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Abstract: Lithium-ion batteries have evolved and transcended in recent years to power every device
across the spectrum, from watches to electrical vehicles and beyond. However, the lithium-ion
battery requires the use of heavy and expensive transition metal oxides that have limited life cycles.
Conductive polymer nanocomposites have been shown to possess good electrochemical and ther-
momechanical properties and are considered to be effective alternatives to transition metal oxides.
The fabrication and properties of polyimide matrix-single wall carbon nanotube, SWCNT composite
electrode materials, modified by the electrodeposition of polypyrrole, PPy was successfully carried
out. The doping of PPy with p-Toluene sulfonic acid, T resulted in a dramatic transformation of
the morphology and specific capacitance of the electrode material. Electrochemical impedance spec-
troscopy, EIS, cyclic voltammetry, CV, and galvanic charge–discharge tests were used to measure
the electrode’s specific capacitance and specific capacity. Maximum specific capacitance values of
up to 84.88 F/g and 127.13 F/g were obtained by CV and charge–discharge tests, respectively. A
capacitance retention of over 80% was obtained after over 500 cycles of testing. The insertion of
doped PPy into the electrode material by electrochemical polymerization was shown to positively
correlate to the improved electrochemical performance of the nanocomposite. An increase in the
porosity of about 34.68% over the non-doped polypyrrole was obtained from EIS measurement and
supported by the optical microscope pictures. Increasing the process parameters, such as pyrrole, Py
concentration and the amount of dopants, lead to a dramatic increase in the specific capacitance and
capacity of the composite electrodes.

Keywords: polypyrrole; p-Toluene sulfonic acid; polyimide carbon nanotube composite; electrochemical;
supercapacitor; conducting polymer

1. Introduction

Conducting polymers (CPs) are widely used in energy storage applications in super-
capacitors and batteries. Supercapacitors are energy storage devices that store electrical
energy between the electric double layer. They possess very high-power densities, charge
cyclabilities, and service lifespans [1–4]. Supercapacitors are capable of storing and releas-
ing stored energy instantaneously. Our world is rapidly advancing, such that we have
become dependent on energy storage devices. The demand for these devices to be lighter,
safer, and higher-performing grows stronger every day. CP’s excellent electrical properties,
high surface porosity, and compatibility with polymers and activated carbon composites
make them a valuable resource for supercapacitors [4–6]. Many approaches to synthesizing
CPs are well known, including pyrolysis, and photochemical, chemical, and electrochem-
ical polymerization. The preferred technique for the synthesis of PPy is determined by
the desired application [7–10]. Electrochemical synthesis, however, is the most effective
synthetic technique for energy storage applications, due to its ability to produce doped PPy
thin uniform films on conductive substrates. It is also cost-effective, allowing for reduced
material usage (oxidizers) and relatively high purity of the feed materials [11].
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Polypyrrole (PPy) is an intrinsically conducting polymer capable of storing energy
by forming an electric double layer [12]. In addition to the electric double layer storage
mechanism of PPy and other conducting polymers, PPy can store electric charge by under-
going a redox reaction, resulting in a pseudocapacitive behavior [13,14]. The presence of
conjugated double bonds in their structure makes them electroactive in both aqueous and
organic mediums. PPy’s electrical conductivity ranges from 10−4 to 10−2 S/cm [10,11,15,16].
Studies have shown that PPy’s electrical and electrochemical properties can be enhanced
by doping. Doping can be performed by using inorganic and organic acids as well as poly-
meric stabilizers which tune the morphology of PPy, and, in turn, affect its electrochemical
properties [14]. Dodecylbenzene sulfonic acid- and camphor sulfonic acid-doped PPy have
shown increased conductivities of about 5 S/cm and 18 S/cm, respectively [17,18]. Lü
successfully synthesized p-Toluene sulfonic acid-doped PPy nanoparticles with an electrical
conductivity of about 52.7 S/cm [19,20].

