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Abstract: In order to analyze the nature of electrical demand series in deregulated electricity markets,
various forecasting tools have been used. All these forecasting models have been developed to
improve the accuracy of the reliability of the model. Therefore, a Wavelet Packet Decomposition
(WPD) was implemented to decompose the demand series into subseries. Each subseries has been
forecasted individually with the help of the features of that series, and features were chosen on the
basis of mutual correlation among all-time lags using an Auto Correlation Function (ACF). Thus, in
this context, a new hybrid WPD-based Linear Neural Network with Tapped Delay (LNNTD) model,
with a cyclic one-month moving window for a one-year market clearing volume (MCV) forecasting
has been proposed. The proposed model has been effectively implemented in two years (2015–2016)
and unconstrained MCV data collected from the Indian Energy Exchange (IEX) for 12 grid regions of
India. The results presented by the proposed models are better in terms of accuracy, with a yearly
average MAPE of 0.201%, MAE of 9.056 MWh, and coefficient of regression (R2) of 0.9996. Further,
forecasts of the proposed model have been validated using tracking signals (TS’s) in which the values
of TS’s lie within a balanced limit between −492 to 6.83, and universality of the model has been
carried out effectively using multiple steps-ahead forecasting up to the sixth step. It has been found
out that hybrid models are powerful forecasting tools for demand forecasting.

Keywords: forecasting; market clearing volume; neural network; tracking signals; wavelet packets

1. Introduction

In the present day electricity supply markets, the utility of load forecasting tool is
high as it helps in managing the demand leading to a transparent price of electricity to the
consumers. Furthermore, it helps in the security, decision making, reliability, and stability
of the transmission system. After a deep extensive literature study, there are, namely, three
prospectives of load forecasting on the behalf of time span: short-, mid-, and long-term
perspective. Each approach has a different view as per data complexity and input data
parameters utilized in coordination with seasonal, as well as environmental, factors. It has
also been observed that the varying level of accuracy has been achieved depending on the
foresting approach used [1,2].

In parallel, the pricing mechanism is also an important issue in electricity markets.
Electricity has been traded through the bidding mechanism via the power exchange in
which generating companies (GENCOs) can submit generation bids corresponding to their
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bidding prices, and consumers do the same with respect to their load demand. The market
is cleared at an equilibrium point where both generation and demand bids meet. The
quantity of electricity demand at this equilibrium point is called market clearing volume
(MCV) and the lowest price at that point is called the market clearing price (MCP). At
the MCP, generation companies must be satisfied to sell their generation, and consumers
must be satisfied to purchase their electricity demand corresponding to their respective
bids. Hence, the proper bidding strategy is a critical issue for market players in order to
maximize their profit in electricity markets. Generally, limited information is available
about the market, therefore; both generators and consumers rely on load demand forecast
information available for preparing their strategies corresponding to their bids [3,4].

In the last 20 years, many efforts have been made to develop models for MCV fore-
casting such as statistical, artificial intelligence, signal processing, and data mining-based
standalone and hybrid models. Among these, artificial intelligence (AI)-based models are
promising because of their ability to find hidden relationships between inputs and outputs
of the system. These AI-based models are also the most common, accurate, and efficient
ones for load-profile estimation and have been utilized in three different ways: one is an
individual neural network (NN) and the other two are known as hybrid models (evolution-
ary and pre-processing-based) [1,5–8]. In forecasting, the main problem associated with the
neural network (NN) is learning and data preprocessing. Therefore, most of the research
available has been carried out by considering these factors. The parameters of NN are deter-
mined by gradient search algorithms associated with the problem of local minima and are
also quite sensitive to the persistence of initial values that result in higher error rates (due
to over and under training). Thus, for the initialization of parameters during the learning
and training of NN, some other global search optimization techniques have been employed.
In [9], a traditional Genetic Algorithm (GA) for optimization of the fuzzy rule base of the
hybrid fuzzy NN is utilized; whereas, a modified GA with new genetic operations has also
been proposed to optimize the fuzzy rules of Neural Fuzzy Network (NFN) for hourly-load
forecasting [10]. The problem of over and under-forecasting during the learning process
of the modified Radial Basis Function Neural Network (RBFNN) has been resolved using
a GA-based optimization algorithm [11]. For improving the forecasting accuracy of NN,
the Particle Swarm Optimization (PSO)-based algorithm has been employed instead of the
Levenberg Marquardt (LM) algorithm [12]. By employing a four-step-ahead load forecast,
the parameters of the Recurrent Support Vector Machine (RSVM) have been optimized
using GA. Standard v-SVM suffers from high-frequency components; hence, a Gaussian
loss function-based g-SVM has been proposed to approximate the load series with normal
trend data and Embedded Chaotic PSO (ECPSO) has been used for parameters selection of
g-SVM [13]. In [14], the PSO, based on Wang-Mendel (WM) for optimization of the fuzzy
rule base of a load forecaster is demonstrated. To overcome the slow processing speed and
over-training of SVM, Ant Colony Optimization (ACO) has been deployed for Wavelet
Transform (WT) processed load sub-series [15].

Time series-based wavelet neural network was proposed in 2001, in which, training
data was processed through the time-series input selection technique; WT normalized the
input data and then, the final prediction was done using multi-layer perceptron neural
networks with denormalization of the data series [16]. Reference [17] designed four single
hidden layer FFNNs with WT for a 24 h load prediction. The authors in [18] proposed two
separate three-layer perceptron networks for prediction of the next day load corresponding
to low and high-frequency components decomposed by WT of a historically similar day
load series vector. The hourly seasonal load series behavior has been characterized by
different frequency components using WT, and final forecasting has been carried out using
a PSO+NN model [13]. Reference [19] reported two hybrid models: the first is wavelet-
based fuzzy neural networks (WFNN) and the second one is a fuzzy neural network based
on Choquet Integral (FNCI) for peak and minimum load forecasting and achieved better
results as compared with Adaptive Neuro-Fuzzy Inference System (ANFIS). To examine
the behavior of the historical load patterns, reference [20] uses the regression model, and
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the prediction has been done by LM algorithm-based wavelet neural network. The authors
in [21] utilized the WT+NN for primary forecasting and improving the accuracy of this
model using a WT-based ANFIS approach.

