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Abstract: This paper provides an investigation into the dependence structure among different
disruptive technology sectors driving the Fourth Industrial Revolution and scrutinizes the impact
of ESG integration on shaping investments in different tech stock sectors in the presence of ESG
consideration, represented by the ESG stock index, versus without specific ESG consideration,
represented by the general stock index. The results show that (i) C-vine outperforms R-vine and
D-vine when modeling the dependence structure of tech sectors. Intelligent infrastructure is the
most crucial sector, with substantial reliance on smart transportation and advanced manufacturing.
(ii) ESG integration reduces dependence, especially tail dependence, between tech sectors and the
stock market, which benefits the future security sector the most and future communication the least.
(iii) ESG integration mitigates risk spillover between tech sectors and the stock market, particularly
benefiting final frontiers and intelligent infrastructure. The decrease in downside spillover is more
significant compared to upside scenarios. For downside risk, spillover from tech sectors to stock
indices is more reduced than the reverse, while the opposite holds for upside risk. These sectoral
findings offer insights for market participants in financial market investments, financial regulators in
risk management, and listed companies in ESG disclosure.

Keywords: ESG; industrial revolution 4.0; tech stock; copula; dependence structure; spillover effect

1. Introduction

Industrial Revolution 4.0 (I4.0) refers to a policy-driven transformation of industrial
processes using advanced digital technologies piloted by the German government (Reis-
chauer 2018). Over the last decade, companies have transformed manufacturing through
investments in I4.0 technologies like IoT, AI, cloud computing, autonomous robots, and
blockchain (Jabbour et al. 2019; Chen et al. 2020). Aside from significant contributions to
social development, another primary focus of I4.0 is on environmental sustainability (Khan
et al. 2023). Nowadays, with ongoing climate change and environmental degradation,
environmental, social, and governance (ESG) is increasingly being used to evaluate the
performance of firms and pension funds, guide investment decision-making, and inform
customer purchasing. Particularly, ESG integration is an emerging investment strategy
that considers ESG responsibilities when making investment decisions in the financial
market. Further, regulatory developments for ESG are taking place all over the world
nowadays (KPMG 2022), which are the key guidelines for investors to make ESG invest-
ments. Technology stocks within Industry 4.0 have garnered broad investor attention due
to their outperformance across all industry sectors, making them an attractive long-term
investment (Emir Hidayat et al. 2022). Moreover, anecdotal evidence suggests that the
technology sector has exhibited remarkable resilience in economic downturns, possibly
attributed to its extensive economy-wide dependency and suitability for “work from home”
scenarios (BenSaïda and Litimi 2021; Hossain et al. 2023). However, in the long term, the
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technology sector demonstrates behavioral patterns closely aligned with the global stock
market (Rašiová and Árendáš 2023).

Exploring the link between social development, environmental sustainability, and
financial stability is vital for policymakers and investors. Naturally, investing in I4.0 tech-
nology companies promotes both firm development and technological advancement and
indirectly fosters societal progress, which indicates that social development correlates
positively with financial stability. In the extant literature, researchers have made efforts
to reveal that I4.0 technologies can facilitate ESG disclosure and compliance, contributing
to environmental sustainability (Alkaraan et al. 2022; Asif et al. 2023; Kumar et al. 2024).
In addition, ESG-compliant companies are more likely to be favored by investors as ESG
can create value for stakeholders, enhance firms’ reputation, and improve firm value (Zeng
et al. 2023; Chen et al. 2023). This establishes a positive correlation between environmental
sustainability and social development. Nevertheless, the insufficient research on the cor-
relation between financial stability and environmental sustainability, particularly within
the tech market, underscores the need for dedicated exploration. This is crucial due to the
distinctive role of technology companies in the economy. Furthermore, current studies
often utilize aggregate tech stock indices or focus on specific types of technology stocks,
neglecting potential heterogeneity among sectoral tech stocks. This gap necessitates a
comprehensive investigation into the dependence structure among different disruptive
technology sectors. Additionally, understanding the nuanced impact of ESG on the depen-
dence and spillover effects within disruptive technology sectors and the overall market
remains an underexplored research problem.

Motivated by the aforementioned points, this paper initially explores dependence
structures within ten tech stock sectors using vine copula models to comprehend the
transmission of risk within these sectors. Subsequently, it assesses the impact of ESG
integration on financial stability by comparing dependence and risk spillover measures in
the presence or absence of ESG consideration. Dynamic dependence is modeled using a
t-copula with a GAS process, while dynamic, asymmetric, and heterogeneous risk spillover
effects are evaluated using the copula-based CoVaR approach.

This study contributes to the literature in at least three dimensions. First, this paper
explores the hitherto unexamined dependence structure of various technology sectors
steering I4.0. Second, it investigates the benefit of ESG integration for tech sectors from the
perspective of investors. This aspect of investigation distinguishes our research as inno-
vative within the scholarly landscape. Third, the present study adopts a methodological
refinement by utilizing sectoral data, a departure from the common reliance on aggregate
indices seen in previous research. This approach offers more granular insight into the
dynamics of I4.0 tech stocks, addressing a previously overlooked aspect and enhancing the
specificity of our findings.

This study yields several intriguing results. First, C-vine surpasses R-vine and D-vine
in modeling tech sector dependence. Intelligent infrastructure emerges as the most pivotal
sector, exhibiting substantial dependence on smart transportation and advanced manu-
facturing. Second, ESG integration diminishes dependence, especially tail dependence,
between tech sectors and the stock market, notably favoring the future security sector the
most and the future communication sector the least. Third, ESG integration appears to
effectively mitigate risk spillover between the technology sectors and the stock market,
with a pronounced impact on final frontiers and intelligent infrastructure. Notably, the
reduction in downside spillover outweighs that in upside scenarios. In the context of
downside risk, spillover from tech sectors to stock indices is more notably diminished,
while the reverse holds for upside risk.

The remainder of this paper is designed as follows. Section 2 reviews the work in
the related literature. Sections 3 and 4 present the methodology and data, respectively.
Section 5 discusses the empirical results. Section 6 concludes the findings.
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2. Literature Review
2.1. Dependence Structure of Sectoral Markets

The dependence structure across diverse markets, which provides richer information
than individual dependence coefficients, is currently a prominent focus in risk contagion
(Zheng et al. 2023). An increasing number of studies have applied copula approaches to
examine the presence of dependence structure across markets, including equity (Aslam
et al. 2023), commodity (Xiao et al. 2023), currency (BenSaïda 2023), etc. However, most
studies predominantly utilize bivariate dynamic copulas, neglecting the simultaneous
modeling of high-dimensional variables. To address this limitation, Bedford and Cooke
(2002) introduced the innovative multivariate copula method known as vine copula. In
research employing vine copula approaches, comparison often involves three prevalent
structures within the vine copula model: Regular (R-vine), Canonical (C-vine), and Draw-
able (D-vine) structures (Aslam et al. 2023; BenSaïda 2023; Czado 2019; Jain and Maitra
2023). The prevailing assumption in this regard favors the superior performance of R-vine,
given its greater flexibility. For instance, BenSaïda (2023) suggests its appropriateness in
modeling currency markets. However, Czado et al. (2013) argue that the suitability of a vine
model is contextual, emphasizing that C-vine may be preferable when a variable exhibits
exceptionally high correlation with all others, and D-vine fits well in multivariate datasets
where a group of variables is closely related to the rest. This context-specific suitability
is further supported by Arreola Hernandez et al. (2017), who found that while an R-vine
model is optimal for capturing dependence between stocks in the retail and gold mining
sectors, a D-vine model performs better for the manufacturing stock portfolio in Australia.
Similarly, Sukcharoen and Leatham (2017) conclude that the D-vine copula approach is
more suitable than C-vine for hedging related assets in the Australian refinery sector. Czado
(2019) directs attention to the dependence structure among stock sectors in Germany and
highlights that the C-vine copula exhibits the best fit for modeling this structure.

Based on prior research, this paper hypothesizes the following:

Hypothesis 1. The C-vine model outperforms the R-vine (excluding the C- and D-vine) and
D-vine models in the context of I4.0 tech sectors.

2.2. ESG and Dependence

The literature identifies two primary approaches for investigating financial market
dependence: (1) multivariate GARCH models like DCC (Ding et al. 2022; Dong et al.
2023; Yu et al. 2024) or BEKK (Ashfaq et al. 2023), and (2) copula theory, noted for its
ability, as highlighted by Ning (2010), to detect nonlinear and asymmetric dependencies.
Traditional correlation-based approaches are criticized for their limited performance in
capturing complex dependence dynamics. Copula theory offers the advantage of detecting
shock transmission paths among variables, a capability lacking in multivariate GARCH
models, as discussed by BenSaïda and Litimi (2021). Hence, this study opts for the copula
framework to model multivariate dependence.

Rašiová and Árendáš (2023) indicate that the dependence between the stock market
volatility and tech stocks is strongly negative and asymmetrically increasing, with surges
in market volatility. Also, specific tech stocks are studied. For instance, Ghaemi Asl et al.
(2023b) studied the relationship between sectoral stocks and distributed ledger technology
stocks and found significant and positive dependence, and it tends to be higher in the long
term. Numerous studies examine the dependence between ESG-related assets (especially
green bonds) and other financial assets and find the superiority of ESG assets in many
aspects (Pham and Nguyen 2021; Duan et al. 2023; Huang et al. 2023). Also, some pay
attention to the relationship between fintech and green assets. For instance, Tiwari et al.
(2023) and Urom (2023) find the mostly positive and strongest dependence between fintech
and green assets in the long term but weak dependence in the short term, and fintech stocks
dominate most green assets.

Then, this paper hypothesizes the following:



J. Risk Financial Manag. 2024, 17, 197 4 of 29

Hypothesis 2. ESG integration can reduce dependence between the I4.0 tech sectors and the
overall stock market.

2.3. ESG and Spillover Effects

Financial crisis contagion theory posits that economic sector interdependence and
financial market openness lead to shock transmission. Forbes and Rigobon (2002) define
contagion as an escalation in risk correlation or spillover effects across markets, particularly
during external shocks. High-risk spillover magnitudes indicate the potential for a financial
crisis outbreak, as uncertainty easily transmits between financial markets (Aloui et al. 2011).

