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Abstract: Due to the increasing penetration of renewable energies in lower voltage level, there
is a need to develop new control strategies to stabilize the grid voltage. For this, an approach
using deep learning to recognize electric loads in voltage profiles is presented. This is based on
the idea to classify loads in the local grid environment of an inverter’s grid connection point to
provide information for adaptive control strategies. The proposed concept uses power profiles to
systematically generate training data. During hyper-parameter optimizations, multi-layer perceptron
(MLP) and convolutional neural networks (CNN) are trained, validated, and evaluated to determine
the best task configurations. The approach is demonstrated on the example recognition of two electric
vehicles. Finally, the influence of the distance in a test grid from the transformer and the active load to
the measurement point, respectively, onto the recognition accuracy is investigated. A larger distance
between the inverter and the transformer improved the recognition, while a larger distance between
the inverter and active loads decreased the accuracy. The developed concept shows promising results
in the simulation environment for adaptive voltage control.

Keywords: deep learning; load recognition; low voltage grid; grid management; electric vehicles

1. Introduction

The share of renewable energies for gross power consumption in Germany rose to
45.4% in 2020 [1]. To achieve the climate targets defined in international and national
agreements, the government plans to increase this share up to 65% in 2030 [2]. The as-
sociated decentralization of the power grid architecture with fluctuating feed-in leads
to new requirements regarding a reliable power grid operation [3]. Due to the different
characteristics of distributed energy resources (DERs) in comparison to conventional gen-
erators, a new way of providing ancillary services is necessary, especially in local voltage
control [4]. Additionally, the number of loads and generating plants connected to the lower
voltage level increased in the last couple of years and an ongoing increase in future can
be expected [5]. For example, the government’s goal is a number of seven to ten million
registered electric vehicles (EVs) in Germany in 2030 [2]. This expectation increases the
challenge of grid voltage stabilization even more because every active grid participant
affects the voltage and the variety of different grid scenarios caused by parallel activation
of different loads and generators increases. The overarching goal of voltage control is to
remain inside a tolerance band of ±10% of the nominal voltage [6]. To guarantee a stable
voltage in the long term despite these developments on both sides of a grid connection
point, there is a need for further development on using the abilities of power electronics
and the inverters, which are the interfacing devices to the power grid for most of the
DERs. Current approaches to achieve voltage stability were reviewed by Mahmud and
Zahadi [7]. Some advanced methods for voltage control enable inverters to contribute to
decentralized voltage control. Especially, there are different voltage control strategies with
a fixed cosϕ, cosϕ(P), or Q(U) [8]. Another approach is the usage of machine learning for
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reactive power control of inverters. For this, both centralized and decentralized approaches
based on reinforcement learning were developed [9–13].

Moreover, the implementation of energy management systems and the scheduling and
monitoring of active devices is another research field contributing to an increase in energy
efficiency and grid stabilization. In this research field, the so called non-intrusive load
monitoring (NILM) is a growing topic. It deals with the recognition of loads in households
or industrial buildings by disaggregation of aggregated data acquired from a single point
of measurement like smart meters and was founded by Hart [14]. The general idea of
NILM is to exploit the repeated appliance of particular loads in a building profile and their
associated, repeated patterns in the measurement data. An overview of different NILM
approaches was given by Aladesanmi and Folly [15]. They listed techniques based on active
and reactive power as well as voltage and current. Faustine et al. described event-based
and state-based NILM algorithms, and they mentioned two different signatures to rely
on: transient signatures, which were used by Ghosh et al. [16] and Athanasiadis et al.
[17], and steady-state signatures [18]. In addition, as state-of-the-art algorithms regarding
NILM, they described for example hidden Markov models and deep learning approaches
using recurrent neural networks and convolutional neural networks [17,18]. Huber et al.
reviewed the current status in Low-Frequency-NILM using deep learning and discussed
aspects like neural network architectures, data input shape, and windowing the time series
data [19]. Next to a variety of distinct electrical features for NILM, Bernard differentiated
NILM tasks with deep learning in supervised and unsupervised learning, before he decided
to develop an unsupervised learning technique to disaggregate the measured load profile
of a household [20]. Furthermore, Brucke et al. proposed an unsupervised approach
connecting to a forecast of load state changes [21]. Besides, Parson et al. combined
a supervised approach for development of probabilistic models of appliances and an
unsupervised approach to fine-tune these models by aggregated household data with
the goal to overcome the challenge of unlabeled appliances [22]. However, Zufferey et
al. successfully demonstrated a supervised learning approach using power, voltage, and
current signatures of distinct loads to recognize electric loads based on their consumption
profiles [23]. They developed stochastic models for appliance classes and used k-Nearest
Neighbor algorithm and Gaussian mixture models. By de Souza et al., a supervised learning
approach based on a detection machine was proposed to figure out when a load is turned on
or off [24]. Another example for modeling the NILM task as a supervised learning setting
was given by Basu et al., who presented a temporal multi-label classification using sliding
windows, binary label vectors and different machine learning algorithms [25]. Also, Singh
and Majumbdar formulated a multi-label classification task with a sparse representation
approach based on the assumption that for every test sample there is a representation as
a linear combination of training samples [26]. Furthermore, Ruzzelli et al. developed a
concept for profiling appliances, building a training dataset, and learning a neural network
to recognize the active appliances in real time [27].

Generally, in NILM the data are often acquired directly at the grid connection point of
a building, so that the observing direction is from the grid connection point to the consumer
or prosumer side to investigate the load behavior inside the building. In this paper, the
idea is to invert this observing direction to analyze load behavior at surrounding grid
connection points additionally. This means, the challenge for the proposed method is
the online recognition of loads based on their characteristic voltage profiles, while their
influence on the grid voltage measured at a particular grid connection point is affected by
the size of the load, its grid position, the local grid topology, and also the total number of
active loads. So, in a sense, the appearance of a load in the grid voltage depends on more
grid properties than in NILM scenarios.

The author’s future vision is to develop a self-learning inverter, which independently
analyzes the measured voltage data at the inverter’s grid connection point, recognizes
patterns in the data, and derives the optimal control strategy for active and reactive power
management to stabilize the power grid without additional information. The first step
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of this development is the analysis of the conditions inside the local grid environment
experienced by an inverter. This leads to the following idea of this study, which provides a
setting similar to NILM tasks, demonstrated with an example of two EVs. As mentioned
above, the field of e-mobility will be expanded in the upcoming years, so that the number
of EVs will increase [2]. The corresponding charging stations are usually installed in the
low voltage level and the EVs have a significant impact on the voltage behavior in local
grid environments as investigated by Dharmakeerthi et al. [28]. The intelligent inverter
will measure the grid voltage. Because of the possible high demand in power during the
charging process of EVs, the inverter will observe significant changes in the voltage signal.
Over the course of time, an EV with a characteristic charging profile, which depends on the
EV type, the charging status, the temperature, and the maximum charging power, will be
charged at different times of the day, and it might even change the location for charging in
the grid. Nevertheless, it can be assumed that every time it is charged, it will cause a similar
voltage pattern. The inverter will learn and recognize this repeated pattern. Consequently,
it will be able to adapt the feed-in of active and reactive power for its specific local grid
environment. Thus, it will be able to derive the optimal control strategy to stabilize the grid
based on the learned voltage patterns.