Similarly, in order to handle the non-linear and non-stationary building heat load data,
Gao (2020) et al. [22] proposed a novel ensemble prediction model which integrates the
Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)
and support vector regression (SVR). The CEEMDAN algorithm automatically decomposes
the heat load data patterns into an intrinsic modes function (IMF) signal as per the char-
acteristics of patterns on multiple time scales. In the same year, Gao et al. [23] deployed
the CEEMDAN for the features extraction of hourly solar irradiance forecasting. A stable
average RMSE of 38.49 W/m2 has been achieved by using deep learning network-based
models such as convolution neural network (CNN) and long short-term memory network
(LSTM) on individual intrinsic time series [23]. Further, a hybrid CEEMDAN and LSTM-
based model has also been utilized to improve the forecasting accuracy of stock market
prices [24]. Similarly, CEEMDAN has also been utilized for the decomposition of wind
speed data for improving the forecasting accuracy with NN’s [25].

Zhang et al. [26] introduced a variational mode decomposition (VMD) algorithm
with an aim to improve the forecasting accuracy of wind speed, in which VMD was
deployed to decompose the original wind series data into IMF’s, and then each subseries
was forecasted using a GA-based NN. Similarly, the decomposed IMF’s of wind data has
also been further denoised by using WT, and then final forecasting was performed by using
back propagation (BP) and RBF-based NN’s [27]. For the forecasting of wind power, a
pattern recognition-based hybrid method is proposed in which VMD is utilized for data
processing, Gram-Schmidt Orthogonalization (GSO) is used for feature selection, and in
the last step, the forecasting Extreme Learning Machine (ELM) was utilized for the training
of each feature-based sub-series [28]. Similarly, VMD has been utilized for load forecasting
with a long short-term memory network (LSTM) [29].

The conventional WT decomposes the signal into low frequency and high-frequency
components. However, for better accuracy in the results, the low-frequency component of
the signal is further decomposed into the low and high-frequency components using multi-
resolution analysis theory. The decomposed series has been further processed through the
Group Method of Data Handling (GMDH)-based algorithm for the forecasting of load data
series [30]. In 2021, the same decomposition process was carried out for temperature data in
which the mother wavelet was chosen on the basis of the energy-entropy ratio; for training
and testing data, a different learning algorithm-based NN was proposed [31]. On the other
hand, WPD decomposes the load profile between higher and lower frequency components
again into lower and higher frequency components with neural networks, and achieved
almost 20% more accurate results compared to traditional WT [32]. Advanced WT has
been presented in which the entropy cost function is used to select the best wavelet basis
for data decomposition, mutual information for feature selection, and neural networks for
prediction of electricity load with a one and multi-step-ahead basis [33]. In order to deal
with the data noise of WPD, decomposed series correlation analysis has been deployed, and
data with all the features has been trained through an improved weighted extreme learning
machine [34]. In this paper, to extract the maximum features of the input signal, the data
was decomposed using the proposed signal processing technique, i.e., WPD. Unlike WT,
it decomposes approximate and detailed components at the same time to achieve the
maximum resolution to the input data.

As per the existing literature, it has been observed that the pre-processing of data
is still an open issue from the forecasting point of view. Therefore, in this, the authors
proposed a time series (statistical)-based forecasting model in which WPD is used as an
input data pre-processing tool for MCV forecasting. The results of the proposed model have
been compared with stand-alone NN and conventional WT-based models for a single step
ahead of point forecasting. The contribution is summarised as follows: First, a practical and
transparent approach with the newly demonstrated LNNTD model has been implemented
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to forecast MCV; the input neurons of this have been selected using ACF. Second, the
proposed MCV forecast framework has been implemented to forecast MCV for a period
of one year with all seasonal estimation weeks. The concept of a moving window has
been adapted with a cyclic test period of one month up to a one year forecast using the
one-year training data set. In WPD-based models, two types of input selection criteria have
been adopted; first, one combination of WPD-based decomposed series with ACF-based
time lags (TL’s) have been used as input vectors (neurons) of the model, and a similar
theory has also been used for conventional WT-based models. In later (proposed) models,
each WPD-based series has been forecasted individually, and the TL’s for this have been
selected on the basis of mutual correlation among all time-lags using ACF. Third, as per
the existing literature, for the very first time, TS’s of the forecasts have been measured
for the validation of results on a single step-ahead of the forecasted values. The multiple
step-ahead forecasting is conducted using an iterative approach up to the sixth step to
check whether the forecast is applicable or not. Next, Section 2 describes the strategy of
the proposed model, the experimental work is presented in Section 3, the Discussion is in
Section 4, and finally the paper is concluded in Section 5.

2. Strategy of Proposed Model

In this section, the authors have tried to take care of all the methodology associated
with MCV forecasting, with an aim to improve the accuracy of forecasts. The proposed
model utilized the features of WPD as a pre-processing tool for LNNTD. In this model,
each preprocessed sub-series was forecasted individually, and the input features were
chosen on the basis of mutual correlation among the TL’s using ACF. The performance of
the proposed model was compared with standard benchmark stand-alone NN models such
as Feed Forward Neural Networks (FFNN), GA-based NN (GANN), and Elman Recurrent
Neural Networks (ERNN), along with conventional WT-based NN models. The structural
parameters of all compared models are discussed in this section. An extensive study for
the selection of wavelet selection has also been carried out on all accuracy indices. The
details are described in the next subsections.