In this context, numerous studies have devised methodologies to quantify the spillover
effects of financial markets (Baruník and Křehlík 2018; Diebold and Yilmaz 2012; Anton-
akakis et al. 2020; Balcilar et al. 2021), primarily relying on TVP-VAR models. However,
these approaches fail to capture the nonlinear relationships amid heightened global eco-
nomic uncertainty, a weakness that can be addressed by copula theory. There is a scarcity
of research on the risk spillover effects of ESG assets (Maraqa and Bein 2020; Gao et al.
2022). For instance, Papathanasiou et al. (2022) characterized S&P 500 ESG as a net risk
transmitter in the stock market, implying heightened risk in ESG investment compared to
general stock investment. Nevertheless, these studies have concentrated on spillover effects
within particular markets, such as the stock market, or among ESG-related assets. Zhang
et al. (2022a, 2022b) analyzed the dynamic interconnectedness of sustainability-related
financial assets. Moreover, Liu et al. (2023) discovered that ESG investment generally
mitigates risk spillovers across various financial markets, concurrently bolstering Chinese
financial stability.

Therefore, this paper hypothesizes the following:

Hypothesis 3. ESG integration can reduce spillover effects between the I4.0 tech sectors and the
overall stock market.

3. Methodology

To understand the nature of our data, we deeply review the descriptive statistics
and first employ marginal distribution estimation of the return series. Subsequently, we
then use probability integral transformation (PIT) to extract the marginal distribution’s
standardized information for copula model estimation. Second, to investigate Hypothesis
1, we apply the vine copula model to estimate the dependence structure among tech sectors,
with the uniformly distributed series obtained by PIT. Third, we use a t-copula to estimate
the joint distribution between individual sectors and the stock index, followed by a GAS
process to update and obtain dynamic dependence measures of the estimated t-copulas to
ultimately investigate Hypothesis 2. In the fourth step, we analyze risk spillovers using the
CoVaR measure based on estimated marginal distributions and t-copulas of returns series
to examine Hypothesis 3. The combination of these three models is commonly utilized in
the academic literature, as demonstrated by the works of various researchers such as Dai
et al. (2023), Hanif et al. (2022), Jain and Maitra (2023), Kielmann et al. (2022), Rehman et al.
(2023), Yao and Li (2023), and Zeng et al. (2022), underscoring its validity and widespread
acceptance in scholarly discourse. For clarity and easy reference, we have synthesized a
summary of their models’ application in Table A1.

3.1. Marginal Distribution Model

In this study, the ARMA-GJR-GARCH model with skewed t-distributed innovations
is used to depict the characteristics of autocorrelations and heteroscedasticity in the return
series and the standardized residuals are extracted after noise reduction. The ARMA(p,q)-
GJR-GARCH(m,n) filter has the following general form:

ri, t =
p

∑
j=1

ϕjri, t−j +
q

∑
j=1

θjξi, t−j + ξi, t (1)
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σ2
i, t = ωi +

m

∑
j=1

αjξ
2
i, t−j +

m

∑
j=1

γjξ
2
i, t−jIi, t−j +

n

∑
j=1

β jσ
2
i, t−j (2)

ξi, t = σi, tzi, t (3)

zi, t ∼ skew-t(ν, η) (4)

where ri, t is the return series, zi, t is the standardized residuals, and σi, t indicates the
conditional volatility. p, q, m, and n represent non-negative integers. ϕj and θj denote
the autoregressive and moving average coefficients. ωj, αj, γj, and β j are the conditional
variance parameters to be estimated. Ii, t−j is an indicator function that takes 1 if ξi, t−j < 0
and 0 otherwise.

In Equation (4), we assume that zi, t is an i.i.d. random variable with zero mean and
unit variance that follows a Hansen (1994) skewed t density distribution expressed as

t(zi, t|ν, η) =


bc
(

1 + 1
ν−2

(
bzi, t+a

1−η

)2
)− ν+1

2
, zi, t < −a/b

bc
(

1 + 1
ν−2

(
bzi, t+a

1+η

)2
)− ν+1

2
, zi, t ≥ −a/b

(5)

where ν and η are the degrees of freedom and symmetry parameters, respectively, with
2 < ν < ∞ and −1 < η < 1. The coefficients a, b, and c are constants given as

a = 4ηc ν−2
ν−1

b2 = 1 + 3η2 − a2

c =
Γ( ν+1

2 )
Γ( ν

2 )
√

π(ν−2)

(6)

where Γ(·) is the Gamma function. If η = 0 and ν is finite, it converges to the symmetric
Student-t distribution, whereas if η = 0 and ν is infinite, it converges to the Gaussian
distribution.

Subsequently, a copula is characterized as a multivariate cumulative distribution
function, wherein its individual marginal distributions uniformly span the interval [0, 1].
We first assume that all cumulative distributions of the return series are continuous and
monotonically increasing. Then, for copula modeling, we utilize the skewed t cumulative
distribution function for probability integral transformation, expressed as

µi, t := Tν, η(zi, t) (7)

where Tν, η(·) is the skew t distribution function with estimated parameters.

3.2. Vine Copula Model

According to the theorem proposed by Sklar (1959), given n random variables x =
(x1, x2, . . . , xn) with continuous and strictly increasing marginal distributions, the joint
cumulative distribution function F(x1, x2, . . . , xn) can be expressed solely in terms of its
marginals as

F(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)) = C(u1, u2, . . . , un) (8)

where ui = Fi(xi), i = 1, . . . , n are the transformed values of x1, x2, . . . , xn using the
marginal distribution functions Fi(xi), which are uniformly distributed across [0, 1]. The
uniquely determined copula function C(·) can be formally defined as

C(u1, u2, . . . , un) = F
(

F−1
1 (u1), F−1

2 (u2), . . . , F−1
n (un)

)
(9)
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where F−1
i (ui) represents the value of the inverse function of the marginal distribution

function Fi(xi) at ui. The copula density function c(u1, u2, . . . , un) can be obtained by
taking partial derivatives of the copula function with respect to each variable in the unit
interval [0, 1], which can be derived as

c(u1, u2, . . . , un) =
∂nC(u1, u2, . . . , un)

∂u1∂u2 . . . ∂un
(10)

Then, the joint density function of x1, x2, . . . , xn can be expressed as the product of the
marginal density functions and the copula density function, represented as

f (x1, x2, . . . , xn) =
n

∏
k=1

fk(xk)c(F1(x1), F2(x2), . . . , Fn(xn)) (11)

where fk(xk), k = 1, . . . , n are marginal density functions.
A bivariate copula function can only characterize dependence between two variables,

while Bedford and Cooke (2002) proposed the vine copula approach and extended the
analysis to multivariate contexts. This model has been appreciated for their flexibility and
extension of copula selection from a wide range of copula families. An n-dimensional
random vector will generate n − 1 tree structures and n(n − 1) pairs of random variables
that need to be characterized by paired-copula functions. Additionally, the determination
of the dependence structure and pairwise copula functions is facilitated by a constraint
set. Aas et al. (2009) contributed to this field by introducing two notable structures
known as the C-vine and D-vine. The C-vine structure exhibits a dependency pattern
akin to a star configuration, wherein each variable is linked directly to a central node.
Conversely, the D-vine structure depicts a sequential pathway, where each variable is
connected to its immediate predecessor. Moreover, the R-vine structure emerges as a
general framework offering great flexibility, as it combines elements from both the C-vine
and D-vine structures. In the R-vine, nodes are interconnected in a manner that allows
for a versatile amalgamation of dependency patterns observed in both C-vine and D-vine
structures. Their decomposition of the joint density function is as follows:

fR(x) := f (x1, x2, . . . , xn) =
n

∏
k=1

fk(xk)
n−1

∏
i=1

∏
e∈Ei

cj(e), k(e)|d(e)

(
F
(

xj(e)

∣∣∣xd(e)

)
, F
(

xk(e)

∣∣∣xd(e)

))
(12)

fC(x) =
n

∏
k=1

fk(xk)
n−1

∏
i=1

n−i

∏
j=1

ci, i+j|1:(i−1)

(
F(xi|x1, . . . , xi−1), F

(
xi+j

∣∣x1, . . . , xi−1
)∣∣∣θi, i+j|1:(i−1)

)
(13)

fD(x) =
n

∏
k=1

fk(xk)
n−1

∏
i=1

n−i

∏
j=1

cj, j+1|(j+1):(j+i−1)

(
F
(

xj
∣∣xj+1, . . . , xj+i−1

)
, F
(
xj+i

∣∣xj+1, . . . , xj+i−1
)∣∣∣θj, j+1|(j+1):(j+i−1)

)
(14)

3.3. GAS t-Copula Model

Dynamic copula models exhibit time-varying dependence parameters while maintain-
ing a constant copula function. These models are broadly classified into parameter-driven,
such as stochastic copula models (Hafner and Manner 2012), and observation-driven,
exemplified by ARCH-type models and related copula models (Patton 2006; Creal et al.
2013). Many studies reveal that the latter approach is superior to the former (Nguyen and
Javed 2023). In particular, Koopman et al. (2016) empirically demonstrate that the general-
ized autoregressive score (GAS) model surpasses other observation-driven processes in
predictive accuracy.

Following Creal et al. (2013), and in line with Czado (2019) and Rehman et al. (2023),
time-varying dependence between the bivariate return series ri, t and rj, t is assessed while
mitigating autocorrelation and heteroskedasticity effects. This involves employing innova-
tions zi, t and zj, t which undergo a probability transformation via Equation (7) to extract
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series µi, t and µj, t and derive more accurate measurements of dependence. Hence, like
Equation (8), the joint distribution is given by the copula function C(·), with parameters
Θ, as

F
(
zi, t, zj, t

)
= C

(
µi, t, µj, t

∣∣Θ) (15)

Initially, a suitable copula function is determined. This paper utilizes a t-copula which
is a popular choice for parametric modeling in risk management and financial econometrics
due to its effective fitting of the fat-tail characteristic observed in financial time series
(Lourme and Maurer 2017; Zhang et al. 2022a). In addition, many studies demonstrate that
the GAS t-copula model proposed by Oh and Patton (2016) has exceptional performance
in depicting extreme risk (Nguyen and Javed 2023; Yao and Li 2023). The cumulative
distribution and density functions of the t-copula are given by

C
(
µi, t, µj, t

∣∣ρ, v
)
=
∫ T−1

v (µi, t)

−∞

∫ T−1
v (µj, t)

−∞

1
2π
√

1 − ρ2

[
1 +

s2 + t2 − 2ρst
v(1 − ρ2)

]− v+2
2

dsdt (16)

c
(
µi, t, µj, t

∣∣ρ, v
)
= ρ−

1
2

Γ
( v+2

2
)
Γ
( v

2
)[

Γ
(

v+1
2

)]2

[
1 +

T−1
v (µi, t)

2
+T−1

v (µj, t)
2−2ρT−1

v (µi, t)T−1
v (µj, t)

v(1−ρ2)

]− v+2
2

[(
1 +

T−1
v (µi, t)

2

v

)(
1 +

T−1
v (µj, t)

2

v

)]− v+2
2

(17)

where ρ is the first parameter of the t-copula, v denotes the degrees of freedom (the second
parameter), and T−1

v (·) represents the inverse function of the univariate t distribution
function. In the subsequent dynamic t-copula model, the degrees of freedom v are kept
fixed, while we allow the correlation parameter ρ to vary as ρij, t.