Therefore, in this paper, a method to classify particular load types in a local grid based
on the voltage level observed at the inverter’s grid connection point is presented. The main
contributions of this paper can be listed as follows:

(1) The proposed method can be used in an online manner to recognize large loads in the
local grid environment within a time range of a few hundreds of seconds while only
using the measured voltage level. Instead of observing households, the surrounding
grid environment can be analyzed and grid participants from other grid connection
points can be recognized.

(2) A concept how to generate a dataset to train a recognition algorithm without a need
for extensive simulation effort is provided.

(3) For demonstration, the developed method is applied to simplified grid situations with
only two EVs charging in a test grid structure, which represents a proof of concept for
this method.

(4) It is shown that in low voltage distribution grids the relative location of the active
loads, the transformer, and the inverter influences the load recognition accuracy in a
significant manner.

(5) The results of the investigations in this study indicate that in comparison to multi-
layer perceptrons the convolutional neural networks are the better choice to use for
load recognition in time series data.

This paper is organized as follows. In Section 2, the overall recognition approach is
described in detail and it is presented how the recognition is optimized. This is followed
by Section 3, where the recognition results of the example demonstration on two EVs are
shown. In the second part of this section, the influence of different line lengths between
transformer, inverter, and a load in a test grid is investigated. The results are discussed in
Section 4, and this paper is concluded in Section 5.

2. Materials and Methods
2.1. General Concept

The overall goal of the methodology presented in this paper is the recognition of
repeated voltage patterns. To achieve this, the recognition was considered as a (multi-
dimensional) time series classification task. This means that based on the voltage data the
states of selected load classes were identified.

On the one hand, a class could be defined as a single load, that is, the corresponding
load profile should be detected in the voltage signal. On the other hand, a class could be
seen as the load type, so that a couple of load profiles could be categorized in the same way.

Mathematically expressed, the task can be formulated as following:
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2.1.1. General Task Formulation

Let Xm be the m-dimensional feature space. This means, there are m different variables
measured or computed. The input of the classification algorithm would be a continuously
provided time series S = (st)t∈T with st ∈ X and T representing a 1 s-resolution for
data acquisition.

To train the classification algorithm, the multi-dimensional time series is cut with a
sliding window approach as used by Krystalakos et al. [29]. In this approach, a window
length n is defined. This window is shifted along the time series using a step-size of 1 s,
and each of the shifted windows with the last n data points is used as one sample. Then, a
window w at time t0 has the form wt := (st0 , st0−1, . . . , st0−n+1)

T .
The output of the algorithm is desired as a binary status of every class. This means,

the output vector’s dimension is defined as the number of trained classes, which is denoted
by c. The entries of this vector are equal to 1, if the corresponding class is active, or equal
to 0, if not. The corresponding binary vectors representing the class states are used as labels
to formulate the whole task as a supervised learning problem.

Therefore, the desired classification mapping is

f : Xn → Bc with wt →

b1
...

bc

. (1)

This type of formulation of a classification task refers to so called multi-label classifica-
tion. It was also used in other applications like image classification [30–32] and in the field
of NILM by Basu et al. [25], Singh and Majumbdar [26], and by Massidda et al. [33].

Because of the vision of a standalone inverter, which should be able to adjust the active
and reactive power management in terms of repetitive load profiles of electrical loads in its
grid environment, the recognition concept was based only on data measured at the grid
connection point. In detail, the voltage values from the three phases of the power grid were
used as root-mean-squared values in 1 s-resolution, related to the nominal voltage (per
unit specification). This setting was chosen under the assumption that loads do not change
their status (active or inactive) within one second more often than once. Additionally, the
voltage harmonics caused by activation of a load at other grid connection points than the
measurement point are not recognizable over that distance. If only symmetric loads are
active, the voltage is very similar for each grid phase. Nevertheless, it was useful to include
all three phases in the input data generated in this concept because there are asymmetric
loads. The classification algorithm received not only the raw measured voltage values as an
input, but also computed data as kind of a derivative. In detail, it was the difference of the
current value (t = 0) to the value one time-step before (t = −1). The idea for this additional
feature was to avoid a recognition only based on absolute values, which could easily lead
to an incorrect classification of voltage patterns with slightly different magnitudes.

In total, this led to the special case of m = 6 in Equation (1) as follows.

2.1.2. Example Task Formulation

Let X6 be the six-dimensional feature space and S be a multi-dimensional time series,
while c = 2 is the number of trained classes and n is the window length. The variable vLi,t
denotes the voltage at time t from grid phase i = 1, . . . , 3 and dLi,t := vLi,t − vLi,t−1 repre-
sents the difference between the voltage values from time t and t− 1 on grid phase i. Fur-
thermore, let st ∈ S be the data point at time t with st = (vL1,t, dL1,t, vL2,t, dL2,t, vL3,t, dL3,t).
Then, one sample at time t0 has the form wt0 := (st0 , st0−1, . . . , st0−n+1)

T .
Finally, the classification task is to find a mapping

f : Xn×6 → B2 with wt →
(

b1
b2

)
. (2)
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For the classification machine learning was applied. This was reasoned by the repeated
voltage patterns and the many complex pattern recognition problems machine learning
could already solve successfully, e.g., in fields of image classification [34–36], face recog-
nition [37], speech recognition [38,39], games [40], and various time series classification
applications [41].

In this use case, the algorithm had to learn the underlying relation of voltage drops in
power lines and the activation of particular loads causing power flow through the lines.
The corresponding formula for voltage drop calculation in a power grid is

∆V =
√

3 · L · I · cos(ϕ) · 1
κ · q (3)

with voltage V, line length L, current I, power factor cos(ϕ), specific conductance κ and
conductor cross-section q [42].

Because the overall goal is to achieve a stable power grid, some knowledge about
loads which are active in the local grid environment around an inverter would be helpful
to be able to derive an optimal control of active and reactive power feed-in. Therefore,
in the recognition phase it is necessary to have a clear assignment to a class of loads. By
this requirement, unsupervised learning approaches like mentioned in the introduction
regarding the field of NILM were excluded (e.g., [20]).