2.1. Input Selection

The demand curve of electricity has been associated with various uncertain factors
that will be reflected in the MCV curve. These factors affect the training and weight adjust-
ment of neural networks that create difficulties during the input selection of NN models.
Therefore, there is a requirement for special treatment for input selection. The selection of
input variables is one of the most important parts of NN-based forecasting models. The
input vector (neurons) determines the input architecture of the NN model on which the
accuracy of the model is highly dependent. In the present work, a correlation-based time
series method has been utilized to select the input time lag data, and the proposed model
has been effectively implemented on the two year (2015–2016) IEX unconstrained MCV
data [35].

In the time series context, it is necessary to know the relationship that exists between
the present-time MCV series, along with their past time-lag series. The ACF and partial
autocorrelation function (PACF) have been used for input selection. ACF and PACF plots of
a sample MCV series are shown in Figure 1. The higher value of ACF defines the correlation
between successive lags, which is very strong and drops off very quickly over large time
lags. The MCV curve forecast problem aims to find an estimate MCV(t+k) of the MCV
curve the vector MCV(t+n) based on the previous n measurements: MCV(t), MCV(t−1), . . .,
WP(t−n). The number of time lags are 17 as: MCV(t−97), MCV(t−96), MCV(t−73), MCV(t−72),
MCV(t−71), MCV(t−49), MCV(t−48), MCV(t−47), MCV(t−26), MCV(t−25), MCV(t−24),
MCV(t−23), MCV(t−22), MCV(t−4), MCV(t−3), MCV(t−2), MCV(t−1).
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Figure 1. IEX hourly MCV ACF and PACF.

2.2. Pre-Processing Using Wavelet Transform

In this step, two types of wavelet theories have been adopted for the preprocessing
of data, first one is conventional Wavelet Transform (WT) and the second is Wavelet
Packet-based Decomposition (WPD).

2.2.1. Conventional Wavelet Transform (WT)

For an MCV forecasting model, it is necessary to pre-process the input data because
of uncertainty and nonlinearity. The MCV time-series signal collected from the site might
be associated with some corrupted and irrelevant information. This corrupted time series
needs to be improved using WT. It is a mathematical signal processing tool used to handle
the continuous time-varying signal, and divide the original time series into subseries that
forecasts better than the original. Based on the time series signal category, WT is of two
types: continuous and discrete wavelet transforms.

For an input MCV signal, MCV(t), the continuous wavelet transform (CWT) is defined
on the real axis from (-infinity to infinity) and is given as:

W(a, b) = a−
1
2

∫ ∞

−∞
MCV(t) · ψ∗( t− b

a
)dt (1)

where: a is the scaling function of the mother wavelet function W(a, b), b is the time-
shifting translation variables, ∗ denotes the complex conjugate, and ψ(t) denotes the
mother wavelet.

CWT is the continuous scaling and time-shifting of the mother wavelet to either the
high-scaled sub-frequency component or low-scaled sub-frequency component. The high-
scaled (low-pass filter) and low-scaled (high-pass filter) frequency components provide
approximate and detailed information about the input MCV signal.

Whereas, in discrete wavelet transforms (DWT), discrete scaling (a = 2i) and time-
shifting (b = k2i) of the mother wavelet function W(a, b) are done. Using DWT, the
decomposition and reconstruction of the original MCV signal are followed by (2):

W(a, b) =
1√
2i

∫ ∞

−∞
MCV(t) · ψ∗( t− 2ik

2i )dt (2)
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DWT involves both high-pass and low-pass filters corresponding to decomposi-
tion and reconstruction of the original MCV data pattern [20,21]. The approximate
(A1, A2, . . . , AN) and detailed coefficient (D1, D2, . . . , DN) of MCV data signal, MCV(t), is
given below in Figure 2 as per the multi level decomposition (3):

MCV(t) = D1 + D2 + D3 + ... + DN + A1 + A2 + A3 + ... + AN (3)

Figure 2. WT-based decomposition MCV time series.

2.2.2. Wavelet Packet Based Decomposition (WPD)

In WPD, the WT-based decomposed approximated signal components with low
frequencies and the detailed signal components with high frequencies have been further
decomposed. Therefore, by using WPD-based decomposition, more valuable information
can be extracted from the original raw time series of MCV. The original time series of
MCV has been decomposed into four sets of approximated and detailed signals: (A3:1,
D3:2), (A3:3, D3:4), (A3:5, D3:6), (A3; 7, D3:8) up-to third level of decomposition as shown
in Figure 3 and the waveform is shown in Figure 4. The Daubechies (db) wavelet has
been shown to be one of the most capable of dealing with MCV data and the analysis for
the selection of db has been discussed in Section 2.5. These technique outputs are much
more balanced compared to that of WT, and this can easily identify weak and singular
component signals. If θ(t) is the scaling function, and ψ(t) is the wavelet function, then
both can be related, as [31,34]:{

θ(t) =
√

2 ∑m limθ(2t−m)

ψ(t) =
√

2 ∑m himψ(2t−m)
(4)

Figure 3. Wavelet packet-based decomposition of MCV time series.



Energies 2021, 14, 6065 7 of 21

Figure 4. WPD-based decomposed series of MCV.

In Equation (4), lim and him denotes the low- and high-pass frequency coefficients
of the signal, respectively. The full wavelet packet {δn(t)}(n ∈ Z+) is on the basis of
δo(t) = θ(t), which can be derived as:{

δ2n(t) =
√

2 ∑m hmVn(2t−m)

δ2n+1(t) =
√

2 ∑m gmVn(2t−m)
(5)

In the above Equation (5), hm and gm are the wavelet function coefficients, v is the
wavelet packet (WP), n denotes the decomposition level in which b is the node position at
that level where convolution of the wavelet and scaling filter with WP of the previous level
can be used to generate the wavelet packet coefficient at a specific level. This process is
repeated until the desired depth of the binary tree is reached.