Then, the t-copula parameters are normalized. Since ρij, t is defined in the interval

(−1, 1), we utilize the inverse Fisher transformation ψ to transform ζ
i, j
t ∈ (−∞, ∞) into

ρij, t. In other words, we generate ρij, t through the transformation of ζ
i, j
t by using ψ.

ρij, t := ψ
(

ζ
i, j
t

)
=

e2ζ
i, j
t − 1

e2ζ
i, j
t + 1

(18)

The final step involves modeling the process of ζ
i, j
t based on the GAS(1,1) model. The

driving equation for this process is given as

ζ
i, j
t = Ωi, j + Ai, js

i, j
t−1 + Bi, jζ

i, j
t−1 (19)

where Ωi, j represents the mean constant term, Ai, j and Bi, j are the parameters to be

estimated, and si, j
t denotes the scale score, expressed as follows:

si, j
t = Sij, t∇ij, t (20)

∇ij, t =
∂lnc

(
µi, t, µj, t

∣∣ρij, t, Ft; ςi, j
)

ρij, t
(21)

Sij, t = I−
1
2

ij, t (22)

Iij, t = Et−1

[
∇ij, t, ∇′

ij, t

]
(23)

where ςi, j =
(
Ωi, j, Ai, j, Bi, j

)
and Sij, t are the square roots of the inverse of the Fisher

information matrix, and Ft is the set of information known at time t. Et−1 denotes an
expectation regarding the corresponding copula density function c

(
µi, t, µj, t

∣∣ρij, t, Ft; ςi, j
)
.



J. Risk Financial Manag. 2024, 17, 197 8 of 29

In capturing nonlinear dependence, copulas render the linear Pearson correlation
coefficient inappropriate. Instead, Kendall’s tau (τ) is commonly employed, which is
marginally distribution-invariant and depends solely on the underlying copula. The static
τ is defined as

τ
(
ri,t, rj,t

)
= E

(
sign

(
ri, t −

∼
r i, t

)(
rj, t −

∼
r j, t

))
(24)

where
(∼

r i, t,
∼
r j, t

)
is an independent pair with the same distribution as

(
ri,t, rj,t

)
. Nelsen

(2006) extends the measurement of Kendall’s τ by incorporating the copula function as

τ
(
ri, t, rj, t

)
= 4

∫ 1

0

∫ 1

0
C
(
µi, t, µj, t

)
dC
(
µi, t, µj, t

)
− 1 (25)

Specifically, for the dynamic t-copula, the dependence τ between ri, t and rj, t is
calculated as τ

(
ri, t, rj, t

)
= 2

π arcsin
(
ρij, t

)
. Additionally, we are particularly interested in

the dependence among extreme events in finance, and thus, tail dependence is of interest.
The important features of tail distribution and dependency are the upper and lower tail
dependence coefficients (TDC) λl and λu, and the tail concentration function (TCF) Λ(u),
which are defined as follows:

λl = lim
u→0

P
(

rj,t ≤ F−1
j (u)

∣∣∣ri,t ≤ F−1
i (u)

)
= lim

u→0+

C(u, u)
u

(26)

λu = lim
u→1

P
(

rj,t > F−1
j (u)

∣∣∣ri,t > F−1
i (u)

)
= lim

u→1−

1 − 2u + C(u, u)
1 − u

(27)

Λ(u) =
C(u, u)

u
· I0≤u≤0.5 +

1 − 2u + C(u, u)
1 − u

· I0.5<u≤1 (28)

where F−1
i (·) and F−1

j (·) are the inverse marginal distribution functions and u ∈ [0, 1].
Specifically, for continuously distributed random variables with the t-copula, the time-
varying symmetrical tail dependence coefficient is given by

λij, t = 2Tv+1

(
−
√

v + 1

√
1 − ρij, t

1 + ρij, t

)
(29)

where Tυ+1(·) is the t cumulative distribution function with v + 1 degrees of freedom.

3.4. CoVaR–Copula Approach

To quantify extreme risk spillover between tech sectors and the overall stock market,
we apply the CoVaR measure proposed by Adrian and Brunnermeier (2016) to provide
information on the market VaR under the condition of an extreme situation in another
market. By incorporating the GAS process of innovations and the ARMA-GJR-GARCH
description of returns into the CoVaR, we refine its capability to dynamically model time-
varying dependencies and volatility fluctuations. This enhancement enables CoVaR to
provide a more nuanced and precise assessment of systemic risk transmission, particularly
in periods characterized by extreme market stress.

VaR represents the anticipated maximum loss of a portfolio over a specific timeframe,
based on a predetermined level of confidence. In particular, let ri, t and rj, t denote the
return series. Given the confidence level 1 − α, the downside and the upside VaR for rj, t
can be expressed, respectively, as

P
(

rj, t ≤ VaRj
α, t

)
= α (30)

P
(

rj, t ≥ VaRj
1−α, t

)
= α (31)
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We can further calculate the downside and upside VaR based on estimated marginal
distributions as follows:

VaRj
α, t = ϖj, t + T−1

ν, η(α)σj, t (32)

VaRj
1−α, t = ϖj, t + T−1

ν, η(1 − α)σj, t (33)

where σj, t is the standard deviation, and ϖj, t is the conditional mean, calculated as ϖj, t =

∑
p
i=1 ϕirj, t−i + ∑

q
i=1 θiξ j, t−i, of the return series. T−1

ν, η(1 − α) and T−1
ν, η(α) are the 1 − α and

the α-quantile of the skewed t distribution.
The downside CoVaR of market i given extreme downturns in market j at a confidence

level of 1 − β or the β-quantile of the conditional distribution of ri, t is

P
(

ri, t ≤ CoVaRD, i|j
β, α, t

∣∣∣rj, t ≤ VaRj
α, t

)
= β (34)

Similarly, we can measure the upside CoVaR as

P
(

ri, t ≥ CoVaRU, i|j
β, 1−α, t

∣∣∣rj, t ≥ VaRj
1−α, t

)
= β (35)

Based on the copula theory proposition, Fj

(
VaRj

α, t

)
= α, so Equation (34) is equiva-

lent to

P
(

ri, t ≤ CoVaRD, i|j
β, α, t, rj, t ≤ VaRj

α, t

)
P
(

rj, t ≤ VaRj
α, t

) =
Fi, j

(
CoVaRD, i|j

β, α, t, VaRj
α, t

)
Fj

(
VaRj

α, t

) = β (36)

where Fi(·) and Fj(·) are the marginal distributions of i and j returns, respectively, and
Fi, j(·) is their joint distribution function. Subsequently, we can measure the systematic
impact of market j’s returns on market i’s returns by addressing Equations (37) and (38) in
the following manner:

C
(

Fi

(
CoVaRD, i|j

β, α, t

)
, Fj

(
VaRj

α, t

))
= αβ (37)

1 − Fi

(
CoVaRU, i|j

β, 1−α, t

)
− Fj

(
VaRj

1−α, t

)
+ C

(
Fi

(
CoVaRU, i|j

β, 1−α, t

)
, Fj

(
VaRj

1−α, t

))
= αβ (38)

where C(·) represents the dynamic t-copula of returns whose time-varying parameter
is generated by the GAS process. Referring to Reboredo and Ugolini (2016), given the
confidence levels α and β, Fi

(
CoVaRi|j

β, α, t

)
can be obtained by inverting the copula function

at time t. Then, CoVaRi|j
β, α, t can be obtained through the inverse of the marginal function

of ri, t, namely F−1
i

(
Fi

(
CoVaRi|j

β, α, t

))
.

Additionally, since CoVaR cannot reflect the volatility scale of different markets,
∆CoVaR is further introduced to measure the risk contagion contribution. Similar to
Girardi and Ergün (2013), the ∆CoVaR defined in Equation (39) is interpreted as the differ-
ence in VaR for i returns under extreme movement versus normal conditions of j returns.
Further, we standardize ∆CoVaR to estimate %CoVaR using Equation (40), thus eliminating
the magnitude effects and obtaining more accurate results reflecting risk spillover among
paired markets.

∆CoVaRi|j
t = CoVaRi|j

β, α, t − CoVaRi|j
β, 0.5, t (39)

%CoVaRi|j
t =

∆CoVaRi|j
t

CoVaRi|j
β, 0.5, t

(40)
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Based on above, the Kolmogorov–Smirnov (KS) test proposed by Abadie (2002) is
employed to explore the possible reduction in downside and upside risk spillover effects.
The KS test quantifies disparities between two cumulative quantile functions using the
empirical distribution function, disregarding any underlying distribution functions, and is
given as

KSmn =

(
mn

m + n

) 1
2
supx|Gm(x)− Hn(x)| (41)

where Gm(x) and Hn(x) denote the cumulative distribution functions of two time series,
whose sample sizes are m and n, respectively. This paper tests the null hypothesis that
there are no significant differences in strength regarding risk spillover with and without
ESG integration, which is defined as

H0 : %CoVaRi|j, ESG
t = %CoVaRi|j, NESG

t (42)

4. Data

To measure the performance of tech stocks regarding I4.0, the S&P Kensho New
Economy Sector Indices, widely employed in the literature (Ghaemi Asl et al. 2023a; Liu
2024; Shrestha et al. 2023; Yaqoob and Maqsood 2024), are utilized as proxies for ten
tech sectors. Following Liu et al. (2023), we use the S&P 500 ESG Index to represent
the performance of ESG integration and the S&P 500 to represent those without special
consideration of ESG. Table 1 presents a summary of the aforementioned indices. The data
cover the period from June 2017 to October 2023 and are obtained from www.spglobal.com/
spdji/ (accessed on 10 December 2023). All data are converted into logarithmic percentage
returns as rt = ln(Pt/Pt−1)× 100. R programming is employed to execute computational
tasks, and the main packages used are presented in Table A2.