2.2. Algorithm Selection

If this concept would be applied in a real power grid, there would be a huge number of
active loads, load types, and trainable classes, so that the classification task would be very
complex. Furthermore, a situation would be conceivable in which the trained algorithm
should be extended to a new load class, so the output vector’s length would be increased.
From these future challenges regarding a high complexity and a possible extensibility, it
can be concluded that artificial neural networks are assessed as a good choice to use for the
underlying problem.

In this paper, two popular architectures of neural networks were investigated.

2.2.1. Multi-Layer Perceptron Neural Network (MLP)

A multi-layer perceptron network consists of an input layer, some hidden fully con-
nected layers, and an output layer. In a classification setting, the input layer gets an input
vector of a previously specified length and processes the input. The results are passed to
the next hidden layer. Here, in each unit (neuron) of the layer a weighted sum is computed.
This sum is used as an input for a (non-linear) activation function and the returned value is
given to the neurons of the next layer. At the end, a single output layer returns the overall
output of the neural network. Depending on the structure of the task to be solved, this layer
consists of as many neurons as classes considered in training. Furthermore, depending on
the kind of implementation, e.g., the output is a vector containing values between zero and
one. These can be interpreted as the confidence of the MLP to classify the input into the
corresponding class. For example, these values can be rounded to get the desired binary
output vector.

The MLP architecture was tested in the course of this paper because it is the simplest
neural network architecture.

2.2.2. Convolutional Neural Network (CNN)

A convolutional neural network generally consists of an input layer, a sequence of
convolutional and pooling layers, a sequence of fully-connected layers, and an output layer.
Applied to the time series classification setting, the input layer gets a matrix representing a
section of the multi-dimensional time series. In a convolutional layer a specified number
of filters with predefined sizes (kernel size) is shifted over the layer’s input and discrete
convolutions are computed. The results are forwarded to a pooling layer, in which a down-
sampling method for dimensionality reduction is applied. At the end of the architecture, a
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variable number of fully-connected layers as in MLPs is used and the output is returned as
a vector of values between 0 and 1 as the output layer of an MLP provides it. As for MLPs,
a rounding step can be implemented to get the desired binary output vector.

This type of a neural network is often used in image applications because it is very
powerful in pattern recognition, e.g., [34,37]. In Keras API, there is also an adapted version
of convolutional layers called Conv1D available [43]. This version is offered especially for
usage of convolutional layers in time series applications and uses filters shifted only in the
time direction instead of two directions as in image applications.

2.3. Training Environment

To solve the described multi-label time series classification task with neural networks,
the weights had to be trained, and therefore a training dataset was needed. This dataset
had to represent the possible scenarios a classification algorithm could face in the real
application. In this paper, the task was simplified to just two EVs (see Figure 1) symmet-
rically charging in a reference grid (see Figure 2), such that the considered classes were
represented by these EVs (c = 2).

The procedure to generate a suitable training dataset is described in the following paragraphs.

2.3.1. Phase 1—Power Profiles

The first step of dataset generation is the power profile collection of the load classes to
be recognized. For this, data sheets or laboratory measurements can be considered. This
step is optional because the algorithm is trained on voltage data, not power values. This
means, Phase 1 can be skipped if appropriate voltage data are already available.

For this paper, two active power profiles measured in 1 s-resolution located at two
charging stations at the DLR were used (see Figure 1). The corresponding measurement
devices offered a resolution of around 10−5 V. Because of this, the entire simulated data
used in this paper were rounded to this resolution [44].

0 1000 2000 3000 4000 5000 6000 7000
Time [s]

0

2500

5000
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w
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 [W

] EV1

0 2500 5000 7500 10000 12500 15000
Time [s]

0

1000

3000
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w

er
 [W

] EV2

Charging Profiles of Electric Vehicles

Figure 1. Active power curves during a charging process of both electric vehicles used in this paper
in 1 s-resolution.

2.3.2. Phase 2—Voltage Profiles

The second step dealt with the simulation of the corresponding voltage profiles be-
longing to the desired load classes. So, a grid structure was needed to simulate the grid
behavior during active periods of these classes.

For this, a power grid model was built in MATLAB/Simulink (Release 2020b), pre-
sented in Figure 2. As the model was a three-phase–21-bus system developed in the Merit
Order Netzausbau 2030 (MONA) project, it represented a European low voltage distribu-
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tion grid with ten possible grid connection points operating at nominal grid frequency of
50 Hz and 400 V as nominal voltage [45]. At each grid connection point one Three-Phase
Dynamic Load block from the MATLAB toolbox Simscape (add-on Simscape Electrical) was
connected [46,47]. This block allows the external control by an array of active and reactive
power values. The power grid lines were represented by Three-Phase PI section line-blocks,
in which parameters for line length, resistance, inductance, and capacitance can be defined.
The simulation data consisted of three-phase root-mean-square-values scaled by the nomi-
nal voltage (per unit, in short pu) in 1 s-resolution. This data were measured at one grid
node (N10) representing the grid connection point of an inverter. The data were stored in a
SQL-database and exported to csv-files.

Figure 2. Scheme of reference grid number 8 from [45] with labeled grid nodes.

This model built in MATLAB Simscape can be perfectly used as a validated environ-
ment for the machine learning algorithm because the simulation software is commercially
provided, the implemented grid topology was developed in a scientific project, and the
overall functionality was continuously tested during implementation.

2.3.3. Phase 3—Training Data Generation for Different Grid Connection Points

It is necessary to include the activation of each considered load type at different grid
connection points because different locations affect the size of the voltage drops in the
profiles. At first, the voltage profiles corresponding to both classes without influence of
other grid participants were simulated through external control of one load block at grid
node N10 in the grid model. After this, these profiles were scaled between the allowed
voltage limits of 0.9 pu and 1.0 pu with scaling factors equally distributed between 0 and
1 to cover the tolerance band and thus the possible occurring voltage values. In the
example of two EVs only five different scaling factors were used to generate five scaled
voltage profiles (see Figure 1) but this number could be adapted to the higher complexity
of further investigations. This phase ended with the computation of the corresponding
difference feature.
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2.3.4. Phase 4—Training Data Generation for Overlapping Periods

It is possible that the trained classes have overlapping active periods. If one profile is
shifted along the other, every 1 s-shift means a new activation scenario because the resulting
voltage pattern can look significantly different. Therefore, the simulation effort would be
immense. So, the huge number of different combinations for this scenario could not be
simulated. However, the challenge of limited computer capacities can be solved by the
training of neural networks with a reduced number of different overlapping combinations
to get a model which is able to generalize the behavior of both classes. For this, one profile
was held, while the other one was shifted along it in regular steps, and vice versa. This
phase was completed by the computation of the difference feature.

Besides, the neural network has to learn the undisturbed look of the power grid. If
the dataset would only consist of samples with labels including an entry equal to 1, the
neural network would not be able to learn that the vector (0, 0)T is a possible output.
Because of this, there were periods with no activation of loads included. All the described
single datasets were appended to create a large dataset representing the expected different
grid scenarios.