2.3. Linear Neural Network with Time Delay

The Linear Neural Network (LNN) is a three-layer NN in which the transfer function
used is linear rather than hard-limiting. In LNN, there is a delay between the input and
summation layer as shown in Figure 5.

The input MCV data pattern is fed to the input layer and passed via the n delays of
the Finite Impulse Response (FIR) filter to the summation layer. The output signal that
comes out from the summation layer is passed through the linear transfer function to the
output layer. It combines the features of the Multi-Layer Perceptron (MLP) structure with
a delay layer between the input and summation layers [36–39]. The output of the network
has been evaluated using Equation (6). The network has been trained using the standard
Back Propagation algorithm (BP).

Ft = purelin(wp + b) =
R

∑
i=1

w1,i MCV(k− 1 + 1) + b (6)
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where Ft is the output response of the network, w is the weight matrix, MCV(k− 1 + 1) is
the (k− 1) time delay in the MCV signal, b is the bias, and the activation function used is
pure linear (purelin).

Figure 5. Basic structure of linear neural network with tapped delay.

The basic structures of both NN and WT-based NN with the proposed model have
been given in Table 1. The NN model input architecture consists of time-domain variables
only; whereas, conventional WT-based models are fed the time domain as well as the
wavelet domain variables (Figure 6). The structure of the proposed WPD-based model is
also the same as that of other models, except for that of input neurons, which have been
detailed in Table 2. The concept of a moving window has been adopted for training and
testing of the models, as detailed in Figure 7. To get wavelet sub-series, db10 has been used
for the multi-scale analysis of MCV.

Table 1. Structure of all models used.

Model Learning
Algorithms

Input
Neurons

Transfer
Function

Momentum
Constant

Learning
Rate

FFNN LM 17 tansig, purelin 0.06 0.001
ERNN LM 17 tansig, purelin 0.06 0.001
GANN GA 17 tansig, purelin 0.06 0.001
LNNTD BP 17 purelin 0.06 0.001

WT+LNNTD BP 17 + 5 purelin 0.06 0.001
WPD+LNNTD BP 17 + 8 purelin 0.06 0.001

Proposed BP - purelin 0.06 0.001

Table 2. Time lags (features) for wavelet component forecasts.

Wavelet Component Selected Time Lags for Forecasting Target Series (T)

D30 TL_10, TL_9, TL_8, TL_7, T_6, TL_5, TL_4, TL_3, TL_2, TL_1
D31 TL_19, TL_18, TL_17, T_16, TL_15, TL_14, TL_13, TL_12, TL_11,

TL_10, TL_9, TL_8, TL_7, T_6, TL_5, TL_4, TL_3, TL_2, TL_1
D32 TL_25, TL_12, TL_11, TL_10, TL_9, TL_8, TL_7, T_6, TL_5, TL_4,

TL_3, TL_2, TL_1
D33 TL_28, TL_25, TL_21, TL_10, TL_9, TL_8, TL_7, T_6, TL_5, TL_4,

TL_3, TL_2, TL_1
D34 TL_13, TL_12, TL_11, TL_10, TL_9, TL_8, TL_7, T_6, TL_5, TL_4,

TL_3, TL_2, TL_1
D35 TL_7, T_6, TL_5, TL_4, TL_3, TL_2, TL_1
D36 TL_8, TL_7, T_6, TL_5, TL_4, TL_3, TL_2, TL_1
D37 TL_9, TL_8, TL_7, T_6, TL_5, TL_4, TL_3, TL_2, TL_1
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Figure 6. Structure of conventional WT-based LNNTD for MCV forecasting.

Figure 7. Concept of moving window forecasting.

The forecasting steps are similar for all models, except in cases discussed below:

• Step 1: From raw MCV data, an input time series vector has been formed, on the basis of
ACF 17, time-lag data was chosen as the input variable for standalone NN models.

• Step 2: edcomposition of the original MCV time series into approximated (A1–A6)
and detailed (D1–D6) subseries using db10.

• Step 3: The fourth level approximated and detailed MCV subseries with a 17 MCV
time lag has been selected as an input variable for conventional WT-based models.
The structure of the LNNTD model is shown in Figure 6 and the schematic flow
diagram for the conventional WT-based MCV forecasting model is shown in Figure 8.

• Step 4: For the WPD-based model, a third-level decomposition is used [35–39] in
which eight different high- and low-frequency component-based series are obtained.
Two types of input selection criteria are adopted first, eight WPD-based decomposed
series are used with 17 ACF-based time-lag series similar to that of the conventional
WT-based model. In the second (proposed model), each WPD-based series has been
forecasted individually, the schematic flow diagram is shown in Figure 9 and the TL’s
are selected on the basis of ACF which are presented in Table 2.

• Step 5: For the forecasting, one-year MCV data was trained and tested for the next
month, a similar process is continuously repeated up to the next 12 months, with a
one-month moving window as shown in Figure 6. The epochs and performance goals
have been chosen to be equal to 10,000 and 0.001, respectively.
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Figure 8. Schematic diagram of MCV forecasting model.

Figure 9. Schematic diagram of proposed model used.

2.4. Accuracy Metrics

For the accuracy of estimated MCV results, the trained NN forecast output has been
compared with the actual indicated MCV values. The comparison has been made with two
measures, Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE). The
MAPE can be defined as follows:

MAPE =
1
n

t

∑
n=1

∣∣∣∣ (MCVt − Ft)

MCVt

∣∣∣∣ (7)

The MAE is given by:
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MAPE =
1
n

n

∑
t=1

∣∣∣∣(MCVt − Ft)

∣∣∣∣ (8)

where MCVt is the actual indicated MCV value, Ft is the estimated MCV value for the tth
hour and n is the number of hours considered for forecasting.