Table 1. Summary of variables.

Variables Abbr. Details

S&P Kensho Human Evolution Index HE genetic engineering, wearables and virtual reality, nanotechnology and
robotics, and 3D printing

S&P Kensho Democratized Banking Index DB alternative finance, future payments, and distributed ledger
S&P Kensho Final Frontiers Index FF deep-space and deep-sea exploration and development
S&P Kensho Intelligent Infrastructure Index II smart grids, smart buildings, sensors, and intelligent meters
S&P Kensho Smart Transportation Index ST autonomous vehicles, electric vehicles, and advanced transport systems
S&P Kensho Clean Power Index CP clean energy and cleantech

S&P Kensho Future Security Index FS cyber security, smart borders, robotics, drones, space, wearables, and
virtual reality

S&P Kensho Future Communication Index FC digital communities, enterprise collaboration, and virtual reality
S&P Kensho Advanced Manufacturing Index AM smart factories, 3D printing, robotic, and virtual reality

S&P Kensho Sustainable Staples Index SS output enhancement, reducing waste, and minimizing resource
exhaustion

S&P 500 Index NESG ESG factors are not considered during decision-making
S&P 500 ESG Index ESG ESG factors are considered during decision-making

Table 2 reports the descriptive statistics for all return series. All return series are
stationary, exhibit non-normal distribution, and demonstrate autocorrelation and het-
eroscedasticity effects. In comparison to general stocks, ESG stocks exhibit higher mean
values and greater standard deviation. The correlation matrix in Table 3 indicates high
dependence within tech sectors, which validates the first hypothesis. The pairwise joint
distributions of stock indices and tech sectors are plotted in Figure 1. All joint probability
distributions manifest elliptical contours, exhibiting varying degrees of elongation and
distortion, alongside approximately central symmetry with stronger tails in the lower left
and upper right, and weaker tails in the upper left and lower right. However, a few joint
distributions exhibit slightly heavier lower tails, indicating a higher likelihood of downside

www.spglobal.com/spdji/
www.spglobal.com/spdji/
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financial contagion. Moreover, nonlinear relationships observed in the scatters, particularly
in the upper and lower tails, indicate the necessity of employing a nonlinear model to
analyze risk spillover effects. These findings support the suitability of t-copula estimation
for further investigation.
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Table 2. Descriptive statistics.

Mean Max. Min. Std. Dev. Skew. Kurt. J-B ADF L-B ARCH KS

HE 0.008 7.868 −14.987 2.045 −0.343 3.271 739.244 *** −12.505 *** 37.008 *** 330.936 *** 0.969 ***
DB 0.008 10.313 −15.282 1.907 −0.537 5.391 1999.542 *** −11.185 *** 58.423 *** 464.737 *** 0.992 ***
FF 0.032 9.768 −14.910 1.510 −0.947 12.934 11,305.937 *** −11.675 *** 130.364 *** 686.102 *** 0.960 ***
II 0.008 11.152 −12.943 1.651 −0.555 8.243 4576.876 *** −11.272 *** 132.873 *** 581.268 *** 0.958 ***
ST 0.012 11.023 −14.664 1.985 −0.541 5.086 1788.960 *** −10.911 *** 70.277 *** 431.811 *** 0.946 ***
CP 0.051 11.874 −14.487 2.092 −0.419 6.068 2482.981 *** −10.868 *** 64.599 *** 391.948 *** 0.991 ***
FS 0.040 8.630 −11.732 1.444 −0.760 8.416 4839.877 *** −12.075 *** 123.266 *** 616.678 *** 0.963 ***
FC 0.048 9.931 −12.328 1.938 −0.296 2.560 456.878 *** −12.897 *** 22.023 *** 293.565 *** 0.960 ***
AM 0.040 10.758 −11.026 1.851 −0.289 4.337 1266.912 *** −11.312 *** 91.192 *** 447.321 *** 0.959 ***
SS 0.027 11.390 −13.907 1.861 −0.437 7.625 3898.037 *** −10.505 *** 73.080 *** 438.980 *** 0.979 ***

NESG 0.036 8.968 −12.765 1.272 −0.822 14.714 14,503.890 *** −11.353 *** 262.519 *** 625.674 *** 0.957 ***
ESG 0.041 9.146 −12.769 1.281 −0.781 14.389 13,861.534 *** −11.439 *** 264.037 *** 616.733 *** 0.955 ***

Note: *** denotes statistical significance at 1% level.

Table 3. Kendall’s τ matrix.

HE DB FF II ST CP FS FC AM SS NESG ESG

HE 1.000 0.502 0.411 0.493 0.495 0.449 0.514 0.527 0.519 0.496 0.465 0.457
DB 0.502 1.000 0.515 0.654 0.672 0.528 0.619 0.670 0.660 0.561 0.619 0.610
FF 0.411 0.515 1.000 0.630 0.557 0.461 0.682 0.437 0.584 0.570 0.591 0.566
II 0.493 0.654 0.630 1.000 0.736 0.576 0.674 0.570 0.715 0.620 0.658 0.638
ST 0.495 0.672 0.557 0.736 1.000 0.581 0.614 0.614 0.695 0.615 0.606 0.591
CP 0.449 0.528 0.461 0.576 0.581 1.000 0.504 0.496 0.530 0.519 0.474 0.463
FS 0.514 0.619 0.682 0.674 0.614 0.504 1.000 0.598 0.671 0.588 0.655 0.635
FC 0.527 0.670 0.437 0.570 0.614 0.496 0.598 1.000 0.636 0.505 0.557 0.551
AM 0.519 0.660 0.584 0.715 0.695 0.530 0.671 0.636 1.000 0.573 0.651 0.636
SS 0.496 0.561 0.570 0.620 0.615 0.519 0.588 0.505 0.573 1.000 0.535 0.518

NESG 0.465 0.619 0.591 0.658 0.606 0.474 0.655 0.557 0.651 0.535 1.000 0.950
ESG 0.457 0.610 0.566 0.638 0.591 0.463 0.635 0.551 0.636 0.518 0.950 1.000

5. Empirical Results
5.1. Marginal Distribution

Table 4 displays the results of estimated marginal ARMA-GJR-GARCH–skew-t models,
with optimal lag parameters determined via BIC. Mean equations for different tech sector
returns adhere to various ARMA(p,q) models, with most coefficients significant at the
1% level. In the variance equations, the majority of coefficients are significant at the
1% level, suggesting a high persistence of volatility. Moreover, the sum of ARCH and
GARCH terms for each return series is approximately 1, providing further confirmation
of this persistence. Additionally, asymmetry and degrees-of-freedom parameters indicate
non-normal error terms, effectively characterized by distributions exhibiting asymmetries
and fat tails. Specifically, the asymmetry coefficients for all return series are significantly
positive at the 1% level, suggesting right-skewed fat tails. Table 4 additionally includes
an examination of goodness-of-fit tests to assess the adequacy of the models. Remarkably,
both the Q and Q2 statistics do not reject the null hypothesis of no autocorrelation at the
10% significance level. Moreover, the results of the ARCH-LM test indicate no evidence
of residual heteroskedasticity in the estimated marginal models, even when assessed at
the 10% significance level. By comparing these outcomes with those detailed in Table 2, it
can be concluded that the ARMA-GJR-GARCH–skew-t models effectively characterize the
marginal distributions of the tech stock return series.
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Table 4. Estimated results for marginal distribution models.

HE DB FF II ST CP FS FC AM SS NESG ESG

Panel A: Mean Equation

ϕ1
−1.564

***
−0.887

***
−1.169

***
−1.644

***
0.101
***

−0.314
***

−0.275
***

1.960
***

−0.275
***

−1.236
***

−1.862
***

−1.863
***

(0.000) (0.038) (0.010) (0.025) (0.004) (0.104) (0.074) (0.001) (0.005) (0.002) (0.000) (0.000)

ϕ2
−1.614

***
0.814

***
−1.170

***
−0.702

***
−0.993

***
−0.964

***
−0.938

***
−0.981

***
−0.989

***
−0.992

***
−0.985

***
−0.985

***
(0.000) (0.069) (0.015) (0.080) (0.003) (0.051) (0.011) (0.001) (0.004) (0.005) (0.001) (0.001)

ϕ3
−0.787

***
0.914

***
−0.889

***
0.011
***

(0.000) (0.048) (0.011) (0.000)

θ1

1.511
***

0.875
***

1.188
***

1.655
***

−0.074
***

0.295
***

0.275
***

−1.969
***

0.274
***

1.239
***

1.853
*** 1.854

(0.000) (0.042) (0.004) (0.000) (0.002) (0.111) (0.054) (0.000) (0.001) (0.001) (0.001) (0.001)

θ2

1.577
***

−0.806
***

1.197
***

0.736
***

0.998
***

0.967
***

0.965
***

0.980
***

0.999
***

1.000
***

0.976
***

0.975
***

(0.000) (0.073) (0.004) (0.054) (0.000) (0.020) (0.010) (0.000) (0.000) (0.000) (0.001) (0.001)

θ3

0.739
***

−0.888
***

0.919
***

0.040
***

0.026
*** 0.003 **

(0.000) (0.055) (0.001) (0.001) (0.002) (0.001)
Panel B: Variance Equation

ω
0.085

***
0.031
***

0.030
***

0.022
***

0.032
***

0.020
***

0.044
***

0.086
***

0.072
*** 0.031 ** 0.025

***
0.027
***

(0.008) (0.010) (0.010) (0.008) (0.012) (0.005) (0.012) (0.010) (0.022) (0.013) (0.006) (0.006)

α 0.013 0.049
*** 0.031 ** 0.046

***
0.069

***
0.063

*** 0.026 * 0.074
***

0.050
***

0.105
*** 0.035 * 0.028

(0.009) (0.018) (0.016) (0.015) (0.017) (0.008) (0.014) (0.022) (0.018) (0.021) (0.020) (0.020)

β
0.912

***
0.879

***
0.888

***
0.876

***
0.876

***
0.917
***

0.872
***

0.860
***

0.868
***

0.872
***

0.834
***

0.837
***

(0.017) (0.017) (0.023) (0.021) (0.019) (0.010) (0.022) (0.004) (0.021) (0.019) (0.020) (0.020)