2.3.5. Phase 5—Training Phase

Before training, the corresponding data were preprocessed. More precisely, both
features were scaled by

x̂ :=
x− xmin

xmax − xmin
, (4)

whereas x ∈ R represents the particular feature value vLi,t or dLi,t, respectively, (see
Section 2.1, Equation (2)). The interval [xmin, xmax] represents the range in which the
respective feature values are expected.

The presented load recognition method was applied to two different EVs, which are
charged at different grid connection points in the reference grid. This implies that the case
of generation plants was not considered. Therefore, the grid voltage was limited upwards
to xmax = 1.0. The lower limit for voltage scaling should be xmin = 0.9 due to the voltage
tolerance band on low voltage level of ±10%. The difference values were scaled based on
xmin = −0.003 and xmax = 0.003.

The neural networks in this paper were implemented with Keras API [43], based on
Tensorflow (Version 2.4.0) [48]. These models were trained by the fit method from Keras in
an offline supervised learning setting. This means, the whole training data were collected
and labeled before training.

As mentioned in Section 2.2, the neural networks return vectors from Rc
0≤1. For

this reason, a rounding step was executed to evaluate the final training results. Within
the fit method of Keras a binary cross-entropy function was used to calculate the losses
during training and a maximum number of 100 epochs was set. This number might be not
completely utilized because the training could be stopped earlier by an Early-stopping-
callback function provided by Keras.

Following the described procedure, a final multi-dimensional time series of 239,948 s
was obtained. With two classes (c = 2) to train, there were 22 = 4 possible combinations
which had to be included in the dataset. These are presented in detail in Table 1.

The dataset is balanced in that both EVs are activated five times while the other one
was inactive. The different shares of the samples were caused by the different lengths of the
load profiles. However, despite these differences the neural networks could be successfully
trained, as shown in the results section.
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Table 1. Composition of the dataset for training in this paper (0 for inactive, 1 for active).

Step Class 1 Class 2 Training

1 1 0 Scaling factors:
0.92, 0.94, 0.96, 0.98, 1.0
31,268 samples ≈ 13.0%

2 0 1 Scaling factors:
0.92, 0.94, 0.96, 0.98, 1.0

174,173 samples ≈ 72.6%

3 1 1 Number of shifts with fixed EV1: 5
Number of shifts with fixed EV2: 5

19,507 samples ≈ 8.1%

4 0 0 In final dataset:
15,000 samples ≈ 6.3%

2.4. Validation

In the validation phase, it was tested whether a trained neural network was able to
recognize the status of both EVs correctly, during activation of a single EV and also in
parallel activation. The corresponding activation scenarios were simulated in the grid model
described in Section 2.3, whereby the possibility of charging at different grid connection
point and overlapping scenarios was taken into account (Phases 3 and 4). For these, the
voltage was measured at node N10 because it is the grid connection point which is farthest
away from the transformer. This point was chosen because the voltage fluctuations from all
previous nodes have a direct influence on N10 in particular. How strong these fluctuations
at N10 are depends on the cable lengths between the load and the transformer. The greater
the line length, the greater the fluctuation. For this reason, nodes which are far away from
the transformer are particularly exposed to strong voltage fluctuations and load recognition
is essential to compensate voltage band violations.

For Phase 3, the activation of each type of load was simulated at nodes N4–N10.
The remaining nodes N1–N3 are the nearest to the transformer and the farthest to the
measurement point. From a real application perspective, it is more desirable to have an
accurate performance in the near environment of an inverter’s grid connection point than
far away from that node because the closer loads have higher impact to the voltage at the
specific node. So, it has to be avoided that a neural network is optimized such that the
classification accuracy is increased at grid nodes N1–N3, while the accuracy might drop
for the other grid nodes. This was achieved by omission of scenarios at nodes N1–N3.

Each considered node yielded a single time series for each trained class: In the first
half no load was active and in the second one the specific load was activated. By this, it
was possible to validate the steps 1, 2, and 4 from Table 1.

Besides for Phase 4, some datasets were needed to investigate the ability of the neural
network to recognize the class states during overlapping scenarios (Table 1, step 3). With
this goal, one scenario for a charging process of EV1 at node N8 and one of EV2 at node N4
was simulated. Another dataset contained the measured values from a simulation with
EV1 charged at node N9 and EV2 active at node N10. The shifts were randomly computed
as 7453 s and 2335 s, respectively. These two overlapping scenarios were chosen under
consideration of the grid section used in validation. The first one represents the activation of
EV1 close to the measurement point while EV2 was located at the farthest node considered
in validation. By this setting, it could be tested whether a neural network is able to separate
a pattern from a far node and a pattern caused at a close node. In contrary, the second
scenario consists of an EV2 closer to the measurement point than EV1. With this scenario,
it could also be validated whether two patterns generated close to each other can be
separated by the trained classifier. Because of the specific form of the EV2’s pattern similar
to a rectangle, it has been decided to use just a single shift per location setting of both EVs.
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This procedure led to 7 + 7 + 2 = 16 scenarios for validation. After simulation, the
entire data were preprocessed in the same way as described in Section 2.3, Phase 5. Then,
the trained neural network was used to run a classification for each single dataset k.

2.5. Evaluation

When a neural network is used to classify the validation data, a metric is necessary to
evaluate the classification performance and to be able to compare the results of different
neural networks.

This metric had to include a recognition accuracy of all classes. Besides, it should be
considered that the neural network was required to have correct classifications for active,
inactive and overlapping times for all classes. Because of this, the accuracies based on
all correctly classified samples were used in Equation (5). By the product term, a neural
network was penalized if it focused on just learning one class, while others were ignored.
The maximum value was only reachable if a neural network was able to classify both
classes in a right way.

With c = 2 in the focused case of this paper, the formula for the accuracy corresponding
to a single dataset k was

Acck := Acck,EV1 + Acck,EV2 + Acck,EV1 · Acck,EV2 , (5)

with Acck,EVi
:= TNk,i+TPk,i

Nk
, where Nk was the total number of samples of dataset k. Further,

TNk,i denoted the number of true negatives for class i, which is the number of samples
correctly classified as inactive, and TPk,i was the number of true positives for class i, which
is analogously the number of samples correctly classified as active.

The final score for the total validation had to be balanced for the two cases where
just one EV is activated and the overlapping case. This was achieved by computation of
a weighted sum with equal sums of weights for these three categories and equal weights
within the categories:

Score f inal :=
16

∑
k=1

wk · Acck (6)

with weights wk satisfying ∑16
k=1 wk = 1 and wk ≥ 0, k = 1, . . . , 16 . While the datasets for

overlapping cases were associated with k = 1, 2, it was required that

w1 = w2, w3 = · · · = w9, and w10 = · · · = w16, with
w1 + w2 = 1

3 , ∑9
k=3 wk =

1
3 , and ∑16

k=10 wk =
1
3 .

