and water removal, molecules and the
hydrogen atoms insertion by Biopolymer, the receptor had its protonation status evaluated
by the H++ 1.0 program and pKa corrected to pH 4.5 [110]. The program selected was
GOLD 5.8.1 [111], the search space was delimited by the crystallographic ligand, restricted
to a 10 Å sphere, and the score was provided by the ASP function according to previously
validated parameters [33].

The molecules whose energy value was lower than the average of the energies calcu-
lated for the group in the cholinesterase docking studies and higher than the average of the
scores calculated for BACE-1 were evaluated about the toxicological, physicochemical, and
commercial availability descriptors.

4.3. Prediction of the Toxicological and Physicochemical Parameters and Evaluation of
Interaction Maps

The molecules selected by molecular docking virtual screening were evaluated about
toxicological and physical-chemical parameters by the pkCSM server [112]. Mutagenicity
information was collected by the Ames test; molecular mass (MM), calculated partition co-
efficient (cLogP), number of rotatable bonds, number of acceptors and donors of hydrogen
bonds, and polar surface area (PSA) were evaluated too (Table 6).

Table 6. Reference values of toxicological and pharmacokinetic parameters [32–34].

Parameter Reference Value

Ames test Negative
MW <500.0 g/mol

cLogP <5.0
Hydrogen Donors <5

Hydrogen Acceptors <10
Rotatable bonds <10

PSA <140.0 Å2

Molecules showing a negative toxicity profile for the AMES test and up to one physic-
ochemical penalty were evaluated for commercial availability. The selected molecules had
the intermolecular interactions described by the Protein-Ligand Interaction Profiler—PLIP
server [113]. The molecule with the best interaction profile compared to the three enzymes
was selected for evaluation through molecular dynamics simulations.

4.4. Molecular Dynamics (MD)

The apo form of the target structure and selected compound from docking approaches
were analyzed in MD simulations. The 3D coordinates of the prioritized molecule after the
molecular docking studies were submitted to the ATB 3.0 server [114] for the generation of
its topology. The parameters of atomic charge, bond length, torsional angles and dihedrals
were obtained using the GROMOS96 54A7 force field [115]. The MD simulations were
performed in the GROMACS 5.1.2 package [116], in which we adopted the GROMOS96
54A7 force field parameters, temperature 25 ◦C, and pressure of 1 atm.
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The 3D structure of AChE was obtained from the PDB (IDAChE: 4M0E; IDBuChE:
4BDS; IDBACE-1: 6UWP), from which the crystallographic ligand, water molecules, and
artifacts were removed. Non-modelled regions were built through the SWISS-MODEL
server [117].

The protonation status of the acidic and basic residues of the targets were adjusted in
the pdb2gmx module implemented in GROMACS 5.1.2 according to the ph 7.4 for AChE
and BuChE [30] and ph 4.5 for BACE-1 [110]. The residues pKa values were evaluated on the
H++ server (http://biophysics.cs.vt.edu/index.php, accessed on 1 December 2020), except
for the catalytic residues of BACE-1, which were manually adjusted for the protonated
(Asp32) and deprotonated (Asp228) state [118]. To solvate the systems, a dodecahedral
box with water model SPC-E [119] was used, with a minimum distance of 1.4 nm from
the box edges. For neutralization, in systems involving AChE (apo and complex), 7 Na2+

ions were added, while in systems with BuChE and BACE-1, 4 and 5 Cl− ions were
added, respectively.

Apo and complex systems were minimized in two steps: initially by the Steepest
Descent (SD) algorithm with 10,000 cycles and, later, by the Conjugated Gradient (GC)
algorithm with 1000 cycles. After the minimization steps, the equilibration step was per-
formed (t = 1 ns) and, finally, the production dynamics (t = 100 ns) under 300 K and
1 atm. GROMACS modules (rms, rmsf and hbond functions) were utilized to analyze
the stability and behavior of each system. Binding free energy of complexes were calcu-
lated by the molecular mechanics Poisson-Boltzmann Surface Area method (MM/PBSA)
(g_mmpbsa tool).

5. Conclusions

Hierarchical virtual screening by the pharmacophore model and molecular docking,
associated with molecular dynamics simulations, identified a candidate triple inhibitor
against AChE, BuChE, and BACE-1. From virtual libraries, 71 molecules had QFIT > 30.88
(mean plus twice the standard deviation), which were subjected to molecular docking
studies against the three targets. The molecules with the best score on docking (n = 12)
were evaluated for toxicological, pharmacokinetic, and availability parameters. The most
promising ones were selected to assess the interaction profile from molecular docking
assays.