γ
0.104

***
0.136

***
0.138

***
0.151
***

0.108
*** 0.039 ** 0.160

***
0.091
***

0.133
*** 0.048 * 0.273

***
0.278

***
(0.001) (0.032) (0.034) (0.037) (0.029) (0.019) (0.036) (0.023) (0.033) (0.027) (0.048) (0.048)

η
0.915

***
0.825

***
0.838

***
0.876

***
0.877
***

0.916
***

0.788
***

0.822
***

0.887
***

0.865
***

0.810
***

0.811
***

(0.033) (0.030) (0.029) (0.031) (0.031) (0.029) (0.034) (0.029) (0.032) (0.030) (0.029) (0.030)

ν
11.946

***
12.174

***
7.898

***
19.065

**
15.409

***
8.133

***
16.821

***
15.904

***
9.443

***
8.591
***

7.186
***

7.097
***

(2.972) (3.427) (1.405) (7.593) (5.232) (1.471) (5.903) (6.146) (1.934) (1.728) (1.264) (1.226)
Panel C: Diagnostic Tests

Q 8.299 3.208 6.218 6.833 13.213 11.361 8.118 4.718 13.362 9.497 5.334 4.803
[0.479] [0.608] [0.516] [0.785] [0.516] [0.765] [0.769] [0.870] [0.835] [0.432] [0.822] [0.890]

Q2 9.574 8.215 9.174 6.346 9.173 6.573 6.531 5.306 5.762 10.099 5.925 5.014
[0.600] [0.976] [0.797] [0.741] [0.212] [0.330] [0.617] [0.909] [0.204] [0.486] [0.868] [0.904]

ARCH 10.094 7.913 9.058 6.545 9.254 6.253 6.336 5.258 5.544 9.663 5.892 5.011
[0.432] [0.637] [0.527] [0.768] [0.508] [0.794] [0.786] [0.873] [0.852] [0.471] [0.824] [0.890]

Notes: The Ljung–Box test and ARCH-LM test are applied to assess the presence of serial correlation and ARCH
effect in the standardized residual sequence for each marginal model, respectively. The standard errors of
parameter estimates are enclosed in parentheses, and the p-values of test statistics are reported within square
brackets. ***, **, and * denote statistical significance at 1%, 5%, and 10% levels, respectively.

5.2. Dependence Structure within Tech Sectors

To comprehensively understand the dependence structure within tech sectors, this
study employs R-, C-, and D-vine methods, leveraging their distinct features. The detailed
specifications of the estimated vines are documented in Table 5 and the copula families for
selection are listed in Table A3. The first trees of the dependence structure of tech sectors
modeled using three vines are presented in Figure 2, respectively, along with the selected
pairwise copula families and fitted Kendall’s τ.

Based on the outcomes in Table 5, the most common pairwise copula families are
either Student-t or SBB1, which are frequently observed when analyzing financial data.
The dependence structure described by the R-vine allows for great flexibility. In the
core framework of the R-vine model, the variables ST and II form a central star-like
structure, connected by multiple edges with DB, SS, AM, FS, and CP. Additionally, ST
forms a sequential path-like structure with DB, FC, and HE. These structural configurations
underscore the importance of ST and II within the model, emphasizing their pivotal roles
in capturing underlying dependencies and dynamics. In the C-vine structure, the root node
selection is optimized to maximize the sum of pairwise dependencies. In this context, II is
identified as the root node, underscoring its significant reliance on all other sectors within
the C-vine. Notably, II, along with other technology sectors, exhibits moderate levels of
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connectivity. Specifically, it demonstrates the weakest connection with HE (SBB1(0.44)),
while displaying the strongest linkage with ST (t(0.70)). This positioning underscores the
crucial role of II in the intersectoral dynamics within the C-vine framework. The D-vine tree
for the ten sector representatives is constructed by maximizing the dependence between
adjacent nodes. Within this structure, ST, II, AM, and FS are tightly interconnected through
the t-copula characterized by symmetric dependence. In contrast, HE and CP exhibit
weaker associations with other sectors, positioned at both ends of the path trail.

Table 6 presents AIC, BIC, and log-likelihood for three estimated vine copula models.
The C-vine exhibits the lowest values for both AIC and BIC, followed by the R-vine method.
Furthermore, the log-likelihood suggests that the C-vine method provides the best fit to
the data, whereas the D-vine method yields the lowest degree of fit. Subsequently, the
Vuong test (Vuong 1989) and Clarke test (Clarke 2007) are employed to conduct pairwise
comparisons of the vine structures. The Schwarz-corrected Clarke and Vuong statistics
presented in Table 6 indicate that at the 1% significance level, both the R-vine and C-
vine significantly outperform the D-vine. Furthermore, the Clarke statistic suggests the
superiority of the C-vine structure over the R-vine at a 5% significance level. However,
Vuong’s statistic fails to confirm this, even at a 10% significance level. Nevertheless, through
the information criteria, it becomes evident that the fitting of the C-vine model is superior
to that of the R-vine model.

Interestingly, in our study, the C-vine copula model surpasses the R-vine and D-vine
models in the tech sector context due to strong mutual correlations, which aligns with
Hypothesis 1. Contrary to what previous studies have suggested, the R-vine structure,
despite its greater flexibility, may not always be the optimal choice.
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Table 5. Tree structures.

Tree
R-Vine C-Vine D-Vine

Edge Copula par par2 τ λu λl Edge Copula par par2 τ λu λl Edge Copula par par2 τ λu λl

1 7,3 t 0.85 6.25 0.65 0.47 0.47 4,2 t 0.81 5.56 0.61 0.44 0.44 10,6 t 0.69 5.00 0.48 0.33 0.33
4,7 SBB1 0.14 2.54 0.63 0.14 0.69 4,3 t 0.81 5.51 0.60 0.43 0.43 3,10 t 0.75 4.60 0.54 0.41 0.41
4,9 t 0.87 5.59 0.67 0.53 0.53 4,6 t 0.74 6.55 0.53 0.32 0.32 7,3 t 0.85 6.25 0.65 0.47 0.47
8,1 SBB1 0.13 1.82 0.49 0.06 0.54 4,1 SBB1 0.08 1.71 0.44 0.01 0.50 9,7 t 0.84 5.66 0.63 0.47 0.47
2,8 SBB1 0.17 2.51 0.63 0.19 0.68 4,5 t 0.89 9.43 0.70 0.45 0.45 4,9 t 0.87 5.59 0.67 0.53 0.53
5,2 t 0.83 6.29 0.62 0.44 0.44 4,7 SBB1 0.14 2.54 0.63 0.14 0.69 5,4 t 0.89 9.43 0.70 0.45 0.45
5,6 t 0.75 6.90 0.54 0.32 0.32 4,9 t 0.87 5.59 0.67 0.53 0.53 2,5 t 0.83 6.29 0.62 0.44 0.44
5,4 t 0.89 9.43 0.70 0.45 0.45 4,8 SBB1 0.19 1.93 0.53 0.15 0.57 8,2 SBB1 0.17 2.51 0.63 0.19 0.68
10,5 SBB1 0.12 2.26 0.58 0.08 0.64 10,4 t 0.80 3.86 0.59 0.49 0.49 1,8 SBB1 0.13 1.82 0.49 0.06 0.54

2 4,3;7 t 0.30 6.12 0.19 0.09 0.09 8,2;4 SBB8 6.00 0.59 0.44 - - 3,6;10 t 0.24 9.73 0.15 0.03 0.03
9,7;4 F 2.68 0.00 0.28 - - 8,3;4 t 0.02 18.95 0.01 0.00 0.00 7,10;3 F 2.67 0.00 0.28 - -
5,9;4 t 0.38 12.33 0.25 0.03 0.03 8,6;4 F 1.69 0.00 0.18 - - 9,3;7 t 0.15 7.46 0.10 0.04 0.04
2,1;8 SBB8 1.66 0.80 0.14 - - 8,1;4 F 2.89 0.00 0.30 - - 4,7;9 SBB1 0.07 1.32 0.27 0.00 0.31
5,8;2 t 0.29 7.17 0.18 0.06 0.06 8,5;4 F 2.86 0.00 0.29 - - 5,9;4 t 0.38 12.33 0.25 0.03 0.03
4,2;5 t 0.30 5.96 0.19 0.09 0.09 8,7;4 t 0.46 15.87 0.30 0.02 0.02 2,4;5 t 0.30 5.96 0.19 0.09 0.09
4,6;5 t 0.25 9.64 0.16 0.03 0.03 8,9;4 F 3.63 0.00 0.36 - - 8,5;2 t 0.29 7.17 0.18 0.06 0.06
10,4;5 SBB8 4.35 0.46 0.23 - - 10,8;4 SBB8 2.66 0.58 0.18 - - 1,2;8 SBB8 1.66 0.80 0.14 - -

3 9,3;4,7 t −0.03 11.65 −0.02 0.00 0.00 10,2;8,4 t 0.18 17.75 0.12 0.00 0.00 7,6;3,10 SBB8 2.02 0.66 0.14 - -
5,7;9,4 Tawn2_180 1.10 0.19 0.03 - 0.04 10,3;8,4 F 2.28 0.00 0.24 - - 9,10;7,3 t 0.25 11.27 0.16 0.02 0.02
2,9;5,4 SBB8 2.39 0.72 0.22 - - 10,6;8,4 t 0.21 10.17 0.13 0.02 0.02 4,3;9,7 t 0.28 10.01 0.18 0.03 0.03
5,1;2,8 t 0.18 11.15 0.11 0.01 0.01 10,1;8,4 t 0.27 11.39 0.18 0.02 0.02 5,7;4,9 SJ 1.05 0.00 0.03 - 0.07
4,8;5,2 I - - 0.00 - - 10,5;8,4 SG 1.21 0.00 0.17 - 0.23 2,9;5,4 SBB8 2.39 0.72 0.22 - -
10,2;4,5 t 0.16 27.83 0.10 0.00 0.00 10,7;8,4 F 1.60 0.00 0.17 - - 8,4;2,5 I - - 0.00 - -
10,6;4,5 t 0.16 13.49 0.10 0.01 0.01 10,9;8,4 t 0.08 14.95 0.05 0.00 0.00 1,5;8,2 t 0.18 11.15 0.11 0.01 0.01