Obviously, it was Acck ∈ [0, 3]. Therefore, the highest achievable score for the neural
network in validation phase is

Score f inal =
16

∑
k=1

wk · Acck ≤ 3 ·
16

∑
k=1

wk = 3. (7)

2.6. Hyper-Parameter Optimization

The pattern recognition is significantly influenced by the configuration of the neural
networks, the preparation of load profiles and simulated data from grid models, and by the
design of the training process. The improvement of the related, non-trainable parameters
refers to hyper-parameter optimization. For this investigation, the Optuna version 2.4.0 was
used, which offers a framework to optimize the user-defined hyper-parameters [49].

Each hyper-parameter optimization step from the proposed concept consisted of the
sub-steps shown in Figure 3:
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b) 

Preparing a 
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c) 
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neural network

e) 
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neural network

f) 

Evaluation 
of validation
performance

Figure 3. Procedure within a single hyper-parameter optimization step.

At the end of such a step an objective value was calculated by a custom objective
function. In this paper, the objective value was chosen as the score in Equation (6). Based
on this objective value, a tree-structured parzen estimator (TPE) algorithm was used to find
the best configuration in the defined hyper-parameter space. The TPE is a sequential model-
based optimization approach. For each optimization step, a trial is defined by setting a
value for each hyper-parameter. To calculate these values for each single parameter, the TPE
fits one Gaussian mixture model (GMM) to the set of parameter values associated with the
best objective values. Next to it, another GMM is fitted to the remaining parameter values.
Finally, the parameter value is selected such that the ratio of both GMMs is maximized [49].

The hyper-parameters considered for the optimization (Figure 3) are listed in Table 2.

Table 2. Considered hyper-parameters in this paper.

Parameter Description

Model type The type of the neural network architecture (MLP or CNN).

Window length The number of historical data points given into the
neural network as one sample.

Optimizer The optimization algorithm used for training of the
neural network.

Batch size The number of samples used for one update of
the network’s weights.

Learning rate The step-size of the weights’ updates.

Number of layers The number of connected layers of the neural network
(only dense or convolutional layers counted if applicable).

Number of neurons The number of neurons in a dense layer of an MLP.

Filters The number of filters used in a convolutional layers
(same for all layers).

Kernel sizes The size of the filters used in the convolutional layers.

As mentioned before, the Keras API was used to implement the neural networks as
follows. For Figure 3c, the MLPs were built with an alternating series of dense layers
using Rectifier Linear Unit (ReLU) activation function and drop-out layers with drop-out
rate 0.2. The output was calculated inside a dense layer with Sigmoid activation function.
The CNNs were implemented with equal number of filters in each convolutional layer.
Convolutional layers with ReLU activation functions were followed by MaxPooling layers
to reduce dimensionality. The output of all CNNs was computed by Global Average
Pooling and a dense output-layer with Sigmoid activation function.
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3. Results
3.1. Analysis of Recognition Accuracy inside the Reference Grid Model MONA 8

The procedure described in Section 2 was developed to identify the states of electric
loads inside a simulated reference grid based on voltage data using deep learning. For the
study presented in this section, the procedure was applied to analyze the performance of
the recognition of two EVs inside the MONA reference grid 8 (see Figure 2).

As mentioned in Section 2.2, during this analysis two model types were used: MLPs
and CNNs. Within the investigation, the results of one hyper-parameter optimization for
each model architecture were compared. Table 3 presents the definitions of the correspond-
ing hyper-parameter spaces.

Table 3. Definition of hyper-parameter spaces.

Parameter MLP-Optimization CNN-Optimization
Model Type MLP CNN

Window length 10 s–190 s, step-size 20 10 s–190 s, step-size 20
Optimizer Adam, Adadelta, Adagrad Adam, Adadelta, Adagrad [50–52]
Batch size 64–768, step-size 64 64–768, step-size 64

Learning rate Log-uniformly distributed Log-uniformly distributed
in [0.01, 0.1] in [0.01, 0.1]

Number of layers 1–3 (dense layers) 1–3 (convolutional layers)

Number of
neurons 16–128 per layer -

Filters - 64–128, step-size 32
Kernel sizes - 3–9, step-size 2

3.1.1. Evaluation of Hyper-Parameter Selections

The hyper-parameter optimizations were executed with a fixed number of 100 trials.
This paragraph presents the obtained results starting with Figures 4 and 5, which show
the influence of different hyper-parameters on the objective values returned in hyper-
parameter optimizations.

For interpretation of Figures 4 and 5, it is important to recognize that the highest
achievable objective value equals 3 (see Equation (7)). Figure 4a shows that only the
choice of Adadelta for the optimization during training of MLPs returned some objective
values close to the maximum. Compared to this, for CNN-based trials the optimizers
Adagrad and Adadelta yielded results of the same level, shown in Figure 4b. For both
model types, the Adam algorithm was the worst option. With a CNN architecture, even
one-layer configurations were successful (Figure 4d), while the best configuration used
three layers (see Table 4). As Figure 4c indicates, three dense layers were necessary to
achieve a highly accurate recognition with MLP models. A third layer is necessary to
achieve similar performances to the successful CNNs because they are based on simple
weighted sums, a less complex operation compared to convolutions.
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Figure 4. Comparison of the MLP- and the CNN-based hyper-parameter optimization concentrating
on specific hyper-parameters. Every cross represents a single trial. The crosses are drawn partially
transparent, such that points which occurred more than once during optimization appear darker. In
(a,b) the advantage of the optimizer choices of Adagrad and Adadelta is shown. In (c,d) the impact of
the number of layers on the objective value is presented. In (e,f) the influence of the window length
parameter on the objective values is shown.

Regarding the batch size, it can be stated from Figure 4e that MLPs trained with
smaller batches tend to achieve higher objective values. Similarly, the TPE-optimizer used
for hyper-parameter optimization selected smaller batch sizes for CNN training more often
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than larger ones. However, Figure 4f shows that there were trials achieving objective values
close to 3 while using the whole range of possible batch sizes.
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CNN: Slice for Window Length

Figure 5. Comparison of hyper-parameter optimizations with focus on window length. Every cross
represents a single trial. The crosses are drawn partially transparent, such that points which occurred
more than once during optimization appear darker. In (a) the impact of the window length on the
MLP-based optimization is shown, while in (b) the less influence of this parameter for the CNN-based
optimization is presented.

Because the other parameters mentioned in Table 2 have not shown a clear trend in
affecting the objective values, the corresponding slice plots are not shown.

In Figure 5, the influence of the window length on the objective value is presented. It
shows that MLP-based trials apparently benefited from larger windows. The MLPs need
more historical data points to classify windows correctly. On the contrary, the window
length had little influence to CNN-based trials because there were highly accurate config-
urations for all possible lengths. The CNNs can be configured as very sensitive by filter
settings, such that relatively small windows can be sufficient for an accurate recognition.

