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Abstract: Since the start of 2020, the outbreak of the Coronavirus disease (COVID-19) has been
a global public health emergency, and it has caused unprecedented economic and social disaster.
In order to improve the diagnosis efficiency of COVID-19 patients, a number of researchers have
conducted extensive studies on applying artificial intelligence techniques to the analysis of COVID-
19-related medical images. The automatic segmentation of lesions from computed tomography (CT)
images using deep learning provides an important basis for the quantification and diagnosis of
COVID-19 cases. For a deep learning-based CT diagnostic method, a few of accurate pixel-level labels
are essential for the training process of a model. However, the translucent ground-glass area of the
lesion usually leads to mislabeling while performing the manual labeling operation, which weakens
the accuracy of the model. In this work, we propose a method for correcting rough labels; that is, to
hierarchize these rough labels into precise ones by performing an analysis on the pixel distribution
of the infected and normal areas in the lung. The proposed method corrects the incorrectly labeled
pixels and enables the deep learning model to learn the infected degree of each infected pixel, with
which an aiding system (named DLShelper) for COVID-19 CT image diagnosis using the hierarchical
labels is also proposed. The DLShelper targets lesion segmentation from CT images, as well as
the severity grading. The DLShelper assists medical staff in efficient diagnosis by providing rich
auxiliary diagnostic information (including the severity grade, the proportions of the lesion and
the visualization of the lesion area). A comprehensive experiment based on a public COVID-19 CT
image dataset is also conducted, and the experimental results show that the DLShelper significantly
improves the accuracy of segmentation for the lesion areas and also achieves a promising accuracy
for the severity grading task.

Keywords: public health; COVID-19; artificial intelligence; automatic segmentation; CT image diagnosis

1. Introduction

Since the start of 2020, the outbreak of the Coronavirus disease (COVID-19) has been
a globally public health emergency, and has caused unprecedented economic and social
disaster [1]. It features a number of symptoms including endothelial barrier disruption,
dysfunctional alveolar-capillary oxygen transmission, reduced oxygen diffusion capacity,
alveolar wall thickening, increased vascular permeability and pulmonary oedema [2]. As a
major global public health emergency, COVID-19 has once again proved that human beings
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live in a “global risk society” with a common destiny, reminding us to be more alert to new
and recurrent infectious diseases and to build a strong public health system to provide
strong protection for people’s health. There is no doubt that the development of COVID-19
has exceeded most people’s expectations. Because of the rapid spread of COVID-19, the
timely detection of the COVID-19 infection is essential to carry out the prompt isolation
and treatment of COVID-19 patients. At present, reverse transcription-polymerase chain
reaction (RT-PCR) is the most widely adopted method for the detection of COVID-19.
However, RT-PCR suffers from several limitations: (1) it is time-consuming (requiring
over 3 h to complete the detection process); (2) there is limited supply of test kits; (3) poor
sampling quality causes false negatives [3]. Nowadays, CT plays an important role for
detecting COVID-19 [3], and bilateral patchy shadows or ground-glass opacity in the lung
can be clearly identified from chest-computed tomography (CT) images captured from
COVID-19 patients [4]. In addition, compared with RT-PCR, the operation of chest CT is
easy, and with chest CT we can judge the severity of the disease. Therefore, CT could serve
as a practical method for the diagnosis of COVID-19. Moreover, to assess the severity of
COVID-19, contouring the infected area is an essential procedure for an image diagnosis.
However, the traditional manual contouring operation is tedious and time-consuming, and
it heavily depends on the clinical experience of physicians. With the increase in the number
of infected patients, the workload of radiologists has significantly increased; hence, an
automatic CT image segmentation method for COVID-19 diagnosis is urgently expected.