4 5,3;9,4,7 t −0.02 21.36 −0.01 0.00 0.00 7,2;10,8,4 t 0.08 13.66 0.05 0.00 0.00 9,6;7,3,10 BB8 2.36 0.63 0.17 - -
2,7;5,9,4 t 0.25 10.70 0.16 0.02 0.02 7,3;10,8,4 t 0.56 8.51 0.38 0.14 0.14 4,10;9,7,3 t 0.27 11.02 0.18 0.02 0.02
8,9;2,5,4 t 0.30 15.92 0.19 0.01 0.01 7,6;10,8,4 Tawn2_90 −1.15 0.08 −0.02 - - 5,3;4,9,7 t −0.02 20.56 −0.02 0.00 0.00
4,1;5,2,8 BB8 1.39 0.79 0.08 - - 7,1;10,8,4 SBB8 1.17 0.95 0.06 - - 2,7;5,4,9 t 0.25 12.63 0.16 0.01 0.01
10,8;4,5,2 t 0.04 30.00 0.02 0.00 0.00 7,5;10,8,4 t −0.08 15.34 −0.05 0.00 0.00 8,9;2,5,4 t 0.30 15.92 0.19 0.01 0.01
6,2;10,4,5 SG 1.06 0.00 0.05 - 0.07 9,7;10,8,4 t 0.20 13.18 0.13 0.01 0.01 1,4;8,2,5 BB8 1.39 0.79 0.08 - -

5 2,3;5,9,4,7 t −0.12 13.37 −0.08 0.00 0.00 5,2;7,10,8,4 t 0.20 10.30 0.13 0.02 0.02 4,6;9,7,3,10 t 0.23 10.14 0.15 0.02 0.02
8,7;2,5,9,4 N 0.22 0.00 0.14 - - 5,3;7,10,8,4 t 0.05 10.10 0.03 0.01 0.01 5,10;4,9,7,3 SBB8 3.61 0.51 0.22 - -
1,9;8,2,5,4 t 0.09 14.34 0.06 0.00 0.00 5,6;7,10,8,4 t 0.18 12.04 0.11 0.01 0.01 2,3;5,4,9,7 t −0.12 13.09 −0.08 0.00 0.00
10,1;4,5,2,8 SBB8 2.73 0.57 0.18 - - 5,1;7,10,8,4 t 0.00 18.67 0.00 0.00 0.00 8,7;2,5,4,9 N 0.23 0.00 0.15 - -
6,8;10,4,5,2 F 0.69 0.00 0.08 - - 9,5;7,10,8,4 t 0.22 16.36 0.14 0.00 0.00 1,9;8,2,5,4 t 0.09 14.34 0.06 0.00 0.00

6 8,3;2,5,9,4,7 t −0.30 30.00 −0.19 0.00 0.00 1,2;5,7,10,8,4 I - - 0.00 - - 5,6;4,9,7,3,10 t 0.20 12.35 0.13 0.01 0.01
1,7;8,2,5,9,4 F 0.80 0.00 0.09 - - 1,3;5,7,10,8,4 G90 −1.06 0.00 −0.06 - - 2,10;5,4,9,7,3 t 0.10 30.00 0.06 0.00 0.00
10,9;1,8,2,5,4 I - - 0.00 - - 1,6;5,7,10,8,4 C 0.15 0.00 0.07 - 0.01 8,3;2,5,4,9,7 t −0.30 30.00 −0.19 0.00 0.00
6,1;10,4,5,2,8 C 0.13 0.00 0.06 - 0.01 9,1;5,7,10,8,4 SBB7 1.04 0.05 0.04 0.00 0.05 1,7;8,2,5,4,9 F 0.83 0.00 0.09 - -

7 1,3;8,2,5,9,4,7 G90 −1.03 0.00 −0.03 - - 9,2;1,5,7,10,8,4 t 0.07 13.38 0.05 0.00 0.00 2,6;5,4,9,7,3,10 N 0.06 0.00 0.04 - -
10,7;1,8,2,5,9,4 t 0.21 10.86 0.14 0.02 0.02 9,3;1,5,7,10,8,4 SG 1.07 0.00 0.06 - 0.09 8,10;2,5,4,9,7,3 SC 0.04 0.00 0.02 0.00 -
6,9;10,1,8,2,5,4 t −0.02 16.86 −0.01 0.00 0.00 9,6;1,5,7,10,8,4 t −0.02 16.79 −0.01 0.00 0.00 1,3;8,2,5,4,9,7 G90 −1.03 0.00 −0.03 - -

8 10,3;1,8,2,5,9,4,7 BB8 2.08 0.70 0.16 - - 3,2;9,1,5,7,10,8,4 t 0.00 17.11 0.00 0.00 0.00 8,6;2,5,4,9,7,3,10 N 0.10 0.00 0.06 - -
6,7;10,1,8,2,5,9,4 Tawn270 −1.16 0.03 −0.01 - - 6,3;9,1,5,7,10,8,4 Tawn2_180 1.77 0.01 0.01 - 0.01 1,10;8,2,5,4,9,7,3 t 0.22 12.69 0.14 0.01 0.01

9 6,3;10,1,8,2,5,9,4,7 Tawn2_180 2.07 0.01 0.01 - 0.01 6,2;3,9,1,5,7,10,8,4 I - - 0.00 - - 1,6;8,2,5,4,9,7,3,10 C 0.12 0.00 0.06 - 0.00

Notes: par denotes the first parameter of the copula function and par2 represents the second parameter if applicable. The edges are 1 = HE, 2 = DB, 3 = FF, 4 = II, 5 = ST, 6 = CP, 7 = FS,
8 = FC, 9 = AM, and 10 = SS.
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Table 6. Model comparison for different vines.

Vine AIC BIC Log-Likelihood

R-vine −19,164.33 −18,740.08 9661.17
C-vine −19,235.99 −18,827.85 9693.99
D-vine −19,085.19 −18,660.94 9621.59
Combination Clarke Statistic Clarke p-value Vuong Statistic Vuong p-value
R-vine versus C-vine 750 0.029 −1.597 0.110
R-vine versus D-vine 852 0.004 2.992 0.003
C-vine versus D-vine 891 0.000 4.227 0.000

Notes: The tests proposed by Vuong (1989) and Clarke (2007) allow us to compare non-nested models. The Clarke
and Vuong test statistics can be corrected for the number of parameters used in the models. The Schwarz-corrected
statistics, which correspond to the penalty terms in the BIC, are reported.

5.3. Tech Sectors and Stock Market Dependence

This paper utilizes static t-copula estimation and conducts a goodness-of-fit test for
bivariate copulas. Estimated parameters and dependence measures, along with the White
test results, are reported in Table 7. The White test demonstrates that the t-copula effectively
captures the relationship between stock indices and tech stocks. Figure 3 displays the
estimated joint probability density of the bivariate variables, consistent with the contour
plot in Figure 1. The distribution demonstrates heavy tails and symmetric centers, typical of
a t-copula. This supports the appropriateness of utilizing a t-copula for modeling the joint
distribution of the variables. However, in Figure 4, while all empirical lower tails remain
within the 95% confidence interval of theoretical tail concentration, the upper tails fluctuate
outside this interval. This suggests that the assumption of symmetric tail dependence in
the t-copula hypothesis may not align with reality, which is common in financial data.

The results for the pairwise GAS t-copula are presented in Table 8, with the majority
of coefficients found to be significant at a 1% confidence level. Figures 5 and 6 illustrate
dynamic dependence, indicating a substantial rise during significant events such as the
COVID-19 pandemic. Furthermore, various tech sectors display distinct and time-varying
characteristics in their relationships with stock indices. The dynamic τ fluctuates around
the static τ, indicating that the static τ can roughly describe pairwise dependence. How-
ever, as shown in Figure 6, certain dynamic tail dependencies, like HE, ST, CP, and FC,
deviate notably from the static dependencies. Therefore, dynamic tail dependence might
offer a more effective and accurate description of extreme events compared to static tail
dependence.

Table 7. Estimated static bivariate t-copula and goodness-of-fit test.

NESG ESG

par par2 τ λ White Test par par2 τ λ White Test

HE 0.61 8.10 0.42 0.17 9.321 *** 0.60 7.90 0.41 0.17 9.326 **
DB 0.79 5.43 0.58 0.42 17.256 *** 0.78 4.92 0.57 0.43 14.940 ***
FF 0.76 5.33 0.55 0.38 6.014 ** 0.73 5.11 0.52 0.37 5.408 **
II 0.81 7.02 0.60 0.39 27.499 *** 0.79 6.35 0.58 0.39 25.310 ***
ST 0.77 11.63 0.56 0.23 9.645 ** 0.76 9.62 0.55 0.25 9.980 ***
CP 0.63 7.77 0.44 0.19 21.782 *** 0.62 7.77 0.42 0.18 21.266 ***
FS 0.81 5.93 0.60 0.42 7.139 ** 0.79 5.72 0.58 0.41 6.202 *
FC 0.74 8.51 0.53 0.26 16.644 *** 0.73 8.97 0.52 0.24 14.871 ***
AM 0.81 5.79 0.61 0.43 15.268 *** 0.80 5.42 0.59 0.43 15.603 ***
SS 0.70 5.97 0.50 0.31 23.543 *** 0.69 6.04 0.48 0.29 20.611 ***

Notes: The goodness-of-fit test uses the information matrix equality of White (1982) and was investigated by
Huang and Prokhorov (2014). The null hypothesis is H0 : H(θ) + C(θ) = 0, where H(θ) is the expected Hessian
matrix and C(θ) is the expected outer product of the score function. ***, **, and * denote statistical significance at
1%, 5%, and 10% levels, respectively.
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Figure 3. Pairwise joint probability densities of estimated static bivariate t-copula.

Table 9 further presents the average dependence measures of the dynamic t-copula.
Kendall’s τ assesses the overall relationship between general stock indices and tech sectors.
The average τ between the general stock index and tech sectors ranges from 0.4179 (HE)
to 0.5941 (II), indicating a moderate strength correlation. With ESG consideration, the
range shifts to between 0.4101 (HE) and 0.5809 (AM), reflecting an overall decrease. The
decrease in τ occurs in all ten sectors and varies across sectors, with the highest decrease in
FS (3.77%) and the lowest in FC (1.23%). While Kendall’s τ captures overall correlation,
tail dependence examines extreme events in distribution tails. Despite similar τ values
for the ten sectors, significant differences in tail dependence imply a diverse tail nature
across sectors. When considering ESG, each sector’s tail dependence on the stock index
decreases to varying degrees. FS still experiences the most reduction (5.93%), and FC
shows the least reduction (2.02%). Relative to the variability in Kendall’s τ, the more
pronounced variations in tail dependence signify heightened efficacy and advantages of
ESG integration during extreme situations. The results of the KS test in Table 9 further
demonstrate a significant difference in dependence between all ESG pairs and non-ESG
pairs, which provides additional statistical evidence for our analysis.