The overall history plots for both model architectures are shown in Figure 6.
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Figure 6. Comparison of MLP and CNN optimization regarding the history of the objective values
for 100 trials. In (a) the less successful MLP optimization history is shown, while in (b) the objective
values obtained in the CNN optimization are presented.
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Figure 6b shows that the algorithm found many configurations based on CNN archi-
tecture reaching an objective value close to the maximum of 3 (Equation (7)). Furthermore,
in Figure 6a some objective values close to 3 can be seen. In comparison, there were fewer
MLP configurations returning values close to the maximum than those using CNN archi-
tecture. Suitable to this, the optimal value of the MLP optimization was lower than the
optimum retrieved in CNN optimization:

Score∗f inal,MLP := 2.88 < 2.98 =: Score∗f inal,CNN . (8)

Finally, Table 4 compares the best MLP- and the best CNN-based configuration regard-
ing the load recognition of the two EVs in the grid model shown in Figure 2.

Table 4. The best configurations for the two study model types.

Parameter MLP CNN

Window length 150 90
Batch size 320 64

Learning rate ≈0.034 ≈0.019
Number of layers 3 dense layers 3 convolutional layers

Number of neurons [64, 56, 40] -
Filters - [96, 96, 96]

Kernel sizes - [5, 7, 5]
Optimizer Adadelta Adagrad

Optimal value 2.88 2.98

3.1.2. Evaluation of Validation Results for Best CNN

As shown in the previous section, a CNN yielded the overall best optimization score
(see Equation (8)). In this section, the corresponding recognition ability is analyzed in
detail. For the different validation scenarios, the best CNN was able to achieve accuracies
presented in Figure 7.
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Figure 7. Recognition accuracies for different validation scenarios achieved by the best CNN found
in hyper-parameter optimization. A scenario containing a single load activation of electric vehicle
i at grid node Nx is named as Nx-i. A scenario containing an overlapping activation with electric
vehicle i at node Nx and electric vehicle j at node Ny is named as NxNy-ij. Within these scenarios,
the voltage was measured at grid node N10.

Figure 7 shows the values Acck,EVi
for both EVs and all scenarios considered for

validation. The selection of the scenarios is described in Section 2.4.
The investigated CNN was able to classify the samples from the direct neighborhood

of the measurement point N10 with a high accuracy. Both single load activations and
overlapping scenarios were recognized with accuracies higher than 92%. Within this
promising performance, the categorization of EV1 was more accurate than that of EV2,
especially with activation of EV1 at nodes N9 and N10.
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Additionally, Figure 8 compares the accuracies for N1 as an example for the grid nodes
which were not considered in validation.
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for Node 1 in MONA 8
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Figure 8. Recognition accuracies achieved by the best CNN found in hyper-parameter optimization
in two activation scenarios at grid node N1, which is the farthest node to the measurement point at
N10. The first scenario with relatively inaccurate classification of the first electric vehicle’s status
contains an activation of electric vehicle 1 at node N1 and no activation of electric vehicle 2 (N1− 1),
and the second one vice versa (N1− 2).

In Figure 8, recognition accuracies for both EVs are presented, which were obtained
from classifications of single load activation scenarios from both EVs. The recognition
accuracy when EV1 is totally inactive was on the same level as the other results in validation
(see Figure 7). In the scenario representing an active EV1 and an inactive EV2, the inactive
class was also correctly classified with nearly 100% accuracy. In contrary, the accuracy for
the class EV1 dropped down to a value around 58%.

One final outcome of this analysis is that the classification performance of the CNN
varied over all grid nodes. It was highly accurate in the direct neighborhood of the
measurement point at grid node N10. However, the results at the grid node N1, which
was one of the farthest nodes from the measurement point N10, were far less satisfying.
Even if it was still possible to precisely identify the state of EV2 at N1, this was not the case
for EV1 (Figure 8). To rank the value of around 58% for the dataset N1-1 correctly, it had
also to be taken into account that one half of such a validation scenario consists of voltage
data measured while both classes were inactive. So, a value of 50% could be achieved by
returning only zeros for both class states. Another interpretation aspect is that even a fair
coin toss would yield an accuracy of 50%.

Furthermore, the example classification with two electric vehicles is a relatively simple
task for CNNs. Because there are just four possible states, the CNNs, which are known for
their strong ability to recognize patterns, do not have to exploit their full potential. The
results show that there are many CNN-based configurations with a high class recognition
accuracy, and that most of the individual hyper-parameters do not have a great influence
on the objective value of the CNN-based optimization.

Finally, the results from this section indicate that the position of the load inside the
grid affects its recognition.

3.2. Analysis of Line Length Influence

The conclusion of Section 3.1 led to the question how a variation of the line lengths
between measurement point and transformer as well as between the measurement point
and the load influences the recognition accuracy.

To investigate the limits of a load recognition in terms of the line lengths in typical low
voltage grids, the MONA grid model from Section 2.3 was replaced by a synthetic model
consisting of a voltage source representing the upper voltage level, a transformer, one
single Three-Phase Dynamic Load representing an EV, a voltage measurement, and two Three-
Phase-PI-Section Lines to connect the upper voltage level, the load bus, and the measurement
point, shown in Figure 9.
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Figure 9. Synthetic grid model.

In detail, the selected line type was a 4-wire cable with cross sectional area of 150 mm2,
which was equal to the line type connecting the measurement point N10 to the rest of
the MONA grid shown in Figure 2. In the following, the line between transformer and
measurement point is denoted as A, while the line between measurement point and load is
named as B.

3.2.1. Variation of Transformer Line Length

To determine the distance to the transformer which is necessary for a recognition
accuracy close to 100%, the length of line B was set to zero. This means that measurement
point and load are located at the same grid node.

For each distance between 50 m and 1500 m with step-size of 50 m, two datasets were
generated following the principle from Section 2.4. Both single load activation scenarios
(EV1 and EV2) were simulated at the load bus in the test grid (see Figure 9). So, there were
30 + 30 = 60 different scenarios simulated for this investigation in total.

For the following tests, the best MLP and CNN found during the hyper-parameter
optimizations from Section 3.1 were used to classify the activation scenarios.

All test cases presented in Figure 10 indicate that the recognition improved with
increasing distance to the transformer. For these tests, a threshold of 90%-accuracy was
defined to categorize the results as satisfying. Figure 10a shows that the MLP accuracy
crossed the 90%-threshold at a line length around 280 m for EV1. In the same figure, the
accuracy for EV2 started close to 100% with short distance to the transformer. Then, it
alternately rose and fell until it stabilized around the 80% level. With decreasing influence
of the transformer, which means the line length increases, the MLP’s ability to correctly
classify the inactiveness tended to decrease and fell below the threshold.