The processability, mechanical properties, and stability of neat PPy are relatively
low because of inherent structural damage after prolonged cycling [14,20]. However,
the properties of PPy can be significantly enhanced by combining PPy with activated
carbons or other polymers to create composite structures with an improved electrochemical
performance [9,13,20]. Carbon nanotubes (CNTs) are exceptional conductive nanofiller
materials with very high mechanical properties and specific surface areas [4,14]. They
are often used in the fabrication of supercapacitor electrodes in combination with hybrid
Germanium-carbon electrodes, which have a specific capacity of about 800 mAh/g [21,22].

Polyimides (PI) have also been shown to be excellent polymer matrices that permit
the homogenous dispersion and formation of polymeric CNT nanocomposites [23]. Poly-
imides are high-performance polymers with excellent mechanical and thermal properties.
Polyimide composites have a wide range of useful applications [24–27]. Huang et al. pre-
pared an asymmetric MnO2/CNT and PI/CNT supercapacitors, and reported a specific
capacitance of 32.8 Fg−1 at 0.74 mAcm−2 in a carboxymethyl cellulose sodium sulfate
electrolyte [28].

In this paper, we report the effect of the electrodeposition of p-Toluene sulfonic acid
(pTSA)-doped polypyrrole onto composite single-walled carbon nanotube/polyimide
electrodes. The insertion of the dopant into the PPy structure during electrochemical
polymerization had a remarkable impact on the electrode’s electrochemical properties,
including the specific gravimetric capacitance, bulk resistance, and capacitance retention.

2. Materials and Methods
2.1. Materials

The materials used in this study include reagent-grade (ACS) N,N-Dimethylformamide
(DMF) purchased from Right Price Chemicals. Pyromellitic dianhydride (PMDA) 99%
purity, 4,4-oxydianiline (ODA), and pyrrole monomer (reagent grade 98% purity) were pur-
chased from Sigma-Aldrich. The dopant for this experiment, p-Toluene sulfonic acid, was
also purchased from Sigma-Aldrich. The single-walled carbon nanotubes (SWCNTs) were
obtained from TuballTM, Leudelange, Luxembourg. All chemicals were used as received.

2.2. In-Situ Synthesis of Polyimide/SWCNT

A batch of SWCNTs determined to be 50 wt% was dispersed in DMF under both
sonication and mechanical stirring (320RPM) for 3 h. The suspension was maintained at a
constant temperature of 5 ◦C using a constant temperature water bath. ODA (0.0245 mol)
was then added to the suspension and sonicated under continuous stirring for an addi-
tional 1 h. The solution was then transferred to a 3-neck flask where a constant stream of
pure nitrogen gas (50 mL/min) was introduced for the duration of the synthesis. PMDA
(0.0245 mol) was carefully added into this solution and stirred at 220 RPM, allowing it
to polymerize for 90 min at 5 ◦C. An observable increase in the solution’s viscosity was
noticed during the synthesis, with the solution thickening to a honey-like consistency.
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The polymer nanocomposite films were cast (0.5 mm wet thickness) onto a Teflon
sheet using an MTI vacuum-assisted film coater. Initial curing was carried out at 80 ◦C for
1 h until any visible solvent had dried out. The film was then transferred into a vacuum
oven where it was cured stepwise at 120 ◦C for 4 h, 180 ◦C for 3 h, 200 ◦C for 1 h, and then
250 ◦C for another 1 h under a vacuum of 28 in.Hg throughout the entire curing process.
The cured film was peeled off the Teflon sheet after it had cooled down and was cut into
rectangular electrodes for electrochemical deposition of PPy, and/or characterization.