The interactions established between the prioritized molecules (ZINC1733 and ZINC6063)
and the target were evaluated, identifying important interactions observed in inhibitors
of known activity against the targets. In the case of interactions with cholinesterases, the
molecules were able to interact with residues fundamental to the enzyme’s catalytic activity,
located in peripheral and anionic sites. With BACE-1, the molecules also established
important interactions with the catalytic amino acid residues, in addition to carrying out
additional interactions that reinforce their binding to the active site, evidencing their ability
to inhibit the activity of the enzyme.

ZINC1733, the molecule with the best affinity profile, was submitted to MD simula-
tions. The results confirmed the interactions identified on the first steps of virtual screening
and displayed additional information highlighting the inhibitory potential of the molecule.
The data suggests ZINC1733 has the potential to simultaneously inhibit AChE, BuChE,
and BACE-1 and is a promising lead compound for the development of new AD therapies.
In vitro assays will be conducted to validate the model and confirm biological activity,
followed by the synthesis of derivatives for structure-activity relationship (SAR) studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph16121657/s1, Figure S1: RMSF analysis by means of principal
components analysis (PCA) for ZN1733 in complex with AChE (A), BuChE (B), and BACE-1 (C).
Figure S2: 2D Chemical structures of AChE, BuChE and BACE-1 inhibitors used to build triple
pharmacophore models with their biological activity data. Figure S3: 2D Chemical structures of
AChE, BuChE and BACE-1 inhibitors used to pharmacophore model validation and their biological
activity data.

http://biophysics.cs.vt.edu/index.php
https://www.mdpi.com/article/10.3390/ph16121657/s1
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5. Sağlık, B.N.; Ilgın, S.; Özkay, Y. Synthesis of New Donepezil Analogues and Investigation of Their Effects on Cholinesterase

Enzymes. Eur. J. Med. Chem. 2016, 124, 1026–1040. [CrossRef] [PubMed]
6. Selkoe, D.J.; Hardy, J. The Amyloid Hypothesis of Alzheimer’s Disease at 25 Years. EMBO Mol. Med. 2016, 8, 595–608. [CrossRef]
7. De Falco, A.; Cukierman, D.S.; Hauser-Davis, R.A.; Rey, N.A. Doença de Alzheimer: Hipóteses Etiológicas e Perspectivas de

Tratamento. Quim. Nova 2016, 39, 63–80. [CrossRef]
8. Najafi, Z.; Mahdavi, M.; Saeedi, M.; Karimpour-Razkenari, E.; Asatouri, R.; Vafadarnejad, F.; Moghadam, F.H.; Khanavi, M.;

Sharifzadeh, M.; Akbarzadeh, T. Novel Tacrine-1,2,3-Triazole Hybrids: In Vitro, in Vivo Biological Evaluation and Docking Study
of Cholinesterase Inhibitors. Eur. J. Med. Chem. 2017, 125, 1200–1212. [CrossRef]

9. Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; et al. The
Antibody Aducanumab Reduces Aβ Plaques in Alzheimer’s Disease. Nature 2016, 537, 50–56. [CrossRef]

10. van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; et al.
Lecanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2023, 388, 9–21. [CrossRef]

11. Gong, C.X.; Liu, F.; Iqbal, K. Multifactorial Hypothesis and Multi-Targets for Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 64,
S107–S117. [CrossRef]

12. Beach, T.G.; Kuo, Y.M.; Spiegel, K.; Emmerling, M.R.; Sue, L.I.; Kokjohn, K.; Roher, A.E. The Cholinergic Deficit Coincides with Aβ

Deposition at the Earliest Histopathologic Stages of Alzheimer Disease. J. Neuropathol. Exp. Neurol. 2000, 59, 308–313. [CrossRef]
[PubMed]

13. Potter, P.E.; Rauschkolb, P.K.; Pandya, Y.; Sue, L.I.; Sabbagh, M.N.; Walker, D.G.; Beach, T.G. Pre- and Post-Synaptic Cortical
Cholinergic Deficits Are Proportional to Amyloid Plaque Presence and Density at Preclinical Stages of Alzheimer’s Disease. Acta
Neuropathol. 2011, 122, 49–60. [CrossRef] [PubMed]

14. Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo,
E.; Snyder, P.J.; et al. The Cholinergic System in the Pathophysiology and Treatment of Alzheimer’s Disease. Brain 2018, 141,
1917–1933. [CrossRef] [PubMed]

https://doi.org/10.1186/s13065-018-0497-z
https://www.ncbi.nlm.nih.gov/pubmed/30515636
https://doi.org/10.1002/alz.12068
https://doi.org/10.4103/0366-6999.235112
https://www.ncbi.nlm.nih.gov/pubmed/29941717
https://doi.org/10.1016/j.ejmech.2016.10.042
https://www.ncbi.nlm.nih.gov/pubmed/27783974
https://doi.org/10.15252/emmm.201606210
https://doi.org/10.5935/0100-4042.20150152
https://doi.org/10.1016/j.ejmech.2016.11.008
https://doi.org/10.1038/nature19323
https://doi.org/10.1056/NEJMoa2212948
https://doi.org/10.3233/JAD-179921
https://doi.org/10.1093/jnen/59.4.308
https://www.ncbi.nlm.nih.gov/pubmed/10759186
https://doi.org/10.1007/s00401-011-0831-1
https://www.ncbi.nlm.nih.gov/pubmed/21533854
https://doi.org/10.1093/brain/awy132
https://www.ncbi.nlm.nih.gov/pubmed/29850777


Pharmaceuticals 2023, 16, 1657 23 of 27

15. Perry, E.K.; Perry, R.H.; Blessed, G.; Tomlinson, B.E. Changes in Brain Cholinesterases in Senile Dementia of Alzheimer Type.
Neuropathol. Appl. Neurobiol. 1978, 4, 273–277. [CrossRef] [PubMed]

16. Zimmermann, G.R.; Lehár, J.; Keith, C.T. Multi-Target Therapeutics: When the Whole Is Greater than the Sum of the Parts. Drug
Discov. Today 2007, 12, 34–42. [CrossRef]

17. Zhou, J.; Jiang, X.; He, S.; Jiang, H.; Feng, F.; Liu, W.; Qu, W.; Sun, H. Rational Design of Multitarget-Directed Ligands: Strategies
and Emerging Paradigms. J. Med. Chem. 2019, 62, 8881–8914. [CrossRef] [PubMed]

18. Denholm, R.; Morris, R.; Payne, R. Polypharmacy Patterns in the Last Year of Life in Patients with Dementia. Eur. J. Clin.
Pharmacol. 2019, 75, 1583–1591. [CrossRef]

19. Dias, K.S.T.; Viegas, C. Multi-Target Directed Drugs: A Modern Approach for Design of New Drugs for the Treatment of
Alzheimer’s Disease. Curr. Neuropharmacol. 2014, 12, 239–255. [CrossRef]

20. Morphy, R.; Kay, C.; Rankovic, Z. From Magic Bullets to Designed Multiple Ligands. Drug Discov. Today 2004, 9, 641–651.
[CrossRef]

21. Borsari, C.; Trader, D.J.; Tait, A.; Costi, M.P. Designing Chimeric Molecules for Drug Discovery by Leveraging Chemical Biology.
J. Med. Chem. 2020, 63, 1908–1928. [CrossRef]

22. Sun, D.; Zhao, Y.; Zhang, S.; Zhang, L.; Liu, B.; Ouyang, L. Dual-Target Kinase Drug Design: Current Strategies and Future
Directions in Cancer Therapy. Eur. J. Med. Chem. 2020, 188, 112025. [CrossRef]

23. Ramsay, R.R.; Popovic-Nikolic, M.R.; Nikolic, K.; Uliassi, E.; Bolognesi, M.L. A Perspective on Multi-target Drug Discovery and
Design for Complex Diseases. Clin. Transl. Med. 2018, 7, 3. [CrossRef] [PubMed]

24. Yang, S.Y. Pharmacophore Modeling and Applications in Drug Discovery: Challenges and Recent Advances. Drug Discov. Today
2010, 15, 444–450. [CrossRef] [PubMed]

25. Piccirillo, E.; Do Amaral, A.T. Virtual Screening of Bioactive Compounds: Concepts and Aplications. Quim. Nova 2018, 41,
662–677. [CrossRef]

26. Verli, H. Dinâmica Molecular. In Bioinformática da Biologia à Flexibilidade Molecular; SBBq: São Paulo, Brazil, 2014; pp. 173–187.
27. de Almeida, R.B.M.; Conceição, R.S.; da Silva, K.S.; Santos Junior, M.C.; Branco, A.; Botura, M.B. Ocotea Daphnifolia: Phytochemi-

cal Investigation, in Vitro Dual Cholinesterase Inhibition, and Molecular Docking Studies. Braz. J. Pharm. Sci. 2021, 57, e18310.
[CrossRef]

28. Shelat, A.A.; Guy, R.K. Scaffold Composition and Biological Relevance of Screening Libraries Anang A Shelat & R Kiplin Guy.
Nat. Chem. Biol. 2007, 3, 442–446.