2.5. Effect of Pre-Processing on the Performance of the Model
2.5.1. Effect of Conventional WT

Consequently, the application of WT makes the input MCV data patterns more suitable
and efficient for accurate forecasting by improving the hidden characteristics of the original
MCV data signal. The NN models train themselves in a better way with input sub-
frequency data components compared to actual MCV data, which results in better forecasts.
For proper selection of decomposition levels, a complete experimental analysis has been
done on the basis of their error rate. Based on the ascending order of WT decomposition, the
results are drawn in Table 3 and a similar procedure has also been adopted for the selection
of Daubechies wavelet as shown in Figure 10. Thus, on the basis of experimental analysis, it
is found that the fourth level decompositions using db10 provides the best-suited forecasts.

Table 3. WT analysis for the selection of decomposition.

Decomposition
Level

Decomposed
Signals WT Decomposed Signals WPD

db10 MAPE db10 MAPE

Level 1 A1, D1 3.22 A1:1, D1:2 3.115
Level 2 A2, D1, D2 2.49 A2:1, D2:2, A2:3, D2:4 1.882
Level 3 A3, D1, D2, 2.22 A3:1, D3:2, A3:3, D3:4, 1.258

D3 A3:5, D3:6, A3:7, D3:8

Level 4 A4, D1, D2, 2.12 A4:1, D4:2, A4:3, D4:4,
A4:5, 1.314

D3, D4 D4:6, A4:7, D4:8, A4:9,
D4:10,

A4:11, D4:12, A4:13,
D4:14,

A4:16, D4:16

Level 5 A5, D1, D2, 2.13 A5:1, D5:2, A5:3, D5:4,
A5:5, 6.43

D3, D4, D5 D5:6, A5:7, D5:8, A5:9,
D5:10,

A5:11, D5:12, A5:13,
D5:14, A5:16,

D5:16, A5:17, D5:18,
A5:19, D5:20,

A5:21, D5:22, A5:23,
D5:24, A5:25,

D5:26, A5:27, D5:28,
A5:29, D5:30,
A5:31, D5:32

Level 6 A6, D1, D2, 2.17 - -
D3, D4, D5, D6

2.5.2. Effect of WPD

On the basis of the existing literature, the third level decomposition using WPD is
found to be more suitable [30–33]. However, for proper selection of decomposition level,
a complete experiment has also been conducted to verify the results on the basis of their
error rate. Based on the ascending order of WPD decomposition up to the fifth level, the
results are shown in Table 3 and a similar procedure has also been adopted for the selection
of Daubechies wavelet as shown in Figure 10. From fourth level WPD results it is observed



Energies 2021, 14, 6065 12 of 21

that the error is almost close to the third level but in the fifth level of decomposition, the
error is increased suddenly because, in this level, the input variables are almost double
to that of the fourth level input variables. Similarly, in the sixth level decomposition, the
numbers of input variables are almost double that of the fifth level, they are very difficult to
handle and the error rate will also abruptly rise. Thus, on the basis of experimental analyses,
it is observed that third-level decomposition using db10 provides the best-suited forecasts.

Figure 10. Daubechies wavelet selection for WT and WPD.

3. Simulation Results

The hourly IEX unconstrained MCV data has been utilized for the evaluation of the
performance measurement of presented load forecasting models. The data includes the
historical load for a two year period from 2015 and 2016. The authors have not cut out any
part of the time-series such as anomalous days, special events, or data that might be flawed.
The performance of the stand-alone NN model has been compared with WT-based NN
models along with the proposed model. The forecasting performance of all models has
been carried out on the basis of accuracy and R2 analysis using MATLAB version R2020b.

3.1. Accuracy Analysis

The performance on the basis of accuracy has been carried out on a monthly and
seasonal week basis using MAPE and MAE accuracy indices. The MAPE test results for
the year 2016 have been presented in Table 4 on a monthly average basis. The average
MAPE achieved by the ERNN Model is 4.082% (January 2016 to December 2016) which
is higher than other NN models; whereas, the value of MAPE for the same period by
FFNN, GANN, and LNNTD is 3.441%, 3.396%, and 3.317%, respectively. The monthly
average performance on the MAE scale (January 2016 to December 2016) achieved by
FFNN, ERNN, GANN, and LNNTD is 161.540 MWh, 190.760 MWh, 159.692 MWh, and
154.954 MWh, respectively, as given in Table 5. The performances in terms of MAPE for
all stand-alone NN models are almost similar; but, the performance of LNNTD has been
found to be better as compared to other stand-alone NN models. Due to this, LNNTD has
been used exclusively with pre-processing techniques adopted for the present work. From
Table 6, the average MAPE performance (January 2016 to December 2016) of WT+LNNTD,
WPD+LNNTD and proposed model is 1.753%, 1.162%, and 0.201%, respectively. From
Table 7, the average MAEs reported by the WT+LNNTD, WPD+LNNTD, and proposed
model are 80.6851 MWh, 53.065 MWh, and 9.056 MWh respectively.

It is observed that the performance of all stand-alone NN models is almost the same;
but, when WT is deployed for input pre-processing; then, there is improvement in results
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to a large extent. Therefore, the improved results confirm the utility of WT for input
pre-processing. These are the observations obtained from an accuracy point of view:

• The performance in terms of accuracy of LNNTD is the best among all NN models.
• WT-based NN model accuracy is higher compared to the NN models.
• The accuracy level of the proposed model is found to be better amongst all others.
• In spite of that, FFNN is one of the toughest benchmarks to beat.

Table 4. Monthly MCV forecasting accuracy (MAPE 2016).