In general, these empirical results provide evidence that ESG integration can reduce
dependence between I4.0 tech sectors and the overall stock market and is consistent with
Hypothesis 2.

Figure 3. Pairwise joint probability densities of estimated static bivariate t-copula.

Table 9 further presents the average dependence measures of the dynamic t-copula.
Kendall’s τ assesses the overall relationship between general stock indices and tech sectors.
The average τ between the general stock index and tech sectors ranges from 0.4179 (HE)
to 0.5941 (II), indicating a moderate strength correlation. With ESG consideration, the
range shifts to between 0.4101 (HE) and 0.5809 (AM), reflecting an overall decrease. The
decrease in τ occurs in all ten sectors and varies across sectors, with the highest decrease in
FS (3.77%) and the lowest in FC (1.23%). While Kendall’s τ captures overall correlation,
tail dependence examines extreme events in distribution tails. Despite similar τ values
for the ten sectors, significant differences in tail dependence imply a diverse tail nature
across sectors. When considering ESG, each sector’s tail dependence on the stock index
decreases to varying degrees. FS still experiences the most reduction (5.93%), and FC
shows the least reduction (2.02%). Relative to the variability in Kendall’s τ, the more
pronounced variations in tail dependence signify heightened efficacy and advantages of
ESG integration during extreme situations. The results of the KS test in Table 9 further
demonstrate a significant difference in dependence between all ESG pairs and non-ESG
pairs, which provides additional statistical evidence for our analysis.

In general, these empirical results provide evidence that ESG integration can reduce
dependence between I4.0 tech sectors and the overall stock market and is consistent with
Hypothesis 2.
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Table 8. Estimated GAS t-copula models.

HE DB FF II ST CP FS FC AM SS

Panel A: NESG

Ω
0.033 *** 0.037 *** 0.064 * 0.055 * 0.037 * 0.043 ** 0.078 *** 0.028 *** 0.076 *** 0.035 ***
(0.011) (0.010) (0.045) (0.038) (0.026) (0.020) (0.030) (0.009) (0.021) (0.015)

A
0.019 *** 0.017 *** 0.017 *** 0.017 *** 0.017 *** 0.021 *** 0.017 *** 0.017 *** 0.017 *** 0.015 ***
(0.003) (0.003) (0.007) (0.007) (0.006) (0.005) (0.004) (0.002) (0.003) (0.003)

B
0.965 *** 0.947 *** 0.914 *** 0.914 *** 0.947 *** 0.951 *** 0.881 *** 0.963 *** 0.881 *** 0.955 ***
(0.012) (0.014) (0.061) (0.058) (0.039) (0.022) (0.045) (0.011) (0.032) (0.019)

LL −183.041 239.765 109.258 313.055 200.651 −155.064 274.662 91.767 312.497 −3.588
AIC 382.082 −459.529 −202.516 −606.109 −385.302 326.129 −529.324 −167.534 −604.995 23.177
BIC 425.043 −405.827 −159.555 −552.407 −342.340 369.091 −475.622 −124.572 −551.293 66.138

Panel B: ESG

Ω
0.033 *** 0.026 *** 0.053 *** 0.046 * 0.038 *** 0.047 ** 0.060 *** 0.028 *** 0.066 *** 0.030 **
(0.012) (0.006) (0.021) (0.029) (0.013) (0.023) (0.024) (0.011) (0.023) (0.017)

A
0.018 *** 0.017 *** 0.017 *** 0.017 *** 0.017 *** 0.023 *** 0.017 *** 0.017 *** 0.017 *** 0.014 ***
(0.003) (0.003) (0.004) (0.006) (0.003) (0.005) (0.004) (0.003) (0.004) (0.004)

B
0.964 *** 0.963 *** 0.930 *** 0.930 *** 0.947 *** 0.948 *** 0.914 *** 0.963 *** 0.900 *** 0.962 ***
(0.012) (0.008) (0.028) (0.043) (0.018) (0.025) (0.034) (0.014) (0.034) (0.021)

LL −198.794 213.594 43.471 244.706 150.133 −181.933 204.400 70.139 257.416 −48.738
AIC 413.588 −411.188 −70.942 −469.412 −284.267 379.867 −392.800 −124.277 −498.832 113.475
BIC 456.549 −368.226 −27.981 −415.710 −241.305 422.829 −349.838 −81.315 −455.870 156.437

Note: ***, **, and * denote statistical significance at 1%, 5%, and 10% levels, respectively.

Table 9. Average Kendall’s τ and tail dependence.

Kendall’s τ Tail Dependence

NESG ESG Variation KS Test NESG ESG Variation KS Test

HE 0.418 0.410 1.85% 0.049 ** 0.242 0.235 2.83% 0.049 **
DB 0.563 0.554 1.63% 0.069 *** 0.384 0.376 2.17% 0.069 ***
FF 0.538 0.520 3.40% 0.132 *** 0.354 0.336 5.22% 0.132 ***
II 0.594 0.577 2.94% 0.103 *** 0.417 0.398 4.63% 0.103 ***
ST 0.564 0.549 2.66% 0.081 *** 0.384 0.368 4.28% 0.081 ***
CP 0.435 0.421 3.17% 0.080 *** 0.256 0.244 4.49% 0.080 ***
FS 0.584 0.562 3.77% 0.157 *** 0.405 0.381 5.93% 0.157 ***
FC 0.516 0.510 1.23% 0.044 * 0.334 0.327 2.02% 0.044 *
AM 0.593 0.581 2.11% 0.103 *** 0.415 0.401 3.37% 0.103 ***
SS 0.503 0.485 3.58% 0.111 *** 0.318 0.301 5.49% 0.111 ***

Notes: The null hypothesis of the KS test conducted here is that the tail dependence of ESG-tech sectors and
NESG-tech sectors are equal. The alternative hypothesis posits that the tail dependence of ESG-tech sectors is
smaller than that of NESG-tech sectors. ***, **, and * denote statistical significance at 1%, 5%, and 10% levels,
respectively.

5.4. Tech Sector and Stock Market Spillover Effects

The findings in the preceding section highlight diverse dependencies among various
tech sectors and the overall stock market, but they collectively form a broad spectrum of
correlations, indicating a strong risk transmission effect.

Using the marginal model and t-copula, we calculate downside and upside CoVaR for
stock indices (tech sectors) at a 95% confidence level (β = 0.05), conditioned on the VaR
value of tech sectors (stock indices) at a 95% confidence level (α = 0.05). Then, the spillover
effect measures ∆CoVaR and %CoVaR (Figures 7 and 8) are quantified. CoVaR exhibits
temporal variations, with downside CoVaR consistently smaller than VaR, and upside
CoVaR larger, indicating varying negative impacts on tech sectors (stock indices) during
extreme risks in stock indices (tech sectors). Additionally, during the COVID-19 pandemic,
risk spillover from tech sectors to stock indices surged significantly, while spillover from
stock indices to tech sectors remained comparatively stable.
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Tables 10 and 11 present average risk spillover and KS test statistics. It is evident
that the magnitude of downside %CoVaR exceeds that of upside %CoVaR irrespective of
the directional influence of spillover effects. In addition, there are significant differences
between %CoVaR values of non-ESG pairs and those of ESG pairs in both downside and
upside scenarios and the reduction is more pronounced for downside spillovers than
upside spillovers, demonstrated by the KS tests. Hence, ESG integration can significantly
reduce both downside and upside risk spillover between tech stocks and the overall stock
market. Regarding downside risk, there is a greater reduction in spillover from tech sectors
to stock indices compared to the reverse direction. Conversely, concerning upside risk, the
reduction is less pronounced for spillover from tech sectors to stock indices compared to
the reverse flow. In terms of specific sectors, FF and II show the greatest advantages of ESG
integration. They benefit the most by receiving lower risks and contributing positively to
risk transmission. This aligns with the strong connections seen earlier. However, the FC
segment sees only minor reductions in risk and might even increase the transmission of
upside risk to the overall stock market.
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Figure 4. Tail concentrations of empirical and fitted static t-copulas. Notes: The dark blue and
black lines are theoretical and empirical tail concentration functions, separately. The dark red lines
represent 95% confidence intervals by bootstrapping. At a significance level of 10%, the results are
considered acceptable.

Figure 4. Tail concentrations of empirical and fitted static t-copulas. Notes: The dark blue and
black lines are theoretical and empirical tail concentration functions, separately. The dark red lines
represent 95% confidence intervals by bootstrapping. At a significance level of 10%, the results are
considered acceptable.
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Figure 5. Time-varying Kendall’s τ between tech sectors and the stock market. Notes: The dashed
line and solid black line indicate static and dynamic cases where ESG is not considered. The dashed–
dotted line and solid gold line denote static and dynamic cases where ESG is considered.

Figure 5. Time-varying Kendall’s τ between tech sectors and the stock market. Notes: The dashed
line and solid black line indicate static and dynamic cases where ESG is not considered. The dashed–
dotted line and solid gold line denote static and dynamic cases where ESG is considered.
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Figure 7. Risk spillover from stock indices to tech sectors. Notes: The blue lines represent the basic
VaR of tech sectors, with pairwise CoVaR under extreme (indigo) and normal (yellow) conditions
of the stock market, respectively. The green lines denote subsequent calculated ∆CoVaR, followed
immediately to the right by the normalized downward (dark blue) and upward (dark red) %CoVaR.

Figure 7. Risk spillover from stock indices to tech sectors. Notes: The blue lines represent the basic
VaR of tech sectors, with pairwise CoVaR under extreme (indigo) and normal (yellow) conditions
of the stock market, respectively. The green lines denote subsequent calculated ∆CoVaR, followed
immediately to the right by the normalized downward (dark blue) and upward (dark red) %CoVaR.
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Figure 8. Risk spillover from tech sectors to stock indices. Notes: The blue lines represent the basic
VaR of the stock markets, with pairwise CoVaR under extreme (indigo) and normal (yellow) conditions
of the tech sectors, respectively. The green lines denote subsequent calculated ∆CoVaR, followed
immediately to the right by the normalized downward (dark blue) and upward (dark red) %CoVaR.