In comparison, in Figure 10b the same datasets were used for the CNN. The CNN
reached the threshold with lower distance to the transformer at around 240 m. In this
figure it can be seen that the separation of active EV1 and inactive EV2 was more accurate
than in the MLP case. Furthermore, the accuracy remained at a level above 90%. Finally,
both classes were correctly identified with nearly 100% when a distance of 1150 m was
set. Figure 10c,d show that the performance with activated EV2 and inactive EV1 was
similar for both neural networks with a small advantage in terms of distance for the CNN.
A comparison between Figure 10a,b on one side and Figure 10c,d on the other side yields
that both architectures showed a more accurate performance when EV2 was activated
compared to the case when EV1 is. This can be explained by a less complexity of the almost
rectangular profile. The characteristic profile belonging to EV2 is less fluctuating compared
to the profile of EV1. This means, input samples belonging to an activation of EV2 are
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more similar to each other and the sample space is much smaller. Thus, the corresponding
mapping to the right classification label is easier to learn.
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Figure 10. Relation between the line length from the measurement point/load to the transformer and
the recognition accuracy using the best CNN and the best MLP found during the hyper-parameter
optimization. Each panel shows the results of one neural network based on a scenario containing an
activation of one electric vehicle (EV), while the other one was inactive. (a) MLP, data: active EV1 and
inactive EV2. (b) CNN, data: active EV1 and inactive EV2. (c) MLP, data: inactive EV1 and active EV2.
(d) CNN, data: inactive EV1 and active EV2.

The overall trend to improve the recognition accuracy with increasing distance to the
transformer can be explained physically. The transformer affects the voltage behavior at the
different grid nodes in the local grid environment. More precisely, a voltage drop caused
by a load at a grid node close to the transformer is not as strongly noticeable as at a grid
node with longer distance to the transformer. So, the differences between the voltage in
a single load activation scenario and the voltage without any activation is increased with
increasing line length. Therefore, it becomes easier for the algorithm to distinguish between
the different load states.

In Section 3.1, the recognition results for the best CNN showed an accuracy drop at
node N1 with 58% for an active EV1. In the grid model used for validation, the accumulated
line length between transformer and N1 is 141 m. In the tests presented in Figure 10, the
corresponding recognition accuracy to this test length is even lower than 58%. This is
because of the different line types in the MONA model and the used test grid. So, the
accuracy drop can be explained by the proximity of the grid node N1 to the transformer
and it fits to the study results shown in this section. Furthermore, these results support the
omission of the grid nodes N1–N3 in the validation phase of the neural networks because
the test accuracy dropped in the range of these nodes. Assuming that the optimal neural
network was found when considering only the nodes N4–N10, this model would achieve a
similar or worse evaluation if nodes N1–N3 are added. If they would be used for validation,
they indeed could distort the optimization.

In total, the CNN showed advantages in recognition in terms of distance for activated
classes. Additionally, its status identification of inactive classes was more accurate. So,
when a recognition of all trained classes is desired, the CNN architecture outperforms the
MLP structure. This means, a CNN-based load recognition implemented in an inverter
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would yield satisfying results having a smaller distance to the transformer if the load is
located at the same grid connection point as the inverter.

3.2.2. Variation of Measurement Point Location between Load and Transformer

This section presents the results of recognition tests with B 6= 0. This means, scenarios
were tested for which the distance between the measurement point and the active load
was successively increased, while the total line length L := A + B was fixed. By this, the
location of the measurement was changed with respect to the transformer and the active
loads to investigate the size of an area inside the local grid environment in which a trained
classifier is able to recognize loads.

In the tests from Section 3.2.1, the influence of a transformer line length of 1150 m
was necessary to achieve nearly 100% accuracy by CNN-based recognition for both classes
in both test scenarios. Because of this, L = 1150 m was defined as the fixed length. For
examination of the impact of both line lengths A and B, datasets containing different line
length scenarios were generated representing the single load activations of both EVs at the
single load bus as well as an overlapping scenario, in which both EVs are located at the
single load bus with a shift of 7721 s. The associated datasets were built with active and
inactive periods following the principle used in Section 2.4. The fraction A

L was varied in
the range of 5–95% and for every fraction three scenarios were simulated. The test results
for the best MLP and the best CNN (Table 4) are presented in Figure 11.

The graphs from Figure 11 show that an increasing distance between the inverter and
the load caused worse accuracies in classification for both model types. A comparison of
Figure 11a,b, Figure 11c,d as well as Figure 11e,f led to the conclusion that both model
architectures returned comparable results in terms of recognition of the active loads. The
CNN classifier yielded accuracies above the threshold of 90% in just slightly larger ranges
of distance than the MLP classifier. In this aspect the CNN accuracy fell down to 90% at a
length of around 78% of the total line length L, while the MLP accuracy dropped earlier at
around 76%. Additionally, the recognition of the inactive EV2 was rather inaccurate for the
MLP in comparison to the CNN (see Figure 11a,b).
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Figure 11. Relation between line length from measurement point to the transformer and to the load
bus and the recognition accuracy using the best CNN and the best MLP found during the hyper-
parameter optimization. Each panel shows decreasing accuracies with increasing line length achieved
by either the MLP or the CNN. The results in (a–d) are based on a dataset containing an activation of
one electric vehicle (EV), while the other one was inactive. In (e–f) an overlapping situation is tested.
(a) MLP, data: active EV1 and inactive EV2. (b) CNN, data: active EV1 and inactive EV2. (c) MLP,
data: inactive EV1 and active EV2. (d) CNN, data: inactive EV1 and active EV2. (e) MLP, data: active
EV1 and active EV2. (f) CNN, data: active EV1 and active EV2.

To sum up the results presented in Figure 11, assuming a total line length of 1150 m
and a line type NAYY 4× 150 mm2, the CNN classifier was able to achieve accuracies above
the chosen threshold until the fraction B

L rose above 78%.
In this study, the change in line length to the load caused also a change of the line

length to the transformer. From an electrical point of view, both changes affect the voltage
behavior at the measurement point. A closer load causes a higher voltage drop, while a
farther one is not that strongly recognizable at the measurement point. The effects of the
transformer were already discussed in the previous section. With a fixed length L, both
relations together lead to smaller voltage drops at the measurement point with increasing
line length to the load bus. Similarly to the investigation in the previous section, this
explains the trend of decreasing accuracies in all graphs from Figure 11.

4. Discussion

In Section 3.1, hyper-parameter optimizations for MLP and CNN classifiers were
executed. The results led to the conclusion that both architectures can be configured such
that a trained network is able to solve the classification task formulated in this paper.
Nevertheless, the CNN optimization obtained a higher number of classifiers which were
able to achieve satisfying objective values. For most of the regions of the hyper-parameter
space, there were choices returning objective values close to the maximum of 3. For example,
even CNN models with only one convolutional layers were able to get a relatively high
objective value. Because of theses reasons, it can be suspected that for a classification task
with more trainable loads and more active participants in the grid the CNN architecture
would rather lead to an accurate recognition and a clear separation of the trained classes
than an MLP.

After hyper-parameter optimizations, a best MLP and a best CNN was determined.
Even if the CNN classification in the validation scenarios yielded the overall best objective
value, this value dropped significantly at node N1 of the MONA reference grid.

The recognition ability of these best neural networks was investigated more precisely
to examine the mentioned accuracy drop.

In Section 3.2.1, load and inverter were assumed at the same grid node and the line
distance between this node and the transformer was varied. This test case proved that larger
distances between the transformer and the measurement point or inverter, respectively,
improves the recognition. Furthermore, the CNN was able to achieve the threshold of
90% at less distance than the MLP, and it can be concluded that inactive classes are more
accurately classified by the CNN.
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Section 3.2.2 answered the question what happens if load and inverter are not located
at the same grid node. It could be shown that an increasing line length between inverter
and load decreases the accuracy of recognition. Regarding this relation, the CNN was able
to remain the accuracy for active loads above the 90%-threshold with higher line length
between inverter and load than the MLP. Similarly to Section 3.2.1, the recognition results
for the CNN classifier were more accurate regarding inactive classes. In this study, an
increasing line length between inverter and load meant a larger area inside the power grid
which was observed. Therefore, the CNN can be seen as the preferable classifier because
more information from the grid can be gathered in a reliable manner.

From both parts of Section 3.2, it can be concluded that classifiers trained by the
proposed concept are able to provide a reliable load recognition inside typical power grid
structures if they are located around hundreds of meters away from the transformer and
also the distance between measurement point and active load is in the range of hundreds of
meters. Thereby, the more accurate performance of the classifier in scenarios with activated
EV2 compared to cases when EV1 is active indicates that less fluctuating profiles can be
recognized with higher accuracy. The highly accurate results in the test cases of this study
are very promising. Especially the CNN’s potential did not have to be fully exploited in
the test conditions as there were many configurations with high objective values.

In this framework, the recognition is based only on the voltage changes caused by
active loads. On the one hand, this approach does not need an extensive amount of data. In
further development of this concept, it is an interesting research question to integrate more
different load types into this recognition task. Here, one line of investigation could be the
approach of incremental learning [53–55]. New classes can be included in the training data
without a huge simulation effort. If one characteristic profile for a new class is available, it
can be trained and the corresponding recognition results can be analyzed afterwards.

On the other hand, this approach is limited because it depends on the magnitude of
the voltage changes. If these changes at the point of voltage measurement are very small,
it is not possible to recognize a particular profile. In this case, it is possible to train the
neural network classifier inside the proposed simulation environment with differently
scaled training data such that it is more sensitive to smaller changes. This adaption would
not be appropriate in real world application because of the background noise in the power
grid and other external effects to consider. Additionally, in the use case of voltage control
it is intended to recognize not every single small or distant load but the loads with large
impact to the grid voltage to determine an optimal control strategy for grid-stabilization.
The particular voltage behavior at a single grid connection point is affected by the overall
grid topology, the size of active loads and their position in the grid, and also the activity of
other loads. This means, the limitation depends on many factors for the load recognition
and is still under research.

Despite the limitations not yet explored, the quite simple demonstration example of
two EVs presented in this paper is sufficient to conclude that the proof of the proposed
concept was successful. The detailed potential in real world applications will be part of
future work. For example, to enable the classification algorithm for load recognition under
consideration of uncertain and fluctuating feed-in of renewable energies, the particular
training dataset should be extended. This means, the neural network could be trained by
voltage profiles which are modified by statistical noise in addition to scaled and overlapped
profiles. Additionally, due to the increasing complexity it might be necessary to add more
layers to the neural network.

5. Conclusions

In this study, a new concept to recognize active load classes in the local grid environ-
ment of an inverter’s grid connection point based on the locally measured voltage was
presented. The proposed concept formulates the recognition task as a multi-label classifica-
tion of time series windows and uses neural networks as a classifier. For demonstration
and a proof of concept, the methodology was applied in an example of two electric vehicles
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in a simulated test environment. This approach was tested in Section 3 regarding the
influence of the inverter’s distance to the transformer and the particular active loads. It
turned out that a classifier trained by the proposed concept is able to recognize different
load types in the voltage signal. A usage of CNNs for recognition instead of MLPs yields
higher accuracies in general. Hereby, the recognition accuracy is increased by an increasing
distance between transformer and measurement point, and decreased by an increasing
distance between load and measurement point.

In summary, a concept for a load recognition in low voltage distribution grids based
on deep learning was developed and validated in a simulation environment. Future work
can investigate the concept with an increased number of active loads in the grid and more
trainable classes. Additionally, the recognition approach will be transferred into a real
hardware environment. By this, the measurement will include background noise and
measurement errors, for example, such that the input data for the algorithm is partially
disturbed. This will challenge the algorithm to be robust to those disturbances and to
decide whether a slightly changed voltage pattern still belongs to a trained class, or not.

In future, this concept can be used to gain knowledge about the local grid environ-
ment of an inverter’s grid connection point. Therefore, it can be implemented in a voltage
control algorithm to set active and reactive power adapted to the grid node specific con-
ditions. Consequently, it can contribute to a future stabilization of the grid voltage in a
significant manner.

Author Contributions: Conceptualization, H.S. and S.G.; methodology, H.S. and S.G.; software, H.S.;
validation, H.S. and S.G.; investigation, H.S. and S.G.; resources, H.S. and S.G.; data curation, H.S.;
writing—original draft preparation, H.S.; writing—review and editing, S.G.; visualization, H.S.;
supervision, K.v.M. and C.A.; project administration, S.G. and K.v.M.; funding acquisition, S.G.,
K.v.M. and C.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The authors would like to thank Nils Neugebohrn and Moiz Muhammad Ayub
Balol for proofreading of this article. Furthermore, special thanks go to Holger Behrends, Gerrit
Bremer, Vanessa Beutel, and Thomas Esch for their advice in electrotechnical aspects of this study,
especially in grid modeling.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

API Application programming interface
CNN Convolutional neural network
DER Distributed energy resource
EV Electric vehicle
GMM Gaussian mixture model
MLP Multi-layer perceptron
MONA Merit Order Netzausbau

NAYY
Classification of a power grid cable: N—norm line; A—aluminum core;
Y—insulation of the cores made of polyvinyl chloride;
Y—cable sheathing made of polyvinyl chloride

NILM Non-intrusive load monitoring
ReLU Rectifier linear unit
TPE Tree-structured parzen estimator
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