2016 FFNN ERNN GANN LNNTD WT+LNNTD WPD+LNNTD Proposed

January 2.794 3.686 2.783 2.763 1.641 1.047 0.164
February 2.431 3.197 2.474 2.410 1.563 1.005 0.175

March 3.613 3.969 3.597 3.569 1.848 1.214 0.220
April 3.769 4.069 3.582 3.438 1.624 1.132 0.205
May 3.646 4.555 3.559 3.572 1.788 1.152 0.198
June 2.853 3.383 2.906 2.862 1.528 1.019 0.174
July 2.961 3.047 2.856 2.789 1.331 0.854 0.170

August 3.299 3.571 3.206 3.143 1.635 1.003 0.198
September 3.843 4.634 3.919 3.782 1.658 1.034 0.192
October 4.381 5.014 3.962 3.953 1.793 1.120 0.204

November 4.207 5.469 4.352 4.140 2.410 1.741 0.285
December 3.501 4.392 3.561 3.391 2.219 1.622 0.226

A.V. 3.441 4.082 3.396 3.318 1.753 1.162 0.201

Table 5. Monthly MCV forecasting accuracy (MAE 2016).

2016 FFNN ERNN GANN LNNTD WT+LNNTD WPD+LNNTD Proposed

January 115.253 151.121 115.221 113.850 67.0143 43.039 6.758
February 103.007 138.273 105.280 102.680 65.7499 42.895 7.398

March 161.492 176.189 161.020 158.840 82.0146 53.843 9.805
April 198.377 214.583 188.657 178.610 83.9282 58.263 10.523
May 149.702 185.845 146.430 146.830 74.4242 47.911 8.0387
June 130.586 153.594 132.857 130.780 68.9155 45.504 7.704
July 146.409 150.990 141.618 137.820 65.9655 41.784 8.249

August 160.145 173.035 156.889 152.300 78.7189 47.937 9.366
September 195.639 235.798 199.298 191.290 84.2253 52.282 9.811
October 219.531 253.934 199.514 197.180 89.0009 54.529 9.973

November 205.628 263.373 214.261 201.730 114.344 81.572 13.454
December 152.716 192.387 155.27 147.560 93.9196 67.216 7.596

A.V. 161.540 190.760 159.693 154.950 80.6851 53.065 9.056

Table 6. Indian seasonal time period.

Season Period Testing Period

Winter December–March week 1
Summer April–May week 1

Rainy June–September week 1
Dry October–November week 1

In order to check the quality of the forecasts, four seasonal weeks presented in Table 6 [40]
has also been taken into consideration. The forecasted results in terms of MAPE and MAE
have been given in Tables 7 and 8, respectively. The proposed model also performed better
than others with an average MAPE of 0.225% and MAE of 10.688 MWh and the percentage of
improvement is discussed in the Discussion section. To check the viability of the forecasting
tools used, the seasonal week’s actual and forecasted MCV with the error curve has been
presented in the given Figures 11–14. These curves have been considered because all seasons
have different demand curve variations.
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Figure 11. Actual and predicted weekly MCV during winter season.

Figure 12. Actual and predicted weekly MCV during summer season.

Figure 13. Actual and predicted weekly MCV during rainy season.
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Figure 14. Actual and predicted weekly MCV during dry season.

Table 7. Seasonal MAPE MCV estimation accuracy.

Models Week 1 Week 2 Week 3 Week 4 A.V.

FFNN 2.5142 3.6082 3.415 4.096 3.408
ERNN 3.0571 3.9597 3.966 5.407 4.097
GANN 2.5091 3.7614 3.39 4.127 3.447
LNNTD 2.5345 3.7416 3.393 3.964 3.408

WT+LNNTD 1.5189 1.5274 1.636 1.657 1.585
WPD+LNNTD 1.8174 0.9913 1.0189 1.1304 1.2395

Proposed 0.3008 0.1886 0.1973 0.2134 0.225

Table 8. Seasonal MAE MCV estimation accuracy.

Models Week 1 Week 2 Week 3 Week 4 A.V.

FFNN 100.747 177.882 161.195 241.018 170.211
ERNN 121.359 195.231 185.157 323.919 206.417
GANN 100.576 185.298 159.586 244.208 172.417
LNNTD 101.137 184.009 159.882 231.445 169.118

WT+LNNTD 58.957 75.0393 74.9522 96.5705 76.3797
WPD+LNNTD 70.9611 50.0129 48.34038 63.3021 58.1541

Proposed 12.0576 9.45813 9.246981 11.9904 10.6883

3.2. Coefficient of Regression R2 Analysis

The R2 has been utilized to articulate the slope of the forecasted MCV against the
actual value of MCV as described in Table 9. The average value of R2 determined for the
year 2016 by FFNN is 0.882, which is almost similar to that of all NN models. Furthermore,
LNNTD also outperformed in our study, with a value of 0.9034. However, the value of R2,
determined by the WT-based model is better than NN models, which are close to unity
(by proposed 0.9996). When forecasting accuracy is poor, then R2 moves away from unity;
when accuracy is better then it moves close to unity.
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Table 9. Overall forecasting coefficient of regression R2.

Models FFNN ERNN GANN LNNTD WT+LNNTD WPD+LNNTD Proposed

January 0.959 0.97 0.968 0.923 0.977 0.990 0.9997
February 0.917 0.855 0.912 0.916 0.970 0.987 0.9996

March 0.873 0.851 0.873 0.875 0.972 0.987 0.9995
April 0.859 0.833 0.866 0.868 0.973 0.986 0.9996
May 0.873 0.811 0.876 0.876 0.971 0.988 0.9996
June 0.916 0.891 0.912 0.913 0.980 0.991 0.9997
July 0.908 0.898 0.912 0.915 0.982 0.993 0.9997

August 0.925 0.913 0.926 0.928 0.983 0.994 0.9997
September 0.851 0.803 0.843 0.853 0.975 0.990 0.9996

October 0.654 0.875 0.916 0.919 0.984 0.994 0.9998
November 0.912 0.865 0.901 0.913 0.977 0.988 0.9996
December 0.933 0.904 0.927 0.937 0.979 0.989 0.9997

A.V. 0.882 0.872 0.903 0.903 0.977 0.990 0.9996

4. Disscusion

In this section, the proposed model performance has been validated on the basis of the
calculation of forecast tracking signals, and the universality of the model has been carried
out using multiple-step ahead forecasts up to six steps. Further, in order to investigate the
forecasting performance, the percentage of improvement in accuracy has also been taken
into consideration.