Deep learning technology has been widely adopted in medical image segmentation
due to its capability of feature extraction [5]. Deep learning methods show excellent
performance in the task of the lesion segmentation of COVID-19, but large-scale labelled
samples must be available prior to applying these deep learning methods [6–9]. The
task of collecting sufficient COVID-19 CT images and accurately labelling them at a pixel
level is time-consuming and costly. To tackle this issue, some methods employ data
augmentation [10,11] and image synthesis [12,13] to extract the information from limited
labeled images, but they usually suffer from poor generalization on different datasets.
Other methods applying semi-supervised [14,15] and unsupervised learning [16,17] fail to
achieve good performance due to the large variations of infection on CT images, such as
irregular shapes and ambiguous boundaries [18].

Not only the quantity but also the quality of the pixel-level label restricts the training
process of deep learning methods. By reviewing these dominant public COVID-19 CT image
datasets, we found that: (1) the quality of the dataset is uneven because it is susceptible
to the experience of the physician; and (2) the translucent ground-glass characteristics of
the infected area are hard to accurately identify, and further lead to the labeling of some
non-infected areas as infected areas (such as lung parenchyma and pulmonary vessels).
In this study, we aim to correct these mislabeled labels to provide well-labelled datasets
for model training. Rough labels (with mislabeled ones) are hierarchized according to
the pixel distribution of the infected and normal areas in the lung image. The proposed
method reassigns the mislabeled pixels and enables the deep learning model to learn the
infected degree of each infected pixel. With the hierarchical labels, we propose a deep
learning-based aiding system (named DLShelper) for COVID-19 diagnosis. The DLShelper
performs lesion (in lung) segmentation from CT images, as well as the task of severity
grading. A multi-layer preceptor (MLP) is used as a classifier. The proportion of the lesion
to the lung and the proportion of each grade in the lesion are used as input features. Rich
auxiliary diagnostic information (e.g., the severity grade, the proportion of the infected
area and the visualization of the infected area) are provided for the physicians in clinic.
The main contributions in this paper are as follows:

• In order to improve the performance of segmentation on COVID-19 infection, a label
refinement method is proposed to refine the existing labels from rough to precise. The
refinement reassigns the incorrectly labeled pixels and enables the network to learn
the infection degree of each infected pixel.
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• Aiming to assist physicians in the efficient diagnosis of COVID-19, a deep learning-
aided system (named DLSHELPER) using refined hierarchical labels is proposed.
DLSHELPER provides rich auxiliary diagnostic information, including the proposed
severity grade, proportion of infected area and infected area visualization.

• We validate the accuracy of our method for COVID-19 lesion segmentation and
grading on public COVID-19 CT datasets.

At present, it is an important opportunity to change the public health governance
system. This study takes the diagnosis of COVID-19 as an example to explore the enabling
effect of AI in the management of public health emergencies.

The rest of the paper is organized as follows: Section 2 introduces the related work.
Section 3 details the proposed method for COVID-19 CT image diagnosis. Section 4 presents
the experiment and discussion. Finally, Section 5 concludes the study.

2. Related Work

In recent years, the intelligent analysis of medical images based on artificial intelligence
has been extensively researched [19]. Santosh et al. [20] proposed a lung feature detection
model based on multi-feature parameters, and it achieved an accuracy of up to 91%.
Pratondo et al. [21] combined multiple machine learning models and a region-based
contouring algorithm for the task of medical image segmentation. Ahmad et al. [22] used
the Content-Based medical image retrieval algorithm for lung segmentation. However,
its Jaccard similarity coefficient was only 0.870. Shepherd et al. [23] proposed a statistical
model based on shape prior for segmentation combined with online/offline learning
models. Xu et al. proposed a method for lung function assessment based on cough
sound [24]. Shaukat et al. [25] developed a fully automated method to detect lung nodules
using a hybrid feature set of SVM and achieved a promising accuracy. Souza et al. [26]
proposed a Deep Convolutional Neural Network method (DCNN) for fully automated
lung segmentation. Park et al. [27] used DCNN for lung CT image segmentation. Although
DCNN is capable of learning complex data, it is overly dependent on the amount of data
used in the training process. Besides, the size of the data also impacts the performance of
the model.