29. Empereur-Mot, C.; Guillemain, H.; Latouche, A.; Zagury, J.F.; Viallon, V.; Montes, M. Predictiveness Curves in Virtual Screening.
J. Cheminform. 2015, 7, 52. [CrossRef]

30. Mascarenhas, A.M.S.; de Almeida, R.B.M.; de Araujo Neto, M.F.; Mendes, G.O.; da Cruz, J.N.; dos Santos, C.B.R.; Botura, M.B.;
Leite, F.H.A. Pharmacophore-Based Virtual Screening and Molecular Docking to Identify Promising Dual Inhibitors of Human
Acetylcholinesterase and Butyrylcholinesterase. J. Biomol. Struct. Dyn. 2020, 39, 6021–6030. [CrossRef] [PubMed]

31. Domingues, B.F. 3D-Pharma: Uma Ferramenta Para Triagem Virtual Baseada Em Fingerprints de Farmacóforos; Universidade Federal
de Minas Gerais: Belo Horizonte, Brazil, 2013.

32. Mendes, G.O.; Pita, S.S.d.R.; Carvalho, P.B.d.; Silva, M.P.d.; Taranto, A.G.; Leite, F.H.A. Molecular Multi-Target Approach for
Human Acetylcholinesterase, Butyrylcholinesterase and β-Secretase 1: Next Generation for Alzheimer’s Disease Treatment.
Pharmaceuticals 2023, 16, 880. [CrossRef] [PubMed]

33. do Bomfim, M.R.; Barbosa, D.B.; de Carvalho, P.B.; da Silva, A.M.; de Oliveira, T.A.; Taranto, A.G.; Leite, F.H.A. Identification of
Potential Human Beta-Secretase 1 Inhibitors by Hierarchical Virtual Screening and Molecular Dynamics. J. Biomol. Struct. Dyn.
2022, 41, 4560–4574. [CrossRef]

34. Mortelmans, K.; Mortelmans, K.; Zeiger, E. The Ames Salmonella/Microsome Mutagenicity Assay The Ames Salmonella/Microsome
Mutagenicity Assay. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2016, 5107, 29–60.

35. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and
Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [CrossRef]

36. Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral
Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [CrossRef]

37. Hein, M.; Zilian, D.; Sotriffer, C.A. Docking Compared to 3D-Pharmacophores: The Scoring Function Challenge. Drug Discov.
Today Technol. 2010, 7, e229–e236. [CrossRef]

38. Schaller, D.; Šribar, D.; Noonan, T.; Deng, L.; Nguyen, T.N.; Pach, S.; Machalz, D.; Bermudez, M.; Wolber, G. Next Generation 3D
Pharmacophore Modeling. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020, 10, e1468. [CrossRef]

39. Tran-Nguyen, V.K.; Da Silva, F.; Bret, G.; Rognan, D. All in One: Cavity Detection, Druggability Estimate, Cavity-Based
Pharmacophore Perception, and Virtual Screening. J. Chem. Inf. Model. 2019, 59, 573–585. [CrossRef] [PubMed]

40. Backman, T.W.H.; Cao, Y.; Girke, T. ChemMine Tools: An Online Service for Analyzing and Clustering Small Molecules. Nucleic
Acids Res. 2011, 39, 486–491. [CrossRef]

41. de Carvalho Gallo, J.C.; de Mattos Oliveira, L.; Araújo, J.S.C.; Santana, I.B.; dos Santos Junior, M.C. Virtual Screening to Identify
Leishmania Braziliensis N-Myristoyltransferase Inhibitors: Pharmacophore Models, Docking, and Molecular Dynamics. J. Mol.
Model. 2018, 24, 260. [CrossRef]

https://doi.org/10.1111/j.1365-2990.1978.tb00545.x
https://www.ncbi.nlm.nih.gov/pubmed/703927
https://doi.org/10.1016/j.drudis.2006.11.008
https://doi.org/10.1021/acs.jmedchem.9b00017
https://www.ncbi.nlm.nih.gov/pubmed/31082225
https://doi.org/10.1007/s00228-019-02721-1
https://doi.org/10.2174/1570159X1203140511153200
https://doi.org/10.1016/S1359-6446(04)03163-0
https://doi.org/10.1021/acs.jmedchem.9b01456
https://doi.org/10.1016/j.ejmech.2019.112025
https://doi.org/10.1186/s40169-017-0181-2
https://www.ncbi.nlm.nih.gov/pubmed/29340951
https://doi.org/10.1016/j.drudis.2010.03.013
https://www.ncbi.nlm.nih.gov/pubmed/20362693
https://doi.org/10.21577/0100-4042.20170210
https://doi.org/10.1590/s2175-97902020000418310
https://doi.org/10.1186/s13321-015-0100-8
https://doi.org/10.1080/07391102.2020.1796791
https://www.ncbi.nlm.nih.gov/pubmed/32705955
https://doi.org/10.3390/ph16060880
https://www.ncbi.nlm.nih.gov/pubmed/37375827
https://doi.org/10.1080/07391102.2022.2069155
https://doi.org/10.1016/S0169-409X(96)00423-1
https://doi.org/10.1021/jm020017n
https://doi.org/10.1016/j.ddtec.2010.12.003
https://doi.org/10.1002/wcms.1468
https://doi.org/10.1021/acs.jcim.8b00684
https://www.ncbi.nlm.nih.gov/pubmed/30563339
https://doi.org/10.1093/nar/gkr320
https://doi.org/10.1007/s00894-018-3791-8


Pharmaceuticals 2023, 16, 1657 24 of 27

42. Dorfman, R.J.; Smith, K.M.; Masek, B.B.; Clark, R.D. A Knowledge-Based Approach to Generating Diverse but Energetically
Representative Ensembles of Ligand Conformers. J. Comput. Aided Mol. Des. 2008, 22, 681–691. [CrossRef]

43. Xie, H.; Qiu, K.; Xie, X. 3D QSAR Studies, Pharmacophore Modeling and Virtual Screening on a Series of Steroidal Aromatase
Inhibitors. Int. J. Mol. Sci. 2014, 15, 20927–20947. [CrossRef]

44. Seidel, T.; Ibis, G.; Bendix, F.; Wolber, G. Strategies for 3D Pharmacophore-Based Virtual Screening. Drug Discov. Today Technol.
2010, 7, e221–e228. [CrossRef]

45. Rizzi, A.; Fioni, A. Virtual Screening Using PLS Discriminant Analysis and ROC Curve Approach: An Application Study on
PDE4 Inhibitors. J. Chem. Inf. Model. 2008, 48, 1686–1692. [CrossRef]

46. Metz, C.E. Basic Principles of ROC Analysis. Semin. Nucl. Med. 1978, 8, 283–298. [CrossRef]
47. Kirchmair, J.; Markt, P.; Distinto, S.; Wolber, G.; Langer, T. Evaluation of the Performance of 3D Virtual Screening Protocols: RMSD

Comparisons, Enrichment Assessments, and Decoy Selection—What Can We Learn from Earlier Mistakes? J. Comput. Aided Mol.
Des. 2008, 22, 213–228. [CrossRef] [PubMed]

48. Goyal, M.; Grover, S.; Dhanjal, J.K.; Goyal, S.; Tyagi, C.; Grover, A. Molecular Modelling Studies on Flavonoid Derivatives as Dual
Site Inhibitors of Human Acetyl Cholinesterase Using 3D-QSAR, Pharmacophore and High Throughput Screening Approaches.
Med. Chem. Res. 2014, 23, 2122–2132. [CrossRef]

49. Gupta, S.; Mohan, C.G. Dual Binding Site and Selective Acetylcholinesterase Inhibitors Derived from Integrated Pharmacophore
Models and Sequential Virtual Screening. Biomed Res. Int. 2014, 2014, 291214. [CrossRef] [PubMed]

50. Huang, W.; Yu, H.; Sheng, R.; Li, J.; Hu, Y. Identification of Pharmacophore Model, Synthesis and Biological Evaluation of
N-Phenyl-1-Arylamide and N-Phenylbenzenesulfonamide Derivatives as BACE 1 Inhibitors. Bioorg. Med. Chem. 2008, 16,
10190–10197. [CrossRef] [PubMed]

51. John, S.; Thangapandian, S.; Sakkiah, S.; Lee, K.W. Potent Bace-1 Inhibitor Design Using Pharmacophore Modeling, in Silico
Screening and Molecular Docking Studies. BMC Bioinform. 2011, 12, S28. [CrossRef] [PubMed]

52. Kolb, P.; Irwin, J. Docking Screens: Right for the Right Reasons? Curr. Top. Med. Chem. 2009, 9, 755–770. [CrossRef] [PubMed]
53. Lu, S.H.; Wu, J.W.; Liu, H.L.; Zhao, J.H.; Liu, K.T.; Chuang, C.K.; Lin, H.Y.; Tsai, W.B.; Ho, Y. The Discovery of Potential

Acetylcholinesterase Inhibitors: A Combination of Pharmacophore Modeling, Virtual Screening, and Molecular Docking Studies.
J. Biomed. Sci. 2011, 18, 8. [CrossRef] [PubMed]

54. Qing, X.; Lee, X.Y.; De Raeymaeker, J.; Tame, J.R.; Zhang, K.Y.; De Maeyer, M.; Voet, A.R. Pharmacophore Modeling: Advances,
Limitations, And Current Utility in Drug Discovery. J. Recept. Ligand Channel Res. 2014, 7, 81–92. [CrossRef]

55. Kumar, V.; Saha, A.; Roy, K. In Silico Modeling for Dual Inhibition of Acetylcholinesterase (AChE) and Butyrylcholinesterase (BuChE)
Enzymes in Alzheimer’s Disease; Elsevier Ltd.: Amsterdam, The Netherlands, 2020; Volume 88, ISBN 9133283710.

56. dos Santos, K.L.B.; Cruz, J.N.; Silva, L.B.; Ramos, R.S.; Neto, M.F.A.; Lobato, C.C.; Ota, S.S.B.; Leite, F.H.A.; Borges, R.S.; da Silva,
C.H.T.P.; et al. Identification of Novel Chemical Entities for Adenosine Receptor Type 2a Using Molecular Modeling Approaches.
Molecules 2020, 25, 1245. [CrossRef]

57. Wouters, O.J.; McKee, M.; Luyten, J. Estimated Research and Development Investment Needed to Bring a New Medicine to
Market, 2009–2018. JAMA-J. Am. Med. Assoc. 2020, 323, 844–853. [CrossRef] [PubMed]

58. Gopi Mohan, C.; Gandhi, T.; Garg, D.; Shinde, R. Computer-Assisted Methods in Chemical Toxicity Prediction. Mini-Rev. Med.
Chem. 2007, 7, 499–507. [CrossRef]

59. Barbezan, A.B.; Martins, R.; Bueno, J.B.; Villavicencio, A.L.C.H. Ames Test to Detect Mutagenicity of 2-Alkylcyclobutanones: A
Review. J. Food Sci. 2017, 82, 1518–1522. [CrossRef] [PubMed]

60. Hosea, N.A.; Jones, H.M. Predicting Pharmacokinetic Profiles Using in Silico Derived Parameters. Mol. Pharm. 2013, 10, 1207–1215.
[CrossRef]

61. Boobis, A.; Gundert-Remy, U.; Kremers, P.; Macheras, P.; Pelkonen, O. In Silico Prediction of ADME and Pharmacokinetics:
Report of an Expert Meeting Organised by COST B15. Eur. J. Pharm. Sci. 2002, 17, 183–193. [CrossRef]

62. Chhabra, N.; Aseri, M.; Padmanabhan, D. A Review of Drug Isomerism and Its Significance. Int. J. Appl. Basic Med. Res. 2013, 3,
16. [CrossRef]

63. Institute, N.C. NCIthesaurus: Silodosin. Available online: https://ncit.nci.nih.gov/ncitbrowser/pages/concept_details.jsf?
dictionary=NCI_Thesaurus&version=20.09d&code=C81372&ns=NCI_Thesaurus&type=properties&key=null&b=1&n=0&
vse=null (accessed on 1 October 2020).

64. Degoey, D.A.; Chen, H.J.; Cox, P.B.; Wendt, M.D. Beyond the Rule of 5: Lessons Learned from AbbVie’s Drugs and Compound
Collection. J. Med. Chem. 2018, 61, 2636–2651. [CrossRef]
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