Figure 8. Risk spillover from tech sectors to stock indices. Notes: The blue lines represent the
basic VaR of the stock markets, with pairwise CoVaR under extreme (indigo) and normal (yellow)
conditions of the tech sectors, respectively. The green lines denote subsequent calculated ∆CoVaR,
followed immediately to the right by the normalized downward (dark blue) and upward (dark red)
%CoVaR.
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Table 10. Risk spillover from stock indices to tech sectors.

Downside H0: %CoVaRD,i|j,NESG
t =%CoVaRD,i|j,ESG

t

H1: %CoVaRD,i|j,NESG
t >%CoVaRD,i|j,ESG

t

Upside H0: %CoVaRU,i|j,NESG
t =%CoVaRU,i|j,ESG

t

H1: %CoVaRU,i|j,NESG
t >%CoVaRU,i|j,ESG

tNESG ESG Variation NESG ESG Variation

HE 0.982 0.968 1.43% 0.171 *** 0.873 0.861 1.37% 0.157 ***
DB 1.705 1.658 2.76% 0.306 *** 1.174 1.146 2.39% 0.285 ***
FF 1.651 1.534 7.09% 0.953 *** 1.184 1.111 6.17% 0.908 ***
II 1.687 1.559 7.59% 0.287 *** 1.327 1.237 6.78% 0.259 ***
ST 1.503 1.434 4.59% 0.418 *** 1.199 1.149 4.17% 0.395 ***
CP 1.160 1.120 3.45% 0.382 *** 0.998 0.965 3.31% 0.365 ***
FS 1.811 1.691 6.63% 0.346 *** 1.147 1.085 5.41% 0.303 ***
FC 1.396 1.386 0.72% 0.225 *** 0.989 0.983 0.61% 0.198 ***
AM 1.860 1.781 4.25% 0.514 *** 1.407 1.355 3.70% 0.505 ***
SS 1.378 1.317 4.43% 0.362 *** 1.078 1.035 3.99% 0.336 ***

Notes: According to KS tests with the null hypothesis of H0 : CoVaRi|j
β,α,t = CoVaRi|j

β,0.5,t, all risk spillovers are
significant at the 1% confidence level (not shown). *** denotes statistical significance at the 1% level.

Table 11. Risk spillover from tech sectors to stock indices.

Downside H0: %CoVaRD,j|i,NESG
t =%CoVaRD,j|i,ESG

t

H1: %CoVaRD,j|i,NESG
t >%CoVaRD,j|i,ESG

t

Upside H0: %CoVaRU,j|i,NESG
t =%CoVaRU,j|i,ESG

t

H1: %CoVaRU,j|i,NESG
t >%CoVaRU,j|i,ESG

tNESG ESG Variation NESG ESG Variation

HE 1.270 1.246 1.89% 0.168 *** 0.846 0.845 0.12% 0.057 **
DB 2.055 1.993 3.02% 0.183 *** 1.241 1.229 0.97% 0.074 ***
FF 1.855 1.712 7.71% 0.349 *** 1.147 1.094 4.62% 0.210 ***
II 2.265 2.083 8.04% 0.325 *** 1.338 1.278 4.48% 0.191 ***
ST 1.979 1.879 5.05% 0.249 *** 1.218 1.187 2.55% 0.132 ***
CP 1.343 1.289 4.02% 0.243 *** 0.887 0.870 1.92% 0.119 ***
FS 2.198 2.047 6.87% 0.290 *** 1.307 1.258 3.75% 0.166 ***
FC 1.750 1.733 0.97% 0.125 *** 1.104 1.113 −0.82% 0.101 ***
AM 2.230 2.126 4.66% 0.221 *** 1.320 1.292 2.12% 0.110 ***
SS 1.603 1.522 5.05% 0.266 *** 1.024 0.997 2.64% 0.139 ***

Note: *** and ** denote statistical significance at 1% and 5% levels, respectively.

The above findings align with Hypothesis 3. ESG integration can reduce dependence
between the I4.0 tech sectors and the overall stock market.

6. Conclusions

This paper delves into the analysis of dependence structures within ten I4.0 tech stock
sectors employing vine copula models. Subsequently, we employ a t-copula with a GAS
process to characterize dynamic dependence, considering variations in the presence or
absence of ESG considerations. Finally, the t-copula-based CoVaR approach is employed to
comparatively assess spillover effects. The empirical results can be summarized as follows.
Firstly, C-vine modeling demonstrates superior performance compared to the R-vine and
D-vine in capturing interdependencies within the tech sector. Intelligent infrastructure,
which relies significantly on smart transportation and advanced manufacturing, emerges
as a crucial sector within tech sectors. Secondly, the integration of ESG considerations
diminishes dependencies, particularly tail dependencies, between tech sectors and the stock
market. Notably, this integration benefits the future security sector the most while offering
relatively fewer benefits to the future communication sector. Thirdly, ESG integration
effectively mitigates the transmission of risk spillovers between tech sectors and the stock
market, notably impacting final frontiers and intelligent infrastructure. The reduction in
downside spillovers is more pronounced than in upside scenarios, with downside risk
spillovers from tech sectors to stocks experiencing a more significant decrease compared to
the reverse direction in upside risk. Based on the aforementioned findings, it is evident
that advocating ESG integration contributes to the establishment of a more stable financial
market. This suggests a positive correlation between social development, environmental
sustainability, and financial stability, indicating that they can be pursued simultaneously
and mutually reinforce one another.

However, this paper may have limitations. Due to constraints in data availability,
despite our comprehensive utilization of all of the Kensho Subsector Indices, there remains
the possibility that certain sectors may not be fully represented. As the index family
continues to evolve, it is foreseeable that additional tech subsector indices may become
available in the future, thereby enhancing the breadth of our analysis. Moreover, in our
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examination of dependence and risk spillover, we have employed the symmetric t-copula
to mitigate potential conflicts with distribution assumptions. However, given the diverse
range of copula functions developed, there is ample scope for future research to explore
the application of other copulas, particularly asymmetric copulas. Such endeavors would
undoubtedly contribute to a more nuanced understanding of the dynamics at play within
the technology sector and its interaction with broader financial markets.

The field of the association of social development, environmental sustainability, and
financial stability offers ample opportunities for further exploration. Future research has
the potential to thoroughly investigate the characteristics of individual technology-related
stocks or specific tech companies, examining their stability in relation to ESG integration.
Moreover, it is imperative to acknowledge the significance of different financial markets,
encompassing bonds, commodities, currencies, digital financial assets, and others. In-
tegrating comparisons with these alternative markets has the potential to augment the
comprehensiveness of the analysis, thereby offering a more holistic perspective on the
subject matter. Furthermore, given the disparities in technological development among
different countries, conducting thorough comparative examinations is essential to under-
stand the distinct characteristics of the technology sector in emerging countries compared
to those in developed countries.
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Appendix A

Table A1. Methodological overview of relevant literature.

Authors Marginals Distributions Copula Types Dynamic Copula CoVaR

Dai et al. (2023) ARMA-GARCH skew-t
Normal, Student-t, rotated
Clayton, and rotated
Gumbel copula

No Yes

Hanif et al. (2022) ARMA-TGARCH skew-t C-vine copula ARMA(1,q) process Yes

Jain and Maitra
(2023) AR-GARCH

(skew) normal,
(skew) t, and
(skew) GED

R-, C-, and D-vine copula No Yes

Kielmann et al.
(2022) ARMA-GARCH normal and skew-t D-vine copula GAS Yes

Rehman et al.
(2023) ARMA-GARCH skew-t

Normal, Student-t, Frank,
Plackett, rotated Gumbel,
rotated Clayton, and SJC
copula

ARMA(1,q) process Yes

Yao and Li (2023) ARMA-GARCH-
MIDAS normal Student-t copula GAS Yes

Zeng et al. (2022) AR-GJR-GARCH skew-t Vine copula, Student-t, and
rotated 270 Clayton copula No Yes

Notes: The Marginals column denotes marginal distribution models, while the Distributions column indicates
corresponding distribution assumptions for standardized residuals. The Copula Types column specifies the
utilized copula (multiple copulas may be employed for the vine copula). The Dynamic Copula column indicates
the incorporation of time-varying parameters and the generation process. The CoVaR column signifies the
application of the CoVaR–copula approach.
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Table A2. Main R packages and GitHub repositories.

R Package Programmers

CDVineCopulaConditional Bevacqua (2017)
copula Hofert et al. (2023)
DistributionUtils Scott (2018)
GAS Ardia et al. (2019)
PerformanceAnalytics Peterson and Carl (2020)
RCoVaRCopula * Reboredo and Ugolini (2016)
rugarch Ghalanos (2022)
stats R Core Team (2023)
tseries Trapletti and Hornik (2023)
TSP Hahsler and Hornik (2023)
VineCopula Nagler et al. (2023)

Notes: All packages are alphabetically sorted. * indicates a GitHub repository. Additional codes and necessary
revisions are programmed by authors.

Table A3. Bivariate copula family set.

Copula Family par par2

Gaussian (−1, 1) -
Student-t (−1, 1) (2, ∞)
(Survival) Clayton (0, ∞) -
Rotated Clayton (90 and 270 degrees) (−∞, 0) -
(Survival) Gumbel [1, ∞) -
Rotated Gumbel (90 and 270 degrees) (−∞, −1] -
Frank R\{0} -
(Survival) Joe (1, ∞) -
Rotated Joe (90 and 270 degrees) (−∞, −1) -
(Survival) Clayton-Gumbel (BB1) (0, ∞) [1, ∞)
Rotated Clayton-Gumbel (90 and 270 degrees) (−∞, 0) (−∞, −1]
(Survival) Joe-Gumbel (BB6) [1, ∞) [1, ∞)
Rotated Joe-Gumbel (90 and 270 degrees) (−∞, −1] (−∞, −1]
(Survival) Joe-Clayton (BB7) [1, ∞) (0, ∞)
Rotated Joe-Clayton (90 and 270 degrees) (−∞, −1] (−∞, 0)
(Survival) Joe-Frank (BB8) [1, ∞) (0, 1]
Rotated Joe-Frank (90 and 270 degrees) (−∞, −1] [−1, 0)
(Survival) Tawn type 1 [1, ∞) [0, 1]
Rotated Tawn type 1 (90 and 270 degrees) (−∞, −1] [0, 1]
(Survival) Tawn type 2 [1, ∞) [0, 1]
Rotated Tawn type 2 (90 and 270 degrees) (−∞, −1] [0, 1]

Notes: This table presents the copula family set from which bivariate copulas in vine copula models are selected.
par denotes the first parameter of the copula function and par2 represents the second parameter if applicable.
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