The quality of these public CT image datasets is uneven because they are susceptible
to the experience of the physician. In addition, in contrast to the semantically segmented
objects, the COVID-19 lesion is translucent and of a low contrast with the surroundings. The
labeling operation is conducted manually; hence, the labeling process unavoidably involves
human errors. Some normal pixels are mislabeled as infected ones in the situations where:
(1) the lung parenchyma pixels are entrapped between lesion pixels; (2) other areas are
tissues such as pulmonary vessels. These mislabeled pixels will weaken the performance
of model training.

3. Method
3.1. Overview

As shown in Figure 1, the functions of the proposed method include: (1) lung seg-
mentation; (2) lesion label refinement; (3) lesion segmentation; and (4) severity grading.
The original CT images and lung parenchyma labels are used to train a two-category se-
mantic segmentation network, which is used for segmenting the lung parenchyma image.
With these segmented lung parenchyma images and lesion labels, the infected and normal
areas can be identified. By further analyzing the pixel distribution in these two areas,
the mislabeled pixels can be corrected and these pixels can be hierarchized to different
levels according to the value of each pixel so that these rough lesion labels are finally
refined to accurate hierarchical labels. The “level” not only represents the value of a pixel,
but also indicates the infected degree of the area in which the pixel is contained. The
lung parenchyma images and refined hierarchical labels are used to train a multi-category
semantic segmentation network, then we use it to segment the lesion areas. Different
output lesions are converted into different colors to generate a hierarchical visual map that
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provides intuitive information for auxiliary diagnosis. We calculate the proportion of three
categories in the lesion area, respectively. Then, the total proportion of the lesion to the
whole lung parenchyma is provided as other information for auxiliary diagnosis. Moreover,
these four radiological features are used as input parameters for the severity grading, which
is based on a three-layer multi-layer preceptor (MLP). In summary, there are three types
of information provided to physicians by the proposed system: (1) the hierarchical visual
map; (2) the proportion of the lesion in the lung area; and (3) the severity grade.
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Figure 1. The full workflow of the proposed auxiliary diagnosis system.

3.2. Label Refinement

As discussed in Section 2, with the traditional method pixels marked as infected
may contain normal pixels. Moreover, the traditional strategy for lesion labeling only
includes the categories: infected (marked as 1) and normal (marked as 0), which ignores
the information contained in the infected pixels; e.g., for each pixel in the infected area, the
higher the value, the more serious the infection is.

For two lesions with the same area (assuming that the area of the lung parenchyma
in which they are located is also equal and the value of pixel falls in the range (0–255)),
the more the grayscale distribution approaches 255, the more serious the infection is in
clinical diagnosis. As shown in Figure 2, we selected four CT images from different severity
grades and calculated grayscale histograms of their lesions. The results reveal a positive
correlation between the grayscale distribution of the lesion with its severity. However, there
is no accurate metric to measure the grayscale distribution, Therefore, we hierarchize the
infected area to a different level according to its pixel value, and the grayscale distribution
can be described by the percentage of pixels at different levels in the lesion.
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We denote the CT image as I and its corresponding lesion label as M. M has the same
size as I. We obtain the lung pixel from I by applying lung segmentation and denote it as
OLung. Then, the lesion in I is obtained by the mask operation in I and M, and we denote it
as OIn f ected. The complement of OIn f ected in OLung is ONo-in f ected (the normal pixel in the
lung). These processes are formulized as:

ILung = NTwo-catagory(I) ⊗ I, OLung =
{

p ∈ ILung
∣∣ ILung(p) > 0

}
(1)

IIn f ected = I ⊗M, OIn f ected =
{

p ∈ IIn f ected

∣∣∣ IIn f ected(p) > 0
}

(2)

ONo-in f ected = {OLungOIn f ected (3)

where NTwo-catagory denotes the network for lung parenchyma segmentation, ⊗ denotes
the element-wise multiplication and p denotes the pixel in the image; {ab denotes the
complement of a in set B.