4.1. Validation of the Model Using Tracking Signals (TS’s)

In 1962, Brown has introduced TS’s with an objective to provide automatic quality
control for the forecasting system [41]. The purpose is to find whether the forecast is
absolute or misbehaving on the data set. Generally, it is applied to a system that covers
thousands of data points and where the data set is highly influenced by unsuspected
seasonal variations. From the forecasting point of view, it is necessary to predict such
situations within a quick succession of time so that a more appropriate and accurate model
may be introduced. It is defined as the sum of the forecasting errors divided by the mean
absolute deviation [42,43]. TS’s are very helpful to find out whether our forecasting model
is balanced or moving in one direction, i.e., over-forecasted or under-forecasted. For
balanced forecasts, its values should be close to zero and move in both directions, positive
as well as negative. The positive value of TS suggests that the model output is less than the
actual value (under forecast); whereas, a negative value of TS conveys that model output is
higher than the actual value (over forecast). When a forecast is consistent in one direction,
either positive or negative, then it is referred to as biased forecasting. Here, the meaning
of biasness is the continuous deviation of forecasts from the mean in one direction. So, it
is a very helpful tool for us in improving or adapting the forecasting model in real-time
situations [43,44].

Tracking Error =
Sum o f Error

Mean Absolute Deviation (MAD) o f Error
(9)

Sum o f Error = Precious Sum o f Errors + Latest Error (10)

MAD =
Sum o f Absolute Error

Numbers o f Observations
(11)

Table 10 contains the value of overall TS’s for stand-alone, pre-processing-based and
proposed models. As far as the under and over forecasting is concerned that all models
have both positive as well as negative values of TS except for one or two models. In
the case of stand-alone models, the range of tracking signals is very far away from zero,
but has both positive as well as negative values of tracking signals. Their range is high
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because their performance in terms of accuracy was also poor. On the other hand, the
preprocessing-based models have a lower range of TS’s and they are found to be the best
with the maximum value of the tracking signal 6.839 for the month of September and a
lower value of tracking signal is −4.9257 for the month of December. Hence, the proposed
model has more accurate and balanced forecasts among the others because of the positive
and negative values.

Table 10. Overall forecasting tracking signal (TS).

Models FFNN ERNN GANN LNNTD WT+LNNTD WPD+LNNTD Proposed

January −34.78 68.77 −23.3 7.92 −4.12 −15.11 0.57
February −18.06 65.92 −4.36 44.24 8.11 −4.27 2.46

March 88.32 60.51 99.98 80.86 99.48 −2.01 2.62
April 257.81 278.8 261.26 127.48 41.55 −28.49 4.84
May −97.35 −83.9 −68.25 −31.01 39.91 −5.29 −1.00
June 50.512 50.8 75.72 43.48 12.52 −0.37 2.50
July 104.03 57.02 87.04 83.65 37.69 −16.34 3.05

August −4.562 24.56 65.50 70.48 83.89 −4.40 4.11
September 49.949 −32.7 43.63 72.82 133.80 −15.19 6.83

October −27 196.3 86.81 13.39 13.36 −20.07 −0.24
November 43.307 −30.9 55.79 35.45 3.65 −5.75 0.90
December −120.5 −3.39 −116.8 −38.15 2.16 4.05 −4.92

In spite of the accurate forecast, the TS’s may be out of range because of over- and
under-forecasting, and it can be seen from the comparison of the tracking signal and error
signals. As per the MAPE and MAE table, the accuracy of WPD is higher with average
MAPE and MAE of 1.162% and 53.065 MWh, respectively. On the other hand, the majority
of tracking signals for WPD-based model lies in the negative direction with the value of
−28.4919 and the maximum value of the tracking signal in positive is 4.056883 for the
month of December. Whereas, the majority of tracking signals for WT+LNNTD-based
model lies in positive with a maximum value of 133.80 and the only value of tracking signal
lies in negative is for January with −4.126882. Therefore, the forecasts are not balanced.
Hence, the value of the TS’s depends not only on the accuracy, but also on under- and
over-forecasted values of the model used.

4.2. Multiple Steps-Ahead Forecasting

The performance of the proposed model has also been evaluated for more than one,
to check the universality of forecasts. In this case, the forecasting is done for more than one
hour or day in advance. For multiple-step-ahead forecasting, a single model was trained
multiple times depending on the number of steps, and only the target set was changed,
corresponding to the number of steps. The target matrix was increased with respect to
each step in advance, as given below in Equations (12) and (13). If the large forecasting
horizon is considered, the error that occurs at the first step will be multiplied with each
step; therefore, the accuracy of the model will be lower. The results in the given Table 11
showed the superiority of the proposed model for six-step-ahead forecasting. The proposed
model has achieved a MAPE of 1.57% and a MAE of 63.29 MWh for the sixth step-ahead
forecasting in contrast to other models.

First Step =


MCV11 MCV12 −−− MCV1n
MCV21 MCV22 −−− MCV2n

MCVn1 MCVn2 −−− MCVnn




T1
T2

Tn

 (12)
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nth Step =


MCV11 MCV12 −−− MCV1n
MCV21 MCV22 −−− MCV2n

MCVn1 MCVn2 −−− MCVnn




Tk
Tk+1

TK+n

 (13)

Table 11. Multiple steps-ahead forecasting.

