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Abstract: Governments are promoting energy community (EC) policies to encourage joint investment
and the operation of shared energy assets by citizens, industries, and public authorities, with the
aim of promoting economic, social, and environmental benefits. However, ECs require appropriate
planning and energy management strategies, which require data that are rarely clean and well-
structured. Data providers rarely adhere to a common format for data sharing, which hinders the
development of ECs. As the number of ECs is expected to grow significantly, this poses significant
issues for stakeholders to quickly and efficiently develop projects. To address this issue, in this
paper we propose a literature-based analysis and classification to derive the major data needs
for EC planning, as well as a template format for data sharing. Our literature review on ECs
successfully identifies the main data required to properly describe this system and its components.
Their classification further clarifies that data structures shall account for tabular-like data of various
types and flexible dimentionality, or cardinality. A public release of an open dataset for a case study
in Pisa, Italy is also provided, supported by realistic or real data for testing the sizing and operation
of ECs. The results suggest that data standard practices are needed, and this paper can lay the
foundation for their standardization for ECs to fast-forward their deployment as support policy and
technical decision-making.

Keywords: renewable energy communities (REC); renewable energy systems (RES); datasets; open
data format; photovoltaic; user loads

1. Introduction
1.1. Motivation

To cope with climate change, society shall undergo a “decarbonization process” to
meet its needs with sustainable practices. Energy plays a critical role, and increasing the
penetration of renewable sources is of utmost importance [1]. In recent years, decentralized
energy production, also using renewable energy sources (RESs), has risen attention as a
viable option to support energy transition, especially under the energy community (EC)
paradigm. In ECs, citizens, small consumers, and public authorities can group together,
collectively participate in common energy investments, jointly coordinate to align demand
and consumption supported by decentralized energy assets, and promote a positive envi-
ronmental and social impact on local communities [2]. Generally, to reach high levels of
sustainability, ECs exploit distributed RESs, providing cost-effective clean energy to the
participants, reducing energy losses and carbon emissions. This type of EC is classically
known as the renewable energy community (REC). Interest is increasing regarding the
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development of the optimal planning, design, and operation of ECs, to meet the objectives
of sustainability or the reduction in energy demands of these entities while preserving
users satisfaction. However, the data to feed the mathematical models necessary for this
relevant optimization procedure are rarely available, as well as their formatting characteris-
tics. Identifying the key data of the energy systems mostly used in EC context; collecting
details on their environmental, economic, and social impact [3]; and then developing a
proper format to foster their sharing and implementation in optimization analyses would
be advantageous for the scientific community and support multi-objective studies, as well
as the development and validation of energy models and optimization strategies. However,
limited studies have covered this topic.

The study of ECs involves the needs for multidisciplinary skills involving various
aspects of technical, social, and economic considerations [4,5]. As a result, there are
different approaches and methodologies for studying and analyzing these communities
that overall need to be quantified. While each project or research study related to ECs
may vary significantly, it is the role of the developer or modeller to capture the main
characteristics of the system and quantify them to appropriately feed decision tools for
energy planning. Given that no data standardization is available, issues of interpretability
of data and duplication of data handling are arising.

To promote standardization and facilitate comparison among studies, we propose a
first literature-based abstract classification of the data needs for energy modeling in ECs
while also proposing a standardized data format for collecting and reporting information
related to ECs. To accomplish this, a literature review about energy communities is con-
ducted and analyzed to identify the main characteristics required for techno-economic and
user behavior analysis. Moreover, we created and shared an open dataset by collecting real
and realistic data about the characteristics of a possible EC located in Pisa, Italy.

This effort is expected to lay the foundations for a common data structure that can
facilitate data sharing, analysis, and faster decision making. To the best of the author’s
knowledge, this represents the pioneering effort in this direction within the existing literature.

1.2. Literature Analysis

The literature analysis is structured as follows. First, we provide an overview about
ECs and their adoption in recent years. Secondly, we discuss the state of the art of techno-
economic modeling for ECs. Finally, we present the available datasets related to ECs, to be
used for further research and analysis works in this field.

1.2.1. Energy Communities Adoption

In recent decades, renewable energy sources and energy efficiency have been identified
as key drivers for achieving a decarbonized energy system [6]. The European Union has
been working towards a sustainable energy system and society through a set of directives,
including the clean energy package. In this context, renewable energy communities (RECs)
have received particular attention, as defined by the Renewable Energy Directive REDII
2018/2001 [7] and the Electricity Market Directive 2019/944 [8]. An REC is a group of
residential or industrial users whose participation should improve social welfare and
achieve environmentally friendly goals as a non-profit entity. Users can choose their energy
provider and express their desired electricity purchase price while participating in electric
markets through demand side management (DSM) or demand response (DR) programs.
Users can join or leave the community together with their personal point of delivery (POD),
as a form of further flexibility. However, crucial aspects like technical skills of community
members, the ownership of assets, and criteria for fair benefits sharing must be considered.
Regarding Europe, connecting ECs in Sub-Saharan Africa can improve access to energy
facilities and promote a renewed way of thinking about energy resources to tackle energy
injustice [9]. In Latin America and the Caribbean, adequate access to education is crucial for
local communities, researchers, and policy makers to ensure sustainable renewable energy
projects and the preservation of biodiversity [10].
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1.2.2. Techno-Economic Modeling

The modeling of energy communities can benefit from the literature on energy systems;
while ECs are not only a technical system, social, organizational, and political consider-
ations cannot be disregarded [11]. Many studies have focused on the optimal planning
of the entire community as a whole, with economic objectives [12,13]. However, EC poli-
cies are explicitly promoting the involvement of citizenship in energy matters to promote
environmental, social, and economic impact [6], and these aspects are increasingly being
considered in EC planning [5], alongside the fair redistribution of the benefits across the
whole community [4]. Various technologies, components, and sizes of community have
been proposed, which imply different data requirements and solving techniques [11]. How-
ever, the level of complexity in which components, users, and their interactions are modeled
must be balanced between computational time and the accuracy of the results. The most
widely used technique for energy systems modeling and optimization is mixed integer
linear programming (MILP) [14], but the larger the problem, the larger the computational
complexity. Research studies have investigated the sizing and optimal planning of electrical
assets, as well as the concept of exit clauses and different mechanisms for sharing benefits
among members [4,15]. Other studies have explored internal energy transactions between
users, including an environmental objective in the methodology [16]. Additionally, some
authors have proposed an energy hub model that considers both electrical and thermal
renewable assets for sizing and management [17]. On the other hand, characterizing the
socio-economic preferences of users in ECs is notoriously challenging [5], and indeed social
science research have been widely addressing this topic, e.g., by means of surveys [18].
Those techniques can be valuable for estimating the preferences and parameters of en-
ergy modeling to successfully perform comprehensive socio-economic and environmental
planning of a community. While methodologies vary greatly, the input data required for
the different tools are often similar. To facilitate data sharing and lay the foundations for
further data standards, in this study we first propose an analysis of the major technologies
and the main parameters needed by energy modeling techniques for optimizing EC.

1.2.3. Available Datasets

This section presents report papers dealing with datasets covering a wide range of
aspects related to ECs, such as their energy generation and consumption profiles, socio-
economic and environmental impacts, and the technical and economic performance of
different energy technologies and solutions, with the aim of identifying the key elements
that can be used for further research and development activities in this field. The paper
by [19] provides a dataset focused on Norwegian energy communities. The dataset in-
cludes various types of data, such as household consumption data obtained from smart
meter measurements and divided into consumer groups, appliance consumption data
collected from Norwegian households, electric vehicle data related to charging patterns,
simulated photovoltaic power generation data based on temperature and irradiance data
sets, and wholesale electricity prices. All datasets are filtered by season, weekday/weekend,
and time segment and are fitted to either a normal, exponential, or log-normal distribution.
On the other hand, the authors in [20] publicly reviewed available datasets, tools, and mod-
els that can be used to optimize the design and operation of local energy communities
(LECs). They also provided guidelines for different roles in real-world LECs, including
aspiring and existing LECs. The article highlights the importance of open source datasets,
tools, and models in grounding expectations and providing visibility on future energy
and cash flows for LECs and other stakeholders. It also points out some of the limitations
in currently available open source resources, e.g., the limited geographical availability of
electricity demand datasets, and suggests future research directions, e.g., implementing
a more holistic framework for integrating different elements of an LEC. The study [21]
provides valuable information for investigating a dataset about electrical power consump-
tion data and load profiles for several major household appliances in the US, including
refrigerators, air conditioners, and washers. The data, measured in one-second intervals, is
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available online and intended for use by researchers to develop realistic load models and
analyze demand response algorithms for home energy management. Another recent data
document [22] discusses the construction of a data set of the energy consumption behavior
of a residential community, including photovoltaic generation and appliance usage profiles.
The dataset was based on real data collected from 50 residential households and a public
building. The article explains the process of gathering and normalizing the data and ran-
domly attributing renewable solar energy to some households. The dataset can be used to
examine and prove certain models related to the behavior of energy consumption. It may
be useful for researchers studying renewable energy communities or distributed energy
resources in general.

The proposed literature analysis highlights that existing works have focused on gath-
ering data for ECs, but limited research has been focused on identifying the needed input
data for sizing ECs.

1.3. Contributions and Organization of the Paper

This study contributes to the scientific literature by (a) identifying the major input
quantities needed for sizing ECs; (b) classifying them; and (c) drawing guidelines for a
data format, also including a practical case study for a realistic case study in Pisa, Italy.
Based on a wide literature analysis, we describe the main components used in ECs, their
main parameters, and their dimensionality to proper characterize the technical, economic,
environmental, and social characteristics needed for energy planning. The analysis is
functional to characterize the type and dimensionality of data, to describe the abstract
data structure for ECs and requirements of dataformats to guide data collection, and the
development of data standards. Moreover, we also present an open dataset obtained
through real data from several sources that researchers can use for further studies and as
a reference instance for algorithm benchmarking. This is expected to lay the foundations
for guidelines on data format and sharing that is highly needed for interoperability and
the widespread deployment of ECs. Considering privacy and copyright considerations,
certain data have been intentionally perturbed. Consequently, in the ensuing sections, we
will discuss data that are referred to as realistic, denoting data that have been subject to
controlled alterations for specific reasons.

The paper is structured as follows: Section 2 describes the main assets of ECs and
their main parameters, Section 3 introduces the proposed data structure, and in Section 4
conclusions are drawn.

2. Modeling of Energy Communities

In the following, we describe the features of the most useful parameters and data
for modeling a generic EC while classifying their cardinality to lay the foundations for
data platforms. In doing so, we first identified the different quantities and technologies
needed for optimizing ECs, such as user load profiles and renewables production. Then,
we reviewed the existing literature on RES and extrapolated their most relevant parameters
in modeling an EC. Indeed, to the best of the authors’ knowledge, there is no standard
data format across ECs. These parameters have been divided by topic, along with a brief
description and a summary table. Moreover, contrary to the literature, we also included the
classification of technologies and the cardinality of the information to store that are needed
when dealing with data formats. Each table includes columns such as the name of the
parameter in the proposed data format, and cardinality, representing the dimensionality of
the parameter to facilitate specific parsing. If a parameter α has a cardinality of n × m × o,
the corresponding data will be organized in a multidimensional matrix of size n × m × o.
If α is absent, the information is considered to be a scalar value. In the following sections,
we explain how to represent such a data matrix in the proposed format. Furthermore, there
are columns for description, unit, value, and ref, where value reports the range used in the
proposed dataset (see Section 3 for further details).
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2.1. Generic Parameters

This section provides an overview of the general parameters used to contextualize the
subsequent data-driven modeling of all the elements involved in designing ECs. These
parameters are provided in Table 1.

The first parameter we considered is the temporal granularity ∆t of all the data, which
is needed to capture the variability of renewable sources and load. For example, setting
∆t = 1 means that each consideration about user loads, PV generations, etc., is made
every minute.

To avoid handling a massive number of data, such as for every day of the year, it
may be advantageous to select a subset of relevant and representative periods within the
analyzed time-frame. In this context, T represents the number of intervals considered in the
analysis. The starting date and the number of time-steps of every interval t are, respectively,
given by St and Dt. For the sake of brevity in the subsequent dissertation, we denote T as

the sum of Dt over all intervals: T =
T
∑

i=1
Dt.

The generic parameters include the latitude λ and longitude φ , expressed in the
degree and comma notation, which serve to geolocate the EC.

Furthermore, the number of users/households N in the EC is taken into account.
Another crucial aspect in managing an EC is the presence of prosumers among the users.
A prosumer refers to an energy user who can act as both a producer and consumer of
electricity. Prosumers generate their own energy, typically using renewable sources like
solar panels or wind turbines. They have the ability to consume power taken from the grid
and, in other hours, feed the network with the electricity they have produced in excess
with respect to their own needs. It is important to note that the energy production that
a prosumer has self-consumed cannot be considered as part of the energy community.
Consequently, it needs to be filtered out or treated separately in the collective energy
management of the EC. Thus, the parameter PRn is a boolean vector assigned to each user,
with a value of 1 indicating a prosumer and 0 a passive user.

Finally, ρt represents the electricity price at time t.

Table 1. Generic parameters.

Cardinality Description Unit Value Ref

∆t - Time-step min 15 * [5,23]

T - Number of temporal evaluation
intervals - 4 * [24]

St T Starting date of every interval
(ddmmyyyy, 00:00 UTC) date 15/01/2019 –15/10/2019 * [25]

Dt T Number of time-steps ∆t for each
interval - 288 * -

T - Size of an array of the discontinuous
period over all the intervals - 1152 * -

λ - Latitude of the EC ° (Decimal degrees) 43.719 * [26]
φ - Longitude of the EC ° (Decimal degrees) 10.427 * [26]
N - Numbers of users in the EC - 10 * [5,24]

PRn N Boolean attribute of user (1 if
prosumer, 0 if passive user) - 0 * [24]

ρt T Electricity price €/kWh 39.4–99.2 * [14,24,27]

* Refers to data sample at https://github.com/dimitri-thomopulos/DASH-EC, accessed on 9 August 2023.

2.2. User Load Profiles

Electrical power consumption data and load profiles of household appliances are
crucial elements for an EC because they drive the shared energy and consequently the
business plan of the EC. Therefore, they are the key elements on which energy management
algorithms are developed, such as demand response, whose usage is highly dependent on
the social preferences of the household. Despite the fact that demand response mechanisms

https://github.com/dimitri-thomopulos/DASH-EC


Energies 2023, 16, 6268 6 of 26

are already well-diffused in large commercial and industrial customers, the same does not
apply to the residential sector [21], where its deployment requires the flexible dispatch
of a potentially large number of appliances, such as washing machines, clothes dryers,
air conditioners, electric water heaters, electric ovens, dishwashers, and refrigerators. In
the following, we detail the major inputs required for energy modeling, of which some
parameters, e.g., equivalent costs of demand response, are subjective with regard to the
user and may be estimated using surveys or social science analyses [18]. As this paper is
focused on energy modeling, other papers may be more suited to the methodologies for
estimating that number [11,28].

From an energy modeling perspective, the load profiles of households depend on
the usage of their appliances. However, different appliances have different functioning
mechanisms that can be classified as fixed, adjustable, and shiftable [29].The different
levels of flexibility offered by the different users have specific preferences. The fixed-load
category includes appliances whose power consumption is constant and cannot be changed,
such as for a fridge with a fixed temperature. In the adjustable-load category, we can find
appliances whose operating condition is not fixed, i.e., the power consumption can vary
according to the possibility of better ecologically satisfying the load (e.g., the eco-program
in modern washers) or the cycle end time can vary according to the instantaneous power
consumption, such as for the charge of electrical vehicles (EVs). Finally, the schedulable-
load appliances are characterized by the flexibility of starting and ending their working
cycle, with a fixed power consumption when they are switched on. Examples are washing
machines, dishwashers, and microwaves. Schedulable loads also depend on the willingness
of the users to change their preferred time window for using the appliance.

Table 2 resumes the main parameters that can be used to model user load profiles
in an EC. The list of parameters start with the number of fixed, adjustable, and shiftable
appliances for every user through parameters N f ix, Nadj, and Nsh f . Fixed loads are the
simplest user-loads from a modeling perspective since the only required parameter is Pf ix
for each fixed appliance. On the other hand, there are a few parameters involved in the
modeling of an adjustable load. The boolean attribute ECOadj represents the possibility for
the considered load to have a more ecological alternative or not. In any case, the minimum
and maximum power for satisfying the adjustable load are given by Pmin

adj and Pmax
adj , as well

as the starting time Sadj and the maximum duration Dadj. In this way, it is possible to
realistically and flexibly model the features of the adjustable load, i.e., according to the
specific device and user wills. Regarding the shiftable loads, the consumed power Psh f
is fixed but can be satisfied in one of the S time-slots, each one with its starting time
Ss, duration Ds, and considering the duration of the shiftable load Dsh f . Some of the
most significant social aspects in the study of an EC can be observed precisely in the
loads and preferences that users have in resizing or shifting their loads. Therefore, two
continuous parameters ranging from 0.0 to 1.0 are introduced for each schedulable and
adjustable load for every user [5]. These parameters, denoted as PRFadj, encapsulate user
preferences related to adjustable loads. A value of 0.0 signifies strong opposition towards
load reduction, whereas a value of 1.0 indicates enthusiastic agreement to minimize the
load as much as possible. On the other hand, PRFsh f represents preferences for shiftable
loads and their respective time slots. A score of 0.0 signifies disapproval of the designated
time slot, while a score of 1.0 reflects a strong liking for the slot.

In summary, these continuous parameters provide valuable insights into users’ atti-
tudes toward load management and temporal adjustments within the EC, shedding light
on the intricate interplay of social dynamics and energy consumption.

We mention a few comprehensive data sources of user load data at an EC level (i.e.,
household), which have been used to partially or totally fill Table 2. These include data
from the study of [21] and a free forum for the public to share their energy usage data
developed by the National Renewable Energy Laboratory, Lawrence Berkeley National
Laboratory (LBNL), and Argonne National Laboratory [30].
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Finally, the work of [31] produced a Matlab tool, which allows one to generate synthetic
electricity load profiles of houses using a consumer load model, considering the Stockholm
region of Sweden. The user can change select model parameter values and generate data
for different time resolutions and periods.

Table 2. User load parameters.

Cardinality Description Unit Value Ref

N f ix N Number of fixed-load appliances - 1 * [5]
Nadj N Number of adjustable-load appliances - 1 * [5,32–34]
Nsh f N Number of shiftable-load appliances - 1 * [5,25]

ECOadj N × Nadj
Boolean attribute of adjustable load (1 if eco
available, 0 otherwise) - 0 * -

Pf ix N × N f ix × T Fixed load power W 0–5312 * [21]
Eadj N × Nadj × T Adjustable load required energy Wh 0–1323 * [35]
Pmin

adj N × Nadj × T Minimum adjustable load power W 0–4499 * [32,34–36]
Pmax

adj N × Nadj × T Maximum adjustable load power W 0–6087 * [32,34–36]
PRFadj N × Nadj Preference of adjustable load to be reduced - 0.0–1.0 [5]
Psh f N × Nsh f Shiftable load power W 800–5200 * [25]
Sadj N × Nadj Starting time of adjustable-load date 08:00–17:40 * [32,34,36]
Dadj N × Nadj Maximum duration of adjustable load min 20–180 * [32,34,36]
S N × Nsh f Number of time-slots for a shiftable load - 1 * [5,25,33]
Ss N × Nsh f × S Starting time of time-slot date 6:30–19:30 * [5,25,33]
Ds N × Nsh f × S Duration of time-slot for shiftable load min 40–450 * [5,25]
Dsh f N × Nsh f × S Duration of shiftable load min 10–120 * [5,25]
PRFsh f N × Nsh f × S Preference of shiftable load - 0.0-1.0 [5]

* Refers to data sample at https://github.com/dimitri-thomopulos/DASH-EC, accessed on 9 August 2023.

2.3. Photovoltaic Generation Profiles

Photovoltaic systems (PV) are widely used RES in both residential and industrial
applications, making them a fundamental technology within an EC. The modeling of
PV generation began with the pioneering work of Evans [37] in 1981. Since then, more
detailed models have been proposed to address the challenges of accurately capturing
PV generation, including the use of metaheuristics to extract precise parameters from
the complex and nonlinear characteristics of PV models [38]. This approach has gained
significant attention and has proven effective in various scenarios, such as households,
communities, and consumer behavior, enabling more accurate predictions of PV generation
and the improved management of renewable energy resources. Table 3 summarizes the
essential elements used in modeling PV generation.

The list of parameters starts with NPV , which represents the number of available PV
models, and ZPV , indicating the number of installed systems for each PV model.

The power output of PV systems is strongly influenced by solar irradiance, which
represents the amount of solar energy received per unit area. As the irradiance increases,
the power production of the PV system also tends to rise. This relationship can be attributed
to the physical properties of PV cells, which convert sunlight into electrical energy. When
the solar irradiance is high, more photons strike the PV cells, leading to the increased
generation of electron–hole pairs. Consequently, a greater amount of current is produced,
resulting in higher power output. Conversely, when the irradiance is low, fewer photons
interact with the PV cells, leading to a reduced generation of electron–hole pairs and
a corresponding decrease in power output. Therefore, understanding the correlation
between PV power and solar irradiance is crucial for accurately predicting and optimizing
the performance of PV systems in various applications. Solar irradiance, in turn, consists of
various components and is dependent on solar coordinates and the geometric angles of
inclination. These factors contribute to its overall value and determine the amount of solar
energy that reaches a specific location.

https://github.com/dimitri-thomopulos/DASH-EC
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Table 3. PV generation parameters.

Cardinality Description Unit Value Ref

NPV - Number of available models of PV - 2 * -

ZPV NPV
Number of PV already installed for every
model - 0 * -

αA T Solar altitude angle ° −67.3–67.8 [39]
αS T Solar azimuth angle ° −179.6–178.9 [39]
βPV NPV × T Tilt angle of PV ° 55 * [39]
γPV NPV × T Azimuth angle of PV 40 * ° [39]
bhi T Beam Horizontal Irradiance W/m2 0–800 * [40,41]
dhi T Diffuse Horizontal Irradiance W/m2 0–316 * [40,41]
ri T Reflected Irradiance W/m2 0 * [40,41]
gi T Global Irradiance = bhi + dhi + ri W/m2 0–943 * [40,41]
Text T Air temperature ◦C 1.1–28.9 * [41]
LPV NPV Length m 1.67–1.99 * [42]
WPV NPV Width m 0.99 * [42]
PPV NPV × T Effective PV power kW 0–0.28 * [43]
PPV,nom NPV Nominal power kW 0.27–0.30 * [44]
nopPV - Number of extremes of a scale cost function - 4 * [45]
OPPV nopPV Power extremes of a scale cost function kW 20 − > 1000 [45]
CIPV nopPV CAPEX cost €/kW 700–1550 [46]
COPV NPV Annual operating cost per PPV €/kW 10.5–23.25 [45]
ELPV - Expected life years 30 * [47,48]

* Refers to data sample at https://github.com/dimitri-thomopulos/DASH-EC, accessed on 9 August 2023.

The solar coordinates, including the altitude and azimuth solar angles αA and αS,
describe the position of the sun relative to a given point on the Earth’s surface. These
coordinates, along with the geometric angles of inclination, i.e, the tilt and azimuth PV
angles βPV and γPV , play a crucial role in determining the intensity and distribution of
solar radiation [49].

As already mentioned, solar irradiance encompasses various components, including
beam, diffuse, and reflected irradiance. The global irradiance gi represents the total power
per unit area received on a surface and is obtained by summing these three components:
beam irradiance bhi, which results from direct solar rays; diffuse irradiance dhi, which arises
from scattered sunlight; and reflected irradiance ri, which is the portion of solar radiation
reflected off surfaces [40,41].

In the literature, in some cases, the cell temperature or at least the air temperature Text
is also taken into account to provide a more accurate description of power. Incorporating
ambient temperature data provides further insights into the overall thermal conditions that
can impact the operation and power generation of the photovoltaic system. Accounting for
these temperature factors enhances the accuracy of power modeling and enables a more
comprehensive understanding of the performance of solar energy systems [40].

Dimensional data, specifically the length LPV and width WPV of the PV modules, can
provide valuable information for system design and implementation. These parameters are
valuable for considering spatial constraints and construction limitations.

The effective power produced by the PV system at time t is represented by PPV , which
may differ from the nominal power PPV,nom. From an economic perspective, the cost of a
PV system typically follows a step-wise trend, with the number of steps defined by nopPV .
Each step is characterized by the power extremes OPPV and incurs a capital expenditure
(CAPEX) cost CIPV related to the investment, along with additional maintenance and
operating costs COPV typically amounting to 2-5% of the CAPEX. The expected life of the
PV system is given by ELPV .

To estimate the time series of available production by a photovoltaic plant, some sim-
ulation tools have been proposed. A notorious example is the photovoltaic geographical
information system (PVGIS) [50], developed by the Joint Research Centre of the European

https://github.com/dimitri-thomopulos/DASH-EC
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Union, which allows users to estimate PV production by selecting or entering the loca-
tion’s latitude and longitude, along with parameters such as solar radiation database, PV
technology, installed peak power, system loss, mounting position, slope, and azimuth.
PVGIS provides simulated production data for download or viewing through its webpage.
Another popular simulation tool for PV energy production is Renewable Ninja [51]. It
enables users to estimate the performance of a PV system by specifying the location, system
size, module type, tilt angle, and orientation. The tool utilizes weather data and satellite
imagery to generate hourly estimates of energy production for a given location.

2.4. Wind Energy Generation Profiles

Electricity generation can also be obtained from wind turbines. According to [52],
wind turbines are capable of converting the kinetic energy of wind into electrical energy.
Comprising essential components such as the rotor, blades, hub, nacelle, and tower, wind
turbines facilitate the capture and conversion of wind energy. The rotor and blades effi-
ciently capture the wind’s kinetic energy and convert it into rotational energy, which is
subsequently transferred to a generator housed within the nacelle. Additionally, the na-
celle incorporates a control system responsible for ensuring the turbine’s optimal and
safe operation.

Table 4 resumes the usable elements that are used for predicting wind generation in a
certain zone.

Table 4. Wind energy generation predictors.

Cardinality Description Unit Value Ref

Nwt - Number of available models of wind turbine - 2 * -

Twt Nwt
Number of wind turbines already installed for
each model - 0 * -

Ugrd T Wind speed on W to E direction m/s −3.7–4.13 * [53]
Vgrd T Wind speed on S to N direction m/s −2.21–4.96 * [53]
Vin Nwt Minimum wind speed m/s 1.5 * [52,54]
Vout Nwt Maximum wind speed m/s 52.5 * [52,54]
Vr Nwt Reference wind speed m/s 11 * [52,54]
a, b, c, d, e, f 6 × Nwt Wind power coefficients - - [52]
Pwt Nwt, T Effective wind power kW 0–0.24 * [52,54]
Pwt,nom Nwt Nominal power kW 3–5 * -
nopwt - Number of extremes of a scale cost function - 4 * [45]
OPwt nopwt Power extremes of a scale cost function kW 500 − > 5000 [45]
CIwt nopwt CAPEX cost €/kW 1100–1840 [46]
COwt Nwt Annual operating cost per Pwt €/kW 200–330 [45]
DBwt Nwt Noise dB 45 [55]
ELwt - Expected life years 20 * [56]

* Refers to data sample at https://github.com/dimitri-thomopulos/DASH-EC, accessed on 9 August 2023.

In the modeling of wind turbine generation, a set of parameters plays a crucial role.
These parameters include Nwt, denoting the number of available wind turbine models,
and