We denote the average value of ONo-in f ected as a and the maximum of OIn f ected as b,
respectively. Given the pixel ofOIn f ected can be divided into Grade-g, the pixel with a value
less than a and greater than or equal to Grade-g will be reassigned as the background.
These processes are formulized as:

a= Mean
(
ONo-in f ected

)
(4)

b= Max
(
OIn f ected

)
(5)

s= (b− a)/(g + 1) (6)

R0 ∈ [0, a]∪(b− s, 255] (7)

Ri ∈ (a + (i− 1) ∗ s, a + i ∗ s], 0 < i ≤ g (8)
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where s denotes the interval between grades. R0 represents the range of pixel values of
the background; meanwhile, Ri represents the range of pixel values of Grade-i (0 < i ≤ g).
Finally, we assign the pixel belonging to each grade in ILung; i.e., the value of the Grade-i
pixel is set to i; the value of the background pixel is set to 0. Thus, a refined hierarchical
label is generated. Of note, the reason for the pixel with a value greater than or equal to
Grade-g being reassigned as the background is that lung trachea and blood vessels may be
contained in these pixels. A value of g that is too small or too large will impact the accuracy
of the label refinement; hence, we use it as a hyper-parameter and compulsorily set it to 3
(according to experimental results). As shown in Figure 3c, mislabeled infected pixels are
corrected to normal ones, and these infected pixels are hierarchized to different grades.
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3.3. Lung and Lesion Segmentation

Traditional segmentation models (especially UNet [28]) have achieved good perfor-
mance on segmentation tasks for lung and COVID-19 lesions. UNet adopts symmetric
encoding and decoding paths to aggregate semantic information and recover spatial in-
formation with the help of shortcut connections, and it is suitable for medical image
segmentation. Thus, in this study, we adopt UNet for lung and lesion segmentation. In ad-
dition, we use a multiple-category training strategy (instead of the traditional two-category
strategy) to learn the grades of pixels in the lesion.

With the completion of network training, a CT image will be input to the UNet to
segment a lung image. Then, the obtained lung image is input to the multiple-category
segmentation network to obtain the COVID-19 lesion. Based on these different categories
of lesions, a colorful visualized map is generated hierarchically.

3.4. Severity Grading

As reported in [26], the number, quadrant and area of lesions in CT images are
important factors to determine the severity of the COVID-19 case. However, as the area of
lung parenchyma in a volume of continuous CT image slices is different, it is inappropriate
to use a fixed value as the threshold to determine the grade of severity. In this work, we
calculated the proportion of all lesions in the lung parenchyma to address this issue. We
found that the higher the value, the whiter the pixel appears in the lesion area, so the
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level of the “white” pixel in the lesion area and the density of the white pixel can be taken
as indicators for determining the grade of severity. With regard to these indicators, a
multilayer perceptron (MLP) is used as a classifier for severity grading.

The multilayer perceptron is a feedforward artificial neural network that uses super-
vised back-propagation, which is widely used for nonlinear classifications. As shown in
Figure 4, the MLP in the proposed method consists of an input layer, a hidden layer and
an output layer. The Relu function is used as the activation function of the hidden layer
and the SoftMax function is used as the activation function of the output layer for the
classification. The number of neurons in the hidden layer is determined by an empirical
formula:

k =
√

m + n + a (9)

where k denotes the number of neurons in the hidden layer, n denotes the number of
neurons in the input layer, m denotes the number of neurons in the output layer, and a
denotes a constant between 1 and 10.

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 7 of 12 
 

 

As reported in [26], the number, quadrant and area of lesions in CT images are im-
portant factors to determine the severity of the COVID-19 case. However, as the area of 
lung parenchyma in a volume of continuous CT image slices is different, it is inappropri-
ate to use a fixed value as the threshold to determine the grade of severity. In this work, 
we calculated the proportion of all lesions in the lung parenchyma to address this issue. 
We found that the higher the value, the whiter the pixel appears in the lesion area, so the 
level of the “white” pixel in the lesion area and the density of the white pixel can be taken 
as indicators for determining the grade of severity. With regard to these indicators, a mul-
tilayer perceptron (MLP) is used as a classifier for severity grading. 