Models Metrics Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

FFNN MAPE 2.78 3.99 4.80 6.57 8.68 9.89
FFNN MAE 114.97 165.64 196.21 270.32 354.35 404.99
ERNN MAPE 3.28 4.281 5.18 7.02 8.85 10.03
ERNN MAE 134.52 174.57 211.98 291.23 365.59 414.12
GANN MAPE 2.85 3.83 4.66 6.62 8.67 10.01
GANN MAE 117.44 157.51 191.88 272.66 353.79 410.55
LNNTD MAPE 2.76 3.87 4.62 6.35 8.31 9.57
LNNTD MAE 113.84 159.05 189.68 260.87 341.33 393.74

WTLNNTD MAPE 1.62 2.69 3.31 4.77 5.50 6.10
WTLNNTD MAE 66.19 110.32 137.06 196.34 226.94 249.91

WPD+LNNTD MAPE 1.04 2.32 3.04 4.27 5.17 5.81
WPD+LNNTD MAE 43.03 95.11 125.95 175.76 213.25 238.35

Proposed MAPE 0.19 0.37 0.59 1.07 1.34 1.57
Proposed MAE 7.07 15.22 24.23 44.02 54.76 63.29

4.3. Percentage of Improvement in Accuracy

The percentage of improvement in accuracy is also one of the criteria for investigating
the forecasting performance of a model more comprehensively. Both seasonally, as well
as yearly, average MAPE and MAE, have been considered for comparison points of view.
Table 12 shows the percentage in the improvement of MAPE by the proposed model, with
respect to each model utilized in this work, is calculated by the following:

γMAPE =
Yp −Yr

Yr
× 100 (14)

γMAE =
Yp −Yr

Yr
× 100 (15)

In the above Equations (14) and (15), Yp represents the forecasted results of the
proposed model and on the other hand, Yr represents the forecasted results of other models
used in this work for performance comparison. Tables 12 and 13 confirm the superiority
of the proposed model which improves the error percentage to a significant level, and for
the interpretation of results both MAPE and MAE have been considered. Compared to
other models (both stand-alone NN and WT-based models), the yearly average forecast, is
increased in the range from 82.702 to 94.15882.9 in the proposed model MAPE, and MAE is
increased in the range from 82.93414 to 94.39396. Similarly, the percentage of improvement
of results on the basis of MAPE and MAE has been increased for the case of seasonal
forecast in the range from 80.635 to 96.053 and 80.87127 to 96.29833, respectively.

Table 12. Percentage of improvement in MAPE (γMAPE) by the proposed model.

Seasons FFNN ERNN GANN LNNTD WT+LNNTD WPD+LNNTD

Yearly 94.15 95.07 94.08 93.94 88.53 82.70
Winter 88.03 90.16 88.01 88.13 80.19 83.44

Summer 94.77 95.23 94.98 94.95 87.65 80.97
Rainy 94.22 95.02 94.17 94.18 87.94 80.63
Dry 94.79 96.05 94.82 94.61 87.12 81.12



Energies 2021, 14, 6065 19 of 21

Table 13. Percentage of improvement in MAE (γMAE) by the proposed model.

Seasons FFNN ERNN GANN LNNTD WT+LNNTD WPD+LNNTD

Yearly 94.39 95.25 94.32 94.15 88.77 82.93
Winter 88.03 90.06 88.01 88.07 79.54 83.00

Summer 94.68 95.15 94.89 94.85 87.39 81.08
Rainy 94.26 95.00 94.20 94.21 87.66 80.87
Dry 95.02 96.29 95.09 94.81 87.58 81.05

5. Conclusions

For appropriate electricity management, taking part in the electricity market bidding
and for proper implementation of policies, an accurate load estimation tool is quite impor-
tant. Electrical engineers and policymakers are working to satisfy various frequency load
demand cycles. However, in developing countries, it is very difficult to match the demand
and load curve leading to difficulty in designing accurate forecasting tools. Therefore, it
has been worth analyzing yearly MCV forecasting performance, in terms of accuracy and
the R2 value. It has been observed that the average forecasted MAPE and MAE results
obtained by the proposed model are 0.201% and 9.056 MWh, respectively, which is far
better than the other respective models. The comprehensive experimental analysis on the
tracking signals of the forecast, multiple steps-ahead forecasting, and the percentage of
improvement of accuracy indicate the superiority of the proposed model. The observed
values of tracking signals, forecast at multiple steps, and the percentage of improvement
of accuracy proved the superiority of the proposed model. Furthermore, the results in
terms of accuracy can be improved by the more efficient handling of input data through
pre-processing and post-processing soft computing-based tools.
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The following abbreviations are used in this manuscript:

ACF Auto-correlation function
ACO Ant colony optimization
AI Artificial intelligence
ANFIS Adaptive neuro fuzzy inference system
BP Back propagation algorithm
CEEMDAN Complete ensemble empirical mode decomposition with adaptive noise
CNN Convolution neural network
CWT Continuous wavelet transform
db10 Daubechies wavelet
DWT Discrete wavelet transform
ECPSO Embedded chaotic particle swarm optimization
ERNN Elman recurrent neural network
FFNN Feed forward neural network
FIR Finite impulse response
FNCI Fuzzy neural network based on Choquet integral
GA Genetic algorithm
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GANN Genetic algorithm based on neural network
GMDH Group method of data handling
GSO Gram-Shmidt orthogonalization
IEX Indian electricity exchange
IMF Intrinsic modes function
LM Levenberg marquardt algorithm
LNN Linear neural network
LNNTD Linear neural network with tapped delay
LSTM Long short-term memory network
MAD Mean absolute deviation
MAE Mean absolute error
MAPE Mean absolute percentage error
MCV Market clearing volume
MLP Multi layer perceptron
NFN Neural fuzzy network
NN Neural network
PACF Partial auto-correlation function
PSO Particle swarm optimization
RBFNN Radial basis function neural network
SOM Self organising map network
TS Tracking signal
WFNN Wavelet fuzzy neural network
WPD Wavelet packet-based decomposition
WT Wavelet transform
VMD Variational mode decomposition
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