2.3. Polypyrrole Electrodeposition and Doping

Pyrrole, Py was dissolved in 100 mL of water to make samples of 0.05 M, 0.1 M, and
0.5 M concentrations. Each batch of pyrrole was mixed with 0.0225 M, 0.1 M, and 0.2 M p-
Toluene sulfonic acid by mechanical stirring until complete dissolution and a clear solution
was obtained. The SWCNT/PI (films) working electrodes were immersed in each solution
in a three-electrode cell configuration connected to a Gamry 3000 potentiostat. A glassy
carbon counter electrode and Ag/AgCl reference electrode were used in electrochemical
polymerization. Potentiostatic electrochemical polymerization was carried out for 600 s
at 2 V. After the deposition of polypyrrole was completed, each electrode was carefully
washed with ethanol, dried in a vacuum oven at 100 ◦C to remove any moisture, and
weighed. Electrochemical characterization was carried out on the electrodes to measure the
gravimetric capacitance, bulk resistivity, and capacitance retention after multiple charge–
discharge cycles. The electrochemical properties were measured by using the Gamry
3000 Potentiostat operated in cyclic voltammetry, electrochemical impedance spectroscopy,
and cyclic charge–discharge modes, respectively. A solution of 1M H2SO4 was used as
the electrolyte.

3. Characterization
3.1. Scanning Electron Microscopy (SEM)

A Thermo Fisher SCIOS DualBeam SEM was utilized to observe the surface morphol-
ogy of the electrodes at both 1000× and 10,000×magnification. Gold sputtering was not
necessary as samples were already conductive.

3.2. Cyclic Voltammetry

Electrochemical characterization was carried out using the Gamry 3000 potentiostat in
a 3-electrode cell configuration with an Ag/AgCl reference electrode. Cyclic voltammetry
(CV) was done in a voltage range between 0 V to 1 V at three different scan rates of 5,
10, and 25 mV/s to determine the specific gravimetric capacitance (Cp) of the electrode
material before and after deposition of PPy with different dopants. Equation (1a) was used
to calculate the Cp in F/g, where I (A) is the response current obtained during the voltage
sweep ∆V (V) at given scan rates v (mV/s) of the specific active material m (g).

∫
IdV is

the integrated area under the cyclic voltammetry curve [13].

Cp =

∫
IdV

2m× v× ∆V
(1a)

Specific capacity of the material (Csp) in mAh/g was calculated using Equation (1b).

Csp =

∫
IdV

2m× v× 3.6
(1b)

Capacitance retention was calculated by dividing successive discharge capacitance by
the discharge capacitance of the 2nd cycle.

3.3. Gravimetric Cyclic Charge/Discharge

Samples were cycled under galvanostatic conditions at three different current densities:
0.5 A/g, 1 A/g, and 5 A/g from 0 V to 0.8 V. The many cycles of test on the sample also
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provided information on the material’s charge retention properties. Specific capacitance
(Cp) F/g was calculated using Equation (2), where Im is the discharge current density
(Ag−1), ∆t is the discharge time (s), and ∆V is the drop in voltage (V) during that discharge
period [29].

Cp =
Im∆t
∆V

(2)

3.4. Electrochemical Impedance Spectroscopy (EIS)

EIS measurements were done in a frequency range from 1 MHz to 0.01 Hz and the
results were modeled against a Randle’s cell equivalent electrical circuit with a Warburg
element, shown in Figure 1.
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Figure 1. Equivalent Randle’s cell circuit model with Warburg element for EIS Nyquist plot fitting.

A modified form of Archie’s law, Equations (3a) and (3b), were used to estimate the
electrode porosity from EIS data [30,31]:

σe f f =
t

Ru A
(3a)

∅ = m

√
σe f f

σ0C
(3b)

where σe f f is the effective electrical conductivity of the electrode, t and A are the thickness
and contact area of the active electrode, respectively, Ru is the bulk resistance, C is the
coefficient of saturation ranging from 0.1 to 1, σ0 is the electrolyte conductivity, m is the
cementation factor (typically between 1.5 to 4), and ∅ is the sample’s porosity [30,31].

EIS models for calculating specific capacitance (Cp) are based on the Bode and Nyquist
plots using Equation (4), where f is the corresponding Bode frequency (s−1) at the max
imaginary impedance (Z′′), which is the peak of the Nyquist semicircle plot, Z′max is the
corresponding real impedance (Ω), and m is the mass of bulk electrode material in contact
with electrolyte (g):

Cp =
1

2π f Z′max ×m
(4)

3.5. Fourier Transform Infrared Spectroscopy—FTIR

A Nicolet 6700 FT-IR spectroscope equipped with a germanium crystal ATR was used
to analyze the chemical composition of the samples before and after the doped PPy was
deposited. Samples were scanned 32 times between the wavenumber ranges of 4000 cm−1

and 650 cm−1.

4. Results and Discussion
4.1. Scanning Electron Miscroscopy

Figures 2 and 3 show a much clearer effect/change in the surface morphology at dif-
ferent dopant and Py concentrations. Increasing the dopant concentration from 0.0225 TSA
to 0.1 TSA for 0.5M Py resulted in more pronounced surface features appearing on the elec-
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trode. Compared to having kept the dopant concentrations constant, increasing Py did not
seem to show as much of a prominent development of 3D-like surface depositions/globules.
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4.2. Cyclic Voltammetry

Figure 4a shows the cyclic voltammograms of the 50 wt% SWCNT/ PI nanocomposite
electrodes tested in the 1M H2SO4 electrolyte solution at the varied Py and p-Toluene
sulfonic acid concentrations. Scan rates of 5, 10, and 25 mV/s were each used to run the CV
tests. The results from the CV tests were used to estimate the charge storage capabilities
of the electrodes and determine how they were affected by the dopant concentration. All
of the electrodes showed good cycling stability between 0 V to 1 V with high response
currents of up to 30 mA. The addition of PPy improved the voltammograms by increasing
the amount of charge stored in the electrode material as indicated by a larger integrated
area under the curve. The square-shaped voltammograms with the absence of visible redox
peaks are indicative of the supercapacitor behavior of the electrode material even at low
scan rates. The increase in response currents at higher scan rates in Figure 4b is suggestive
of good capacitive properties of the electrode [32].
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doped PPy at varying deposition conditions. (b) CV profile of nanocomposite electrode with elec-
trodeposited PPy from a 0.5M Py/0.1M pTSA solution run at 5, 10, and 25 mV/s scan rates using a
Ag/AgCl reference electrode.

Figure 5 highlights the trend in specific capacitance for the electrodes prepared at
various deposition conditions and carried out at different scan rates. The highest specific
capacitance obtained for the modified electrodes was 84.88 F/g at 5 mV/s for PPy formed
from 0.5M Py/0.1M T solution. Increasing the dopant concentration to 0.2M reduced the
Cp to 54.45 F/g, which is still higher than that for the same Py concentration but with a
lower toluene sulphonic acid concentration of 0.0225M pTSA. A Lower Py concentration of
0.05 M showed a comparatively high Cps of about 35 F/g. However, it was observed that
the effect of increasing dopant concentration is a significant improvement in the electrode’s
specific capacitance due to the enhancement in the morphology of the electrode surface
as shown by the optical micrographs. Electron migration due to delocalization of the
conjugated bonds is enabled by doping, which lowers the energy barrier and improves
conductivity as shown by the increase in current during te potentiostatic electrodeposition
at 2 V in Figure 6 [33,34]. Figure 6 also shows that the steady-state transient current obtained
during the electrochemical polymerization of pyrrole increases with increasing dopant
concentration at a constant pyrrole concentration of 0.5M. Table 1 summarises the specific
capacities obtained at the three different scan rates and calculated by using Equation (1b).
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Figure 6. Transient current–time curves obtained during potentiostatic electrochemical polymeriza-
tion of pyrrole onto the composite PI/SWCNT electrode.

Table 1. Calculated specific capacities using cyclic voltammetry.

600 s Deposition on 50 wt%
SWCNT/PI Electrodes

Specific Capacity (mAh/g)
5 mV/s 10 mV/s 25 mV/s

0.05M Py/0.0225M T 9.230 7.702 3.529
0.1M Py/0.0225M T 6.194 3.735 1.652
0.5M Py/0.0225M T 13.116 7.132 2.861

0.5M Py/0.1M T 23.577 13.991 6.375
0.5M Py/0.2M T 15.124 9.000 4.243

4.3. Galvanostatic Charge/Discharge

The composite electrodes were subjected to 500 galvanostatic charge–discharge (GCD)
cycles at current densities of 5 A/g, 1 A/g, and 0.5 A/g, respectively, using 1M H2SO4
electrolyte, in a voltage range between 0 and 0.8 V (Figure 7). A maximum discharge time
of 200 s was obtained for 0.5M Py/0.1M T (Figure 7b) at a discharge current density of



Energies 2022, 15, 9509 8 of 13

0.5 A/g compared to 12.67 s for the system with 0.1M Py/0.0225M T (Figure 7a). The
GCD profile of the electrode prepared by electrodepositing PPy from a 0.5M Py/0.1M T
solution was relatively symmetrical with a negligible IR drop, showing that it experiences
the electric double layer effect, which is associated with supercapacitor behavior [35].
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Figure 7. GCD curves for electrodes coated with PPy from (a) 0.1M Py/0.0225M T and (b) 0.5M
Py/0.1M T at current densities of 0.5, 1, and 5 A/g. (c) GCD curves at 0.5 A/g for composite
electrodes electro-coated with PPy from 0.5M Py/0.1M T, 0.5M Py/0.2M T, and 0.1M Py/0.0225M T
solution, respectively.

Specific capacitance values as high as 127.13 F/g were obtained from the charge–
discharge curves of composite electrodes coated with PPy from a solution containing 0.5M
Py/0.1M T at 0.5 A/g, and as low as 7.89 F/g for composite electrodes electrodeposited
with PPy from 0.1M Py/0.0225M T solution (Figure 8). Electrochemical deposition of PPy
from higher pyrrole and dopant concentrations resulted in a significant improvement in the
electrochemical performance of the electrodes. Table 2 summarizes the specific capacitance
values, which were calculated using Equation (2).
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The composite electrodes containing electrodeposited doped PPy showed relatively
good cyclability with capacitance retention of over 80% through 500 cycles, as shown in
Figure 9. The PPy electrodeposited from 0.5M Py/0.1M T solution maintained a capacitance
retention of over 100% and was observed to increase its retention up to 120% at longer
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cycles. Electrodes formed from lower concentrations of Py seem to show lower retention
over the same duration.

Table 2. Summary of specific capacitance obtained from charge–discharge cycles at 0.5, 1, and 5 A/g.

600 s Deposition on 50 wt%
SWCNT/PI Electrodes

Specific Capacitance (F/g)
0.5 A/g 1 A/g 5 A/g

0.1M Py/0.0225M T 7.89 7.12 4.82
0.5M Py/0.1M T 127.13 99.29 25.52
0.5M Py/0.2M T 110.65 88.88 20.79
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4.4. Electrochemical Impedance Spectroscopy (EIS)

EIS is a useful tool to analyze the mass transport of electrolytes through an electrode
material. The material’s porosity impacts this mass transport process as it creates different
diffusion pathways through the channels and pores, affecting the electrochemical behavior
of the material [30–32]. In this study, EIS measurements were carried out at a frequency
range of 1 MHz to 0.01 Hz at 1 V open circuit potential.

A modified Randle’s cell with a Warburg element equivalent electrical circuit was used
to fit the data to obtain the bulk resistance of the electrodes, given the electrically conductive
nature of the polymer [36]. The complex Nyquist plots are shown in Figure 10. The plots are
very similar to those for traditional systems, with electrolyte diffusion occurring through
their bulk. Lower resistance and capacitance occur at high frequencies due to the lack
of electrolyte interaction within the material, although more so with its surface [3,37,38].
The Warburg impedance at lower frequencies shows the occurrence of diffusion through a
porous network in the electrode [3].

As the Py concentration is increased, the bulk resistance decreases as the sample
becomes more conductive and more porous. The bulk resistance, calculated using the
equivalent electrical circuit model, is used to determine the theoretical porosity by using
the modified form of Archie’s law (Equations (3a) and (3b)). These values are presented
in Table 3. It is shown that porosity is improved by the increasing Py concentration as
well as by a complimentary increase in dopant concentration. The data for higher porosity
electrodes agree with the Cp values calculated using CV and GCD, which shows that
electrodes with higher porosity have improved electrochemical performances.
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modeled using equivalent Randle’s cell circuit with Warburg element.

Table 3. Theoretical porosity and Cp obtained using EIS with a modified version of Archie’s law.

600 s Deposition on 50 wt%
SWCNT/PI Electrodes Bulk Resistance (Ω) Theoretical Porosity (%) Specific Capacitance (F/g)

Using EIS

0.05M Py/0.0225M T 57.04 5.67 7.07
0.1M Py/0.0225M T 13.70 14.66 15.37
0.5M Py/0.0225M T 5.47 27.05 40.52

0.5M Py/0.1M T 3.77 34.68 32.10
0.5M Py/0.2M T 2.55 44.94 15.06

The specific capacitance values were obtained towards the lower frequency end of
the EIS spectrum using the modified equivalent electrical circuit model and Equation (4).
Figure 10 and Table 3 show that the bulk resistance and specific capacitance of composite
electrodes modified by the electrochemical deposition of PPy increased with increasing Py
concentration at a constant dopant concentration. Increasing the pyrrole concentrations
from 0.05M to 0.5M resulted in a corresponding increase in specific capacitance from 7 F/g
to 40.5 F/g at a constant dopant concentration of 0.0225M. The trend of the EIS data is
similar to the results from the other electrochemical techniques, although with lower Cp
values. Increasing the dopant concentrations from 0.0225M to 0.2M does not seem to result
in increased specific capacitance.

4.5. Fourier Transform Infrared Spectroscopy—FTIR

Figure 11 shows a broad peak in the 3522 cm−1 region, which could be attributed to
N-H stretching; peaks around 1170 cm−1 indicate the N-C stretch bending, and a sharp but
shallow peak around 1558 cm−1 comes from the C=C. A peak of about 1300 cm−1 comes
from the C-N stretching. The sharp peak around 800 cm−1 comes from the aromatic C-H
bending. These peaks as summarized in Table 4 confirm that PPy has indeed been formed
on the electrode material. Peaks around 1700 cm−1 indicate the characteristic imide bands
that belong to the polyimide substrate.
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Table 4. Characteristic FTIR peaks and corresponding functional groups.

Characteristic Wavenumber (cm−1) Functional Group

3500–3300 N-H amine stretch
1700 C=C aromatic bending

1561–1531 C=C/C-C stretching
1300 C-N stretching
1170 N-C stretch bending
860 C-H bending
739 C=O bending

5. Conclusions

A single-walled carbon nanotube/polyimide nanocomposite electrode was synthe-
sized and modified by the electrodeposition of p-Toluene sulfonic acid-doped polypyrrole.
The deposition from higher concentrations of Py was observed to have changed the mor-
phology of the nanocomposite surface by improving its porosity. The electrochemical
performance of the electrodes was further enhanced by the increase in dopant concen-
tration. Cyclic voltammetry and galvanic charge–discharge tests were carried out, and
maximum specific capacitances of 84.88 F/g and 127.13 F/g, respectively, were obtained
for the electrodeposition of doped PPy from a solution containing 0.5M Py and 0.1M pTSA.
At a max of 0.2M TSA, it was noticed that there was increased flaking off of the doped
PPy deposition on the electrode as well as reduced performance in the system. A capaci-
tance retention of greater than 80% was also obtained after 500 cycles of testing with the
composite electrode formed from 0.5M Py/0.1M T solution, which showed an improved
capacitance retention with increasing cycles. At higher Py concentrations, a thicker layer
of PPy was deposited on the surface of the electrode. As the electrode undergoes longer
charge discharge cycles, this also allows for more time for the electrolyte to have saturated
through the bulk of the electrode. As a result, more surface area for electrolyte/electrode
interaction is presented, in turn increasing the covered surface area to more than 100%.
Galvanic charge–discharge tests also showed almost symmetrical charging and discharging
trends, indicating the material’s supercapacitor-like properties, with broad potential uses
in the energy storage sector.
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