The multilayer perceptron is a feedforward artificial neural network that uses super-
vised back-propagation, which is widely used for nonlinear classifications. As shown in 
Figure 4, the MLP in the proposed method consists of an input layer, a hidden layer and 
an output layer. The Relu function is used as the activation function of the hidden layer 
and the SoftMax function is used as the activation function of the output layer for the 
classification. The number of neurons in the hidden layer is determined by an empirical 
formula: 𝑘 = √𝑚 + 𝑛 + 𝑎 (9)

where 𝑘 denotes the number of neurons in the hidden layer, 𝑛 denotes the number of 
neurons in the input layer, 𝑚 denotes the number of neurons in the output layer, and 𝑎 
denotes a constant between 1 and 10. 

 
Figure 4. Structure of the multi-layer preceptor network (g = 3). 𝑓  denotes the input features of 
the MLP network. 𝑓  denotes the proportion of infected pixels of three levels in all infected pixels. 𝑓  denotes the proportion of infected pixels in lung parenchyma pixels. 

4. Experiments and Analysis 
The dataset [29] used in this study contains about 3500 CT image slices and corre-

sponding lung and lesion segmentation labels. In addition, we recruited a radiology grad-
uate student to label each CT image with a grade of severity (e.g., normal, mild, moderate, 
severe and critical). The labels were then verified by an experienced radiology specialist 
for reliability. 

4.1. Implementation and Evaluation 
A two-stage training strategy is adopted in this experiment: (1) training the segmen-

tation of lung and COVID-19 lesions; (2) oversampling the training set, and finally training 

Figure 4. Structure of the multi-layer preceptor network (g = 3). f1–4 denotes the input features of the
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denotes the proportion of infected pixels in lung parenchyma pixels.

4. Experiments and Analysis

The dataset [29] used in this study contains about 3500 CT image slices and correspond-
ing lung and lesion segmentation labels. In addition, we recruited a radiology graduate
student to label each CT image with a grade of severity (e.g., normal, mild, moderate,
severe and critical). The labels were then verified by an experienced radiology specialist
for reliability.

4.1. Implementation and Evaluation

A two-stage training strategy is adopted in this experiment: (1) training the segmenta-
tion of lung and COVID-19 lesions; (2) oversampling the training set, and finally training
the MLP. We reproduced all the related networks and modules in the Pytorch framework.
When training the segmentation network, we set the number of the batch size to 1, then
initialize the network weights with Kaiming initialization, set network biases to zero and
train the positive/negative samples alternately. In addition, the training set is shuffled in
each iteration. We use different metrics in different stages. Intersection over union (IoU),
sensitivity (SEN), specificity (SPE) and Dice similarity coefficient (DSC) are used to evaluate
the accuracy of the lung segmentation. Besides, mean intersection over union (mIoU), mean
pixel accuracy (mPA) and class pixel accuracy (CPA) are used to evaluate the accuracy
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of COVID-19 lesion segmentation using original labels and refined hierarchical labels.
Precision is used to evaluate the accuracy of the severity grading. The above-mentioned
metrics can be calculated as:

IoU =
TP

TP + FP + FN
(10)

SEN =
TP

TP + FN
(11)

SPE =
TN

TN + FP
(12)

DSC =
2TP

2TP + FP + FN
(13)

mIoU =
1

k + 1 ∑k
i=0

TP
FN + FP + TP

(14)

Precision =
TP

TP + FP
(15)

mPA =
1

k + 1

k

∑
i=0

TP
TP + FP

(16)

where TP denotes true positives, TN denotes true negatives, FP denotes false positives and
FN denotes false negatives.

We optimize the lung and lesion segmentation networks using a binary cross-entropy
Llung and a multi-category cross-entropy loss Llesion, respectively, using a mean-squared
error loss to train the MLP Lmlp.

Llung(a, b) = −[blog(a) + (1− b) log(1− a)] (17)

Llesion(a, b) = −
g

∑
m=0

bmlog f (a)m (18)

f (a)m =
eam

∑
g
n=0, n 6=m ean

(19)

Lmlp(a, b) = ‖a− b‖2 (20)

L = Llung + Llesion + Lmlp (21)

where a is the ground truth and b is the predicted result. g is the number of grades in
refined hierarchical labels.

