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Abstract: Risk stratification for malignant ventricular arrhythmias and sudden cardiac death is
a daunting task for physicians in daily practice. Multiparametric mapping sequences obtained
via cardiovascular magnetic resonance imaging can improve the risk stratification for malignant
ventricular arrhythmias by unveiling the presence of pathophysiological pro-arrhythmogenic
processes. However, their employment in clinical practice is still restricted. The present review
explores the current evidence supporting the association between mapping abnormalities and
the risk of ventricular arrhythmias in several cardiovascular diseases. The key message is that
further clinical studies are needed to test the additional value of mapping techniques beyond
conventional cardiovascular magnetic resonance imaging for selecting patients eligible for an
implantable cardioverter defibrillator.

Keywords: ventricular arrhythmias; sudden cardiac death; cardiovascular magnetic resonance;
mapping

1. Introduction

Risk stratification for malignant ventricular arrhythmias and sudden cardiac death
(SCD) is a daunting task for physicians in daily practice. Left ventricular (LV) ejection
fraction is the main traditional imaging parameter used for SCD risk stratification in
ischemic and non-ischemic heart diseases; however, it is not accurate in detecting myocar-
dial tissue alterations, which could trigger ventricular arrhythmias [1,2]. For instance,
myocardial fibrosis and edema modulate myocardial electrical properties and represent
a potential substrate for malignant ventricular arrhythmias [3]. Conventional cardio-
vascular magnetic resonance (CMR) sequences can unveil focal myocardial edema and
fibrosis through T2-weighted imaging and late gadolinium enhancement (LGE). LGE has
been repeatedly associated with an increased risk of SCD in ischemic and non-ischemic
cardiomyopathies [4–7] and has been implemented in daily practice for clinical decision-
making [8]. The introduction of the novel sequences of parametric mapping has unveiled
diffuse pathophysiological processes, including extensive myocardial inflammation
and/or interstitial myocardial fibrosis, which could not be captured with conventional
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tissue characterization techniques [9]. These sequences provide the absolute quantifi-
cation of the myocardial T1 and T2 relaxation values, potentially improving accuracy,
reproducibility, sensitivity, and specificity for identifying underlying pathophysiological
processes compared with conventional imaging [10].

T1 mapping reflects the longitudinal or spin lattice myocardial relaxation time, which
is determined by how rapidly protons re-equilibrate their spins after being excited by a
radiofrequency pulse. Modified look-locker inversion recovery (MOLLI) pulse sequences
are among the most used CMR techniques for measuring T1 relaxation times over 17 succes-
sive heartbeats. A pixel-wise illustration of absolute T1 relaxation times is represented on a
color map. Pre-contrast and post-contrast T1 mapping are used to derive the myocardial
extracellular volume (ECV), given that gadolinium-based contrast agents are distributed
throughout the extracellular space and shorten the T1 relaxation times of the myocardium
proportionally to the local concentration of gadolinium. An estimation of the ECV can be
obtained via the following formula:

ECV = (1 − haematocrit )
1

post contrast T1 myo − 1
native T1 myo

1
post contrast T1 blood − 1

native T1 blood

T2 mapping reflects the transverse relaxation time, corresponding to the decoher-
ence of transverse nuclear spin magnetization. It is assessed through pixel-wise fitting
for a T2 decay curve of a series of T2-weighted sequences. Turbo-Spin-Echo sequences
with varying echo times are typically used, but alternative sequences are commercially
available [10].

T2 mapping values are increased because of edema associated with acute myocardial
inflammation or necrosis. Pre-contrast T1 mapping values are reduced in the presence
of sphingolipid storage. Pre-contrast T1 mapping and ECV values are increased in the
case of acute inflammation or necrosis, replacement fibrosis, and diffuse fibrosis [11]
(see Figure 1).

Cardiovascular diseases can predispose individuals to ventricular arrhythmias through
several underlying structural mechanisms. An expansion of the myocardial extracellular
space leads to mechanical and vasomotor dysfunction, key elements of electrical vulner-
ability. Increased automaticity can result from alterations to basic cellular ion exchange
secondary to several myocardial pathologies. The latter can also represent electrical obsta-
cles, paving the way for re-entry arrhythmias. Moreover, myocardial inflammation can
alter cell action potentials, triggering abnormal impulse initiation [3,12].

By sensitively and accurately unveiling potentially arrhythmogenic tissue alterations,
mapping sequences are promising features with which to improve SCD risk stratification.
The present review explores the current evidence supporting the association between these
mapping abnormalities and the risk of malignant ventricular arrhythmias/SCD in ischemic
and non-ischemic cardiomyopathies (see Table 1).
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Figure 1. Cardiovascular diseases and associated multiparametric CMR mapping changes. From left 
to right, pre-contrast T1 mapping, T2 mapping, and ECV variations are shown. ↑: increased; ↑↑: 
markedly increased; ↑=: slightly increased or normal; ↓: reduced; DCM: dilated cardiomyopathy; 
HCM: hypertrophic cardiomyopathy. 
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Figure 1. Cardiovascular diseases and associated multiparametric CMR mapping changes. From
left to right, pre-contrast T1 mapping, T2 mapping, and ECV variations are shown. ↑: increased; ↑↑:
markedly increased; ↑=: slightly increased or normal; ↓: reduced; DCM: dilated cardiomyopathy;
HCM: hypertrophic cardiomyopathy.
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Table 1. Evidence exploring the association between CMR multiparametric mapping and ventricular arrhythmias/sudden cardiac death in cardiovascular diseases.

Study First Author, Year Type of
Cardiomyopathy

Number of
Patients Type of Study Mapping Parameter Study Endpoint

Association of Mapping
Parameter with the

Study Endpoint

Chen, 2015 [2] Ischemic
cardiomyopathy 130 Prospective 10 ms increase of native

T1 mapping
Appropriate ICD therapy or
documented sustained VA HR 1.1 (95% CI 1.0–1.2)

Olausson, 2023 [13] Ischemic
cardiomyopathy 215 Retrospective 5% increase in ECV

Time from ICD implantation to
appropriate shock or

anti-tachycardia pacing
HR 2.2 (95% CI 1.2–4.0)

Gräni, 2019 [14] Myocarditis 179 Retrospective ECV ≥ 35%

MACE (all-cause death, HF
hospitalization, heart

transplantation, documented
sustained VA, and

recurrent myocarditis)

HR 3.3 (95% CI 1.4–8.0)

Thavendiranathan,
2021 [15] Myocarditis 136 Retrospective Every 1-unit increase in

T1 mapping z-score

MACE (cardiovascular death,
cardiogenic shock, cardiac arrest,

and complete heart block)
HR 1.4 (95% CI 1.1–1.8)

Crouser, 2014 [16] Sarcoidosis 50 Retrospective T2 mapping

Conduction system disease and
cardiac arrhythmias (atrial

arrhythmia, ventricular arrhythmia,
atrioventricular block, or QRS
complex duration > 120 ms)

T2 mapping significantly
higher in patients with

the study endpoint

Crouser, 2016 [17] Sarcoidosis 8 Retrospective T2 mapping > 70 ms

Reversible cardiac arrhythmias
(atrial arrhythmia, ventricular

arrhythmia, atrioventricular block,
or QRS complex duration > 120 ms)
after immune suppression therapy

T2 mapping significantly
higher in patients with

the study endpoint

Pinheiro, 2020 [18] Chagas 62 Cross-sectional T1 mapping > 1200 ms,
ECV > 25% NSVT

AUC 0.81 (95% CI
0.65–0.97) and 0.85 (95%

CI 0.71–0.99)

Melo, 2023 [19] Chagas 90 Prospective Remote native T1 value >
1100 ms

ICD implantation, heart transplant,
or death HR 12 (95% CI 4.1–34.2)

Qin, 2021 [20] HCM 203 Prospective Native T1 mapping >
1300 ms

MACE (cardiac death,
transplantation, HF admission, and

ICD implantation)

HR 1.45 (95% CI
1.26–1.77)
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Table 1. Cont.

Study First Author, Year Type of
Cardiomyopathy

Number of
Patients Type of Study Mapping Parameter Study Endpoint

Association of Mapping
Parameter with the

Study Endpoint

Avanesov, 2017 [21] HCM 73 Retrospective Global ECV ≥ 35% SCD, syncope, and NSVT AUC 0.83 (95% CI
0.73–0.91)

Yu, 2023 [22] HCM 108 Retrospective Global ECV ≥ 35% SCD HR 1.27 (95% CI
1.10–1.47)

McLellan, 2016 [23] HCM 100 Prospective
Post-contrast T1

mapping (median value:
422 ± 54 ms)

NSVT Post-contrast T1
(p = 0.004)

Xu, 2023 [24] HCM 674 Prospective 2 ms increase in T2
mapping

Cardiovascular death and
appropriate ICD discharge

HR 1.43 (95% CI
1.18–1.72)

Orsborne, 2022 [25] Fabry disease 200 Prospective T1 dispersion

Adverse cardiac outcome (first
hospitalization for HF, MI, coronary
revascularization, VT sustained or

nonsustained, new AF,
bradyarrhythmia necessitating PM

implantation, aborted SCD,
appropriate ICD therapy, or

cardiovascular death)

HR 1.012 (95% CI
1.002–1.021)

Nakamori, 2018 [26] DCM 107 Retrospective 10 ms increase in T1
mapping Complex VA OR 1.14 (95% CI

1.03–1.25)

Barison, 2015 [27] DCM 89 Retrospective ECV > 29%
Cardiovascular death,

hospitalization for HF and
appropriate ICD intervention

p < 0.05

Cadour, 2023 [28] DCM 225 Prospective T1 mapping Z-score >
4.2, ECV > 30.5%

MACE (HF-related events and
arrhythmia-related events)

HR 2.86 (95% CI
1.06–7.68) and HR 2.72

(95% CI 1.01–7.36)

Li, 2022 [29] DCM 659 Retrospective T1 mapping > 1000 ms,
ECV > 30.5%

Cardiac-related death, heart
transplantation, hospitalization for

HF, VA, and ICD or
CRT implantation

HR 1.13 (95% CI
1.10–1.36) and HR 1.32;

(95% CI 1.12–1.53)
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Table 1. Cont.

Study First Author, Year Type of
Cardiomyopathy

Number of
Patients Type of Study Mapping Parameter Study Endpoint

Association of Mapping
Parameter with the

Study Endpoint

Rubiś, 2021 [30] DCM 102 Prospective ECV
Arrhythmic burden (ventricular

tachycardia or a high burden
of PVCs)

HR 1.12 (95% CI
1.00–1.25)

Chun, 2022 [31] ARVD/C 60 Retrospective T1 mapping, T2
mapping, and ECV

HF-related events (hospitalization,
heart transplantation, and cardiac

death) and ventricular
tachycardia events

More HF-related events:
higher native T1

(log-rank p = 0.002), T2
(log-rank p = 0.002), and
ECV (log-rank p = 0.002)

Pavon, 2021 [32] MVP 30 Retrospective Synthetic ECV > 27%

Ventricular arrhythmic events
(recent history of unexplained

resuscitated OHCA and
complex PVC)

AUC 0.83

Bui, 2017 [33] MVP 41 Retrospective Post-contrast T1
mapping Complex VA

Reduced post-contrast
T1 mapping in patients

with complex VA

ARVD/C: arrhythmogenic right ventricular dysplasia/cardiomyopathy; AUC: area under the curve; CMR: cardiovascular magnetic resonance; HR: hazard ratio; OR: odds ratio; CI:
confidence interval; MACE: major adverse cardiovascular events; HCM: hypertrophic cardiomyopathy; SCD: sudden cardiac death; NSVT: non-sustained ventricular tachycardia; ICD:
implantable cardioverter-defibrillator; CRT: cardiac resynchronization therapy; PM: pacemaker; VA: ventricular arrhythmias; PVC: premature ventricular complex; HF: heart failure; MI:
myocardial infarction; VT: ventricular tachycardia, AF: atrial fibrillation; MVP: mitral valve prolapse; VA: ventricular arrhythmias; OHCA: out-of-hospital cardiac arrest.
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2. Association of CMR Mapping Alterations and Ventricular Arrhythmias in
Cardiovascular Diseases
2.1. Ischemic Heart Disease

Areas with previous myocardial infarction are characterized by increased ECV and
native T1 values and normal T2 values. These mapping changes indicate the replacement
of myocyte loss by scar, a potential substrate for ventricular arrhythmias [12]. In a cohort
of consecutive patients (130 patients: 71 ischemic and 59 non–ischemic) undergoing CMR,
pre-contrast T1 values were significantly higher in patients experiencing a study endpoint
including appropriate implantable cardioverter–defibrillator (ICD) therapy or sustained
ventricular tachycardia [2]. Indeed, a recent study showed that diffuse myocardial fibrosis
quantified by ECV is associated with ventricular arrhythmias requiring ICD therapy in a
dose–response fashion and provides superior discrimination compared with focal fibrosis
identified via LGE [34].

In the context of an acute myocardial infarction, intramyocardial hemorrhage sec-
ondary to reperfusion damage leads to reduced T1 and T2 mapping values because of the
paramagnetic effect of hemoglobin degradation products in the infarct core [10].

Native T1 mapping values are also reduced in lipomatous metaplasia within the area
of myocardial infarction [13]. The presence of fat alters the electrical properties of the
myocardium and might play a role in post-myocardial infarction arrhythmogenesis [35].

To the best of our knowledge, the role of T2 mapping as a marker of ventricular
arrhythmias has not been explored. Overall, there is very limited evidence suggesting a
potential role for multiparametric mapping in the identification of patients with ischemic
heart disease and an increased risk of ventricular arrhythmias, but additional clinical
studies may provide further clarification.

2.2. Inflammatory Cardiomyopathy

Ventricular arrhythmias are common in inflammatory cardiomyopathy, and 20–40%
of cases of SCD have been associated with myocardial damage secondary to myocardial
inflammation [36]. Increased pre-contrast T1 mapping values or ECVs may be secondary
to edema occurring in areas of active inflammation or irreversible fibrotic tissue alterations
after the acute phase of the disease has resolved [37]. Increased T2 mapping values only
reflect active inflammation and are not impacted by underlying fibrosis, providing better
differentiation between the active and chronic phases of inflammatory diseases [38].

2.2.1. Myocarditis

The proportion of SCDs attributed to myocarditis at autopsy varies by age, causing
approximately 2% of infant (0–2 years), 5% of childhood (3–18 years), and less than 10%
to 20% of young (19–44 years) SCDs [39–41]. Recent evidence about parametric mapping
in myocarditis stems from studies regarding immune checkpoint inhibitor (ICI)-related
myocarditis, a condition associated with the use of ICIs, drugs targeting the host immune
regulatory pathways used in cancer therapy for an increasing number of malignancies,
in some as a first-line therapy. ICI-related myocarditis is an uncommon immune-related
adverse event but is associated with high reported mortality [42]. Thavendiranathan et al.
demonstrated an independent association between higher T1 mapping values and car-
diovascular events in a cohort of patients with ICI-related myocarditis. This association,
however, could not be replicated for T2 mapping values [15]. In patients with clinically
suspected acute myocarditis, an ECV ≥ 35% was found to be independently associated with
a composite endpoint, including all-cause death, heart failure hospitalization, heart trans-
plantation, documented sustained ventricular arrhythmia, and recurrent myocarditis [14].
Importantly, only the latter maintained a significant association with clinical outcomes in
a multivariable model including age, LV ejection fraction, LGE, and increased ECV. An
example of the role of mapping sequences in myocarditis is shown in Figure 2.
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Figure 2. CMR findings in patients with acute myocarditis presenting with ventricular arrhythmias.
A 42-year-old female was admitted to the emergency department for palpitations, pre-syncope, and
chest pain two days before she performed an ECG Holter with evidence of frequent premature
ventricular complexes and couplets, with an RBBB morphology and superior axis (A; asterisks);
1.5 T CMR was carried out three days later. (B) T2W-TSE image in the short-axis plane revealing
the high signal intensity of the LV infero-lateral wall (asterisk). (C) T1W post-contrast delayed
inversion recovery sequences demonstrating areas of enhancement of the subepicardial region of the
myocardium with a normal subendocardial layer (short arrow). (D) Short-axis native T1 mapping
with an average of 1110 ms, 1047 ms for the mid-septum, 1204 ms for the infero-lateral wall, and a
reference value < 950 ms. (E) Short-axis T2 mapping revealing increased values with an average of
60 ms, 53 ms for the mid-septum, and 67 ms for the infero-lateral wall, with a reference value < 55 ms.
The tissue alterations were more evident and extensive in mapping sequences than those shown by
conventional sequences, also affecting the antero-lateral LV wall (white and yellow arrows in (D,E),
respectively). CMR: cardiovascular magnetic resonance; LV: left ventricular; RBBB: right bundle
branch block.

2.2.2. Sarcoidosis

The incidence of SCD in cardiac sarcoidosis is exceptionally high, at up to 10.7% [43].
The presence of an increased T2 mapping signal has been associated with more frequent
adverse cardiac events, including significant arrhythmias (both atrial and ventricular) and
related symptoms (palpitations or near syncope) [17]. Crouser et al. have shown an associ-
ation between T2 elevation and electrophysiologic study abnormalities (atrial arrhythmia,
ventricular arrhythmia, atrioventricular block, or a QRS complex duration > 120 ms) [16].
In their population, the authors found that increased T2 mapping values in conjunction
with LGE better predicted electrocardiographic abnormalities and arrhythmias compared
with either parameter alone.
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2.2.3. Connective Tissue Disorders

Autoimmune diseases affect the myocardium diffusely, and mapping sequences have
shown increasing diagnostic values compared with LGE sequences [44]. However, a
recent study of thirty-four patients with systemic sclerosis found no association between
ventricular arrhythmias and CMR multiparametric mapping alterations in asymptomatic
patients [45].

2.2.4. Chagas Disease

The incidence of SCD is relevant in Chagas disease, and risk stratification is poor
with conventional assessment. The chronic phase of Chagas myocarditis results in exten-
sive myocardial fibrosis and LV aneurysms, predisposing the individual to ventricular
arrhythmias. CMR is key to unveiling myocardial fibrosis, which is often transmural,
resembling myocardial infarction, involving the LV apex and basal infero-lateral wall [46];
however, studies on mapping abnormalities are scarce. A study including 90 patients with
Chagas disease demonstrated that remote native T1 values of greater than 1100 ms were
predictive of the composite endpoint, including ICD implantation, heart transplantation,
and death [19].

2.2.5. Takotsubo Cardiomyopathy

Takotsubo cardiomyopathy is a reversible condition characterized by inflammation
and edema, potentially associated with SCD [47,48]. Increased T2 mapping values typically
normalize early after the acute phase, whereas increased T1 mapping values might persist
for months after the acute phase, despite the normalization of the LV ejection fraction and
chamber dimensions and a normal ECV [49–54]. To the best of our knowledge, no study
has explored the association between mapping alterations and ventricular arrhythmias in
this condition.

Overall, further studies are necessary to corroborate a clinical role for multiparamet-
ric mapping in detecting patients with inflammatory heart diseases at increased risk of
malignant ventricular arrhythmias.

2.3. Hypertrophic Cardiomyopathy and Phenocopies
2.3.1. Hypertrophic Cardiomyopathy

Predicting the risk of SCD in patients with hypertrophic cardiomyopathy (HCM) is
crucial to selecting individuals who could benefit from prophylactic ICD implantation.
The evaluation of LGE, especially if assessed quantitatively, has dramatically improved
risk stratification as it is a high-risk feature of adverse outcomes [55–57] and has been
consequently incorporated in currently recommended guideline algorithms. However,
in addition to LGE, HCM is also typically characterized by diffuse myocardial fibrosis,
which cannot be accurately distinguished via LGE, in contrast to T1 mapping and ECV.
In a prospective study evaluating predictors of major adverse cardiovascular events in
203 HCM patients, it was found, via multivariate analysis, that native T1 was associated
with adverse outcomes (HR 1.45; p < 0.001), even in a subgroup of patients judged as
low-risk per European and American guidelines [20]. In a study of 73 patients with
HCM [21], global ECV was the best parameter with which to identify patients with a risk
of SCD ≥ 4% and patients with syncope or non-sustained ventricular tachycardia (NSVT)
at the follow-up. Using a cut-off value of 34%, the global ECV had an area-under-the-curve
(AUC) of 0.83 for identifying patients at a higher risk of SCD, which is significantly higher
than that determined via LGE. Similarly, ECV performed better than LGE in identifying
patients with syncope or NSVT, and the addition of ECV to the recommended SCD risk
score provided the best discriminatory ability to identify patients who could benefit most
from ICD implantation. Another study of 108 HCM patients [22] suggested that ECV was
an independent predictor of SCD (HR 1.27, p < 0.001), and, compared with T1 mapping
parameters, LGE, and conventional risk score stratification, it was the most potent predictor
of SCD with good discriminatory ability (AUC 0.85).



Medicina 2024, 60, 691 10 of 18

Post-contrast T1 values, an expression of interstitial myocardial fibrosis, were found
to be associated with NSVT and aborted SCD, in a cohort of 100 patients with HCM [23].
While LGE presence did not differ between patients presenting with and without NSVT,
patients with NSVT had significantly reduced values upon post-contrast T1 mapping.

Higher values upon T2 mapping, potentially signaling edema due to ischemia or
microvascular dysfunction, are commonly found both in the hypertrophied and non-
hypertrophied segments in HCM patients compared with normal controls [58]. In a
prospective study of almost 700 patients with HCM [24], during a median follow-up of
3 years, patients with LGE and higher T2 values had a higher risk of being at the composite
endpoint of cardiovascular death and appropriate ICD shocks. Including T2 mapping
significantly increased the predictive performance of established risk factors, including
extensive LGE.

Nevertheless, further prospective work is needed to establish the role of myocardial
mapping parameters as prognostic factors in HCM and to integrate that information into
current clinical algorithms. At present, the quantitative evaluation of LGE among other
clinical and imaging predictors remains crucial for risk stratification. Patients presenting
with significantly elevated T1, T2, or ECV values and lacking conventional risk factors
should probably be followed more closely as they might carry a higher risk of ventricular
arrhythmias. A lower threshold for ICD implantation could be considered, while conclusive
evidence is awaited. An example of multiparametric mapping in HCM is presented in
Figure 3.
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Figure 3. CMR findings in hypertrophic cardiomyopathy. A 31-year-old man with known apical
hypertrophic cardiomyopathy was admitted for revaluation. The basal ECG is shown (A). Cardio-
vascular magnetic resonance showed elevated global T1 values (normal values < 1020 ms, (B–D)),
T2 values at the upper limit of normality at the LV apex (55 ms, (E–G)), elevated global ECV values
(normal values < 28%, (H–J)), and extensive LGE (28% of LV mass, (K–M)) involving the hyper-
trophied mid and apical segments. Multiparametric mapping abnormalities manifested a gradient
from base to apex and demonstrated that interstitial fibrosis was also present in the basal LV seg-
ments, which presented normal wall thickness and no scar at LGE sequences. LGE: late gadolinium
enhancement; LV: left ventricular; ECV: extracellular volume. Reproduced with permission from
Stankowski et al. [20].
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2.3.2. Fabry Disease

Given that a reduction in native T1 mapping reflects globotriaosylceramide (Gb3)
myocardial accumulation occurring before LV hypertrophy becomes manifest, CMR-based
mapping allows an early diagnosis of Fabry disease (FD) cardiac involvement [59]. FD
cardiomyopathy progression leads to LV hypertrophy, a “pseudo-normalization” of T1
mapping values, increased ECV, and eventually LGE in the infero-lateral LV wall [59–62].
Recently, Orsborne et al. developed a prognostic model for predicting adverse cardiac out-
comes in this cohort of patients. In their study, T1 dispersion (the standard deviation of per
voxel, a single sample or data point, myocardial T1 relaxation times) was an independent
predictor of a composite clinical outcome, which included ventricular tachycardia, aborted
SCD, and appropriate ICD therapy. The authors hypothesized that a wider distribution of
myocardial T1 relaxation times (i.e., T1 dispersion) would better reflect glycosphingolipid
accumulation and consequent fibrosis/inflammation [25].

2.3.3. Amyloidosis

In patients with amyloidosis, the incidence of malignant ventricular arrhythmias is
relatively low compared with that of other cardiac diseases [63]. Mapping alterations have
been shown to be predictors of all-cause mortality or heart failure [64,65], but there is cur-
rently no evidence to suggest a role for these tissue alterations in ventricular arrhythmias.

2.4. Dilated Cardiomyopathy

T1 mapping techniques show potential in improving risk assessments for ventricular
arrhythmias in patients with dilated cardiomyopathy (DCM) [27,66,67]. Interstitial fibrosis,
characterized by intrinsic myocardial remodeling due to complex pathophysiological
processes affecting the myocardium diffusely (not just focally), as shown by LGE, has been
recently associated with life-threatening arrhythmias and all-cause mortality in DCM. A
higher ECV has been independently associated with a composite endpoint of cardiovascular
death, hospitalization for heart failure, and appropriate ICD discharge [27].

In a recent investigation by Nakamori et al., DCM patients with a history of complex
ventricular arrhythmias showed increased global native T1 values compared with age-
matched DCM patients without any documented ventricular arrhythmia after adjusting for
LV ejection fraction and LGE [26]. Pre-contrast T1 Z-scores and ECVs were independent
predictors of arrhythmia-related events in a population of 225 patients with DCM [28].
In patients with DCM and without LGE, pre-contrast T1 and ECV values showed the
best associations with a study endpoint, including heart failure, ventricular arrhythmias,
and ICD or cardiac resynchronization therapy implantation, suggesting an added role
for T1 mapping techniques on top of LGE conventional imaging [29]. Moreover, ECV
might outperform LGE in the prediction of arrhythmias. In a population of patients
with DCM, despite the similar distribution and extent of LGE between patients with and
without ventricular arrhythmias, global and segmental ECVs were higher in the group of
patients with arrhythmias (global ECV: 30.3 ± 4.2 vs. 27.9 ± 4.9; p < 0.02), in line with an
independent association of global ECVs (HR 1.12, p < 0.02) with the arrhythmic burden [30].
T2 mapping values are altered in a subgroup of patients with DCM showing an underlying
inflammatory background. However, there is no available evidence exploring the impact
of these alterations on arrhythmic risk [66]. As noted above, the evidence supporting a role
for T1 mapping techniques appears to be almost ready for primetime in daily practice. A
case of DCM presenting with ventricular arrhythmias is shown in Figure 4.
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sive breathlessness. During an electrophysiologic study, a polymorphic ventricular tachycardia was 
induced (A). Cardiovascular magnetic resonance was performed and showed severe left ventricular 
dilatation with myocardial thinning and global hypokinesia. LGE sequences showed a mid-myo-
cardial scar involving the septum (red arrows, B). Multiparametric mapping revealed markedly el-
evated global native T1 values (up to 1150 ms; normal range: 950–1050 ms), suggesting diffuse in-
terstitial fibrosis (C). An implantable cardioverter defibrillator was implanted. LGE: late gadolinium 
enhancement. 
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Figure 4. CMR findings in dilated cardiomyopathy presenting with ventricular arrhythmias. A
55-year-old man was referred to the cardiology department with a history of palpitations and pro-
gressive breathlessness. During an electrophysiologic study, a polymorphic ventricular tachycardia
was induced (A). Cardiovascular magnetic resonance was performed and showed severe left ven-
tricular dilatation with myocardial thinning and global hypokinesia. LGE sequences showed a
mid-myocardial scar involving the septum (red arrows, (B)). Multiparametric mapping revealed
markedly elevated global native T1 values (up to 1150 ms; normal range: 950–1050 ms), suggesting
diffuse interstitial fibrosis (C). An implantable cardioverter defibrillator was implanted. LGE: late
gadolinium enhancement.

2.5. Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy

The annualized incidence rate of SCD in arrhythmogenic right ventricular dyspla-
sia/cardiomyopathy (ARVD/C) is 0.06% [68]. Biventricular and left-dominant disease
variants have been identified [69]. In the multiparametric tissue characterization of patients
with ARVD/C, elevated pre-contrast T1 values are consistent with advanced fibrosis, and
reduced values are consistent with fibrofatty infiltration. The thin right ventricular wall
limits the feasibility of T1 mapping analysis [69]. Chun et al. retrospectively analyzed
60 patients with ARVD/C. Kaplan–Meier survival analysis revealed that heart failure-
related events were more frequent in patients with increased values of pre-contrast T1
mapping and ECV. However, the authors found no association between mapping alter-
ations and ventricular arrhythmias [31]. Further studies are awaited to explore the value of
multiparametric mapping for the prediction of ventricular arrhythmias in arrhythmogenic
cardiomyopathy.

2.6. Mitral Valve Prolapse

A subgroup of patients with mitral valve prolapse (MVP) are exposed to an increased
risk of SCD, the so-called “arrhythmic MVP”. Myocardial fibrosis, particularly in the sites
most subject to the mechanical traction related to MVP mechanisms (i.e., papillary muscles
and the LV posterior wall), is emerging as a detrimental player in this setting [70]. Notably,
myocardial fibrosis depicted in pathological studies was “interstitial”, making it possible
to be missed in conventional LGE, whereas T1 mapping techniques are potentially more
accurate. Patients with MVP have shown increased pre-contrast T1 values in basal and
mid-infero-lateral segments compared with other myocardial segments [71].
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Accordingly, mapping techniques have been tested to identify patients at higher risk
of arrhythmias. In an investigation including 23 patients with MVP underECG Holter
monitoring, LV septal post-contrast T1 times were shorter in patients with complex ven-
tricular arrhythmias compared with those without [33]. Accordingly, in another study
including 30 patients with MVP, a basal infero-lateral ECV > 33.5% and LGE performed
equally in identifying those with a history of aborted SCD. Among patients with avail-
able ECG Holter monitoring, ECV was more accurate than LGE in identifying those with
complex ventricular arrhythmias, suggesting additional value beyond conventional tissue
characterization in arrhythmic risk stratification [32]. These findings were not confirmed in
a subsequent investigation including 42 patients with MVP, in which the ECV in the basal
segments did not differ between patients with and without complex ventricular arrhyth-
mias [72]. Similarly, no associations between T1 mapping values and complex ventricular
arrhythmias were found in a study including 34 patients with MVP [73]. Thus, despite the
potential theoretical advantages, mapping techniques have provided conflicting results on
the association with ventricular arrhythmias in patients with MVP. Small sample sizes and
methodological discrepancies in evaluating the arrhythmic outcome via T1 mapping may
explain such inconsistencies.

3. Future Perspectives for CMR Mapping in Clinical Practice

The potential advantage of CMR mapping sequences in the clinical context of ventricu-
lar arrhythmias is the possibility of accurately identifying and quantifying arrhythmogenic
pathological processes that escape conventional tissue characterization, ultimately with
the goal of improving the risk stratification for SCD. As a result, the selection of patients
undergoing primary prevention ICD implantation is expected to improve. Further devel-
opment of more robust non-invasive cardiac imaging selection criteria could solidify the
pathway that cardiologists and invasive cardiac electrophysiologists follow for the primary
prevention of SCD [74]. ICD implantation impacts health system costs and quality of life,
and may result in clinical complications [75]. Dedicated, large, multicenter studies com-
paring the potential benefits of mapping sequences to conventional tissue characterization
(e.g., LV ejection fraction) are needed before the clinical implementation of these sequences
in daily practice to select patients for ICD implantation and effectively prevent SCD. In this
scenario, ECV might be preferred over absolute T1 mapping measurements given its better
reproducibility and the lower influence of local variables on its values [76]. At present,
however, multiparametric mapping is still underutilized due to its lower availability, the
incomplete standardization of acquisition protocols, the need for local normal reference
values (which hinders multi-center comparisons), the susceptibility to fast or irregular heart
rates, and device-related artifacts [77].

Another potential application of CMR mapping sequences is in the guidance of inva-
sive ablation procedures. Conventional LGE imaging is used for this purpose. It allows
for the targeting of the arrhythmic substrate and evaluations of the location, depth, and
possible gaps between radiofrequency lesions without ionizing radiation [78–80]. How-
ever, the lack of sensitivity and accuracy for subtle, diffuse pathological processes renders
this approach prone to failure in some myocardial pathologies, particularly non-ischemic
cardiomyopathies. In contrast, CMR mapping sequences might better delineate arrhyth-
mogenic myocardial areas, reducing failure rates following LGE imaging alone. The latter
relies on an arbitrary scale of the relative signal intensity difference detected between
regions of dense scar and regions of user-defined “normal” tissue. Even in patients with
ischemic heart disease, non-infarct regions seen as “normal” on contrast enhanced CMR
imaging may contain diffuse interstitial fibrosis as a result of adverse remodeling and are
potentially arrhythmogenic [2]. To our knowledge, CMR mapping sequences have yet to
be tested for this potential clinical role. Moreover, parametric mapping, unlike LGE, would
allow the repetition of the same sequence multiple times during an ablation procedure to
evaluate lesion formation, potentially increasing the efficacy of ablation. Significant barriers
towards widespread implementation are lack of availability and experience, the need for



Medicina 2024, 60, 691 14 of 18

magnetic resonance-compatible interventional tools and suites, and the scarce clinical data
available so far [78].

4. Conclusions

The present review highlights that the current evidence supporting the clinical use of
mapping techniques to improve risk stratification for SCD, although promising, is unproven
in most clinical contexts. Larger clinical studies are awaited to test the additional value of
mapping techniques beyond conventional CMR imaging for selecting patients eligible for a
primary prevention ICD in daily practice.
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Abbreviations

DCM dilated cardiomyopathy
ECV extracellular volume
FD Fabry disease
HCM hypertrophic cardiomyopathy
ICD implantable cardioverter-defibrillator
ICI immune check-point inhibitor
LGE late gadolinium enhancement
LV left ventricular
MVP mitral valve prolapse
SCD sudden cardiac death
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