4.2. Evaluation of Lung Segmentation

As shown in Table 1 and Figure 5, lung segmentation with UNet works efficiently, with
DSC up to 96%. Besides, IoU, SEN and SPE all surpass 90%. The accurate segmentation of
the lung parenchyma ensures the quality of subsequent COVID-19 lesion segmentation
and severity grading.

Table 1. Obtained result of lung segmentation metrics.

Metric IoU DSC SEN SPE

Value 0.94 0.96 0.97 1.00



Int. J. Environ. Res. Public Health 2023, 20, 1158 9 of 12

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 9 of 12 
 

 

Table 1. Obtained result of lung segmentation metrics. 

Metric IoU DSC SEN SPE 
Value 0.94 0.96 0.97 1.00 

 
Figure 5. Visualization of the lesion segmentation using original label and refined hierarchical label. 
(a) and (b) illustrate the segmentation results using original lesion labels and refined hierarchical 
labels, respectively. 

4.3. Evaluation of COVID-19 Lesion Segmentation Using Refined Hierarchical Labels 
To evaluate the performance of refined hierarchical labels for COVID-19 lesion seg-

mentation, four state-of-the-art networks are selected and trained with original labels and 
refined hierarchical labels, respectively (as shown in Figure 5). With regard to these 
widely used metrics (e.g., IoU, DSC, SEN and SPE) for medical image segmentation, an 
evaluation is carried out. Table 2 shows the values of these four metrics of the model 
trained with original labels and refined hierarchical labels. Table 3 shows the values of 
these four metrics, the CPA of each level and the MIoU and MPA of the model trained 
with refined hierarchical labels. 

With the original labels, DeepLabV3+ achieves the best DICE of 82.94% among all the 
networks. Meanwhile, UNet achieves the worst performance. However, we find that the 
area marked as a lesion by the original labels in the input image contains many normal 
pixels such as lung parenchyma and pulmonary vessels. As illustrated in Figure 5, the #2 
image is the most mislabeled. By introducing the refined hierarchical labels, the segmen-
tation network can not only accurately identify the infected pixels, but also filter out these 
mislabeled pixels. Besides, as shown in Table 2, with the introduction of refined hierar-
chical labels, the model achieves better performance, such as the DSC of UNet and Atten-
tion-UNet reaching 83.47% and 82.35%, respectively. As shown in Table 3, the perfor-
mance of pixel segmentation with UNet (2) is the best. Because the ground truth used is 
different, we cannot directly compare the performance of models training on original 

Figure 5. Visualization of the lesion segmentation using original label and refined hierarchical label.
(a) and (b) illustrate the segmentation results using original lesion labels and refined hierarchical
labels, respectively.

4.3. Evaluation of COVID-19 Lesion Segmentation Using Refined Hierarchical Labels

To evaluate the performance of refined hierarchical labels for COVID-19 lesion seg-
mentation, four state-of-the-art networks are selected and trained with original labels and
refined hierarchical labels, respectively (as shown in Figure 5). With regard to these widely
used metrics (e.g., IoU, DSC, SEN and SPE) for medical image segmentation, an evaluation
is carried out. Table 2 shows the values of these four metrics of the model trained with
original labels and refined hierarchical labels. Table 3 shows the values of these four metrics,
the CPA of each level and the MIoU and MPA of the model trained with refined hierarchical
labels.

With the original labels, DeepLabV3+ achieves the best DICE of 82.94% among all
the networks. Meanwhile, UNet achieves the worst performance. However, we find
that the area marked as a lesion by the original labels in the input image contains many
normal pixels such as lung parenchyma and pulmonary vessels. As illustrated in Figure 5,
the #2 image is the most mislabeled. By introducing the refined hierarchical labels, the
segmentation network can not only accurately identify the infected pixels, but also filter
out these mislabeled pixels. Besides, as shown in Table 2, with the introduction of refined
hierarchical labels, the model achieves better performance, such as the DSC of UNet
and Attention-UNet reaching 83.47% and 82.35%, respectively. As shown in Table 3, the
performance of pixel segmentation with UNet (2) is the best. Because the ground truth used
is different, we cannot directly compare the performance of models training on original
labels and refined hierarchical labels. Experienced radiologists from a hospital in Zhejiang
Province confirm that refined hierarchical labels bring more precise results.
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Table 2. Comparison of lesion segmentation performance using original labels and refined hierarchi-
cal labels.

Network
Labels

IoU (%) DSC (%) SEN (%) SPE (%)
Original Refined

UNet [28]

√
68.02 78.36 82.31 99.74

√
73.54 83.47 87.75 99.83

Attention-UNet [30]

√
71.89 82.13 85.51 99.78

√
71.82 82.35 82.37 99.87

SegNet [31]

√
68.98 79.57 83.38 99.74

√
68.49 79.54 78.85 99.87

DeepLabV3+ [32]

√
72.43 82.94 85.08 99.79

√
68.71 80.48 79.89 99.84

Table 3. Detailed performance using refined hierarchical labels.

Network g CPA (%) IoU (%) DSC (%) SEN (%) SPE (%) MIoU (%) MPA (%)

UNet

1 77.30 56.52 70.71 77.30 99.87

61.04 75.732 81.31 65.47 77.20 81.31 99.92

3 75.33 61.13 72.93 75.33 99.95

Attention-
UNet

1 70.30 53.24 67.80 70.30 99.88

58.27 71.562 73.95 62.82 75.17 73.95 99.94

3 70.41 58.75 70.81 70.41 99.96

SegNet

1 55.58 41.31 56.20 55.58 99.84

51.96 67.742 71.21 52.55 66.77 72.22 99.86

3 66.59 49.40 63.18 66.59 99.92

DeepLabV3+

1 55.21 40.62 56.20 55.21 99.85

41.69 57.052 61.62 44.43 60.37 61.62 99.86

3 54.34 40.03 55.11 54.34 99.91

4.4. Evaluation of COVID-19 Severity Grading

There are few samples of mild, severe and critical cases in the dataset. As shown in
Table 4, the classification accuracy of these categories is very low, even as low as 0 (mild).
To solve this category imbalance problem, we applied the Synthetic Minority Oversampling
Technique (SMOTE) [33] to minority classes. With the operation of oversampling the
dataset, all the categories of samples reached a balance, the classification accuracy of mild
reached 100% and the classification accuracy of severe and critical increased by 19.81% and
10.25%, respectively. Moreover, the overall accuracy was 98.82%.

Table 4. Precision of Severity Grading.

Severity Precision (%) Precision (%)
(With Operation of Oversampling)

Normal 1 1
Mild 0 1

Moderate 99.37% 99.38%
Severe 62.69% 82.50%
Critical 79.49% 89.74%

Total 96.49 98.82
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5. Conclusions

In this study, we propose a method for refining lesion labels from rough to precise.
Then, a deep learning-based aiding system for CT image diagnosis using refined labels
is developed. It performs lung and lesion segmentation from CT images, as well as
severity grading. A multi-layer preceptor is used as a classifier, and the proportion of
the lesion to the lung and the proportion of each grade in the lesion are used as input
features. Auxiliary diagnostic information including the severity grade, proportion of
infected area and visualization of the infected area are provided by the DLShelper for
physicians in clinic. A comparative experiment based on public datasets is carried out,
and the experimental results show that the proposed method achieves better accuracy in
comparison with several state-of-the-art networks. Besides, the proposed method achieves
a high accuracy for severity grading. In future, we will develop a new metric to describe
the grayscale distribution features so as to further improve the performance.

In COVID-19 prevention and control, while developing AI and playing its positive role,
we should be alert to the social risks and ethical challenges brought by AI itself, carry out
responsive and principled scientific and technological governance, and strengthen ethical
review and data legislation under the principle of “harmony, friendship, fairness, inclu-
siveness and sharing, respect for privacy, security and controllability, shared responsibility,
open cooperation, and agile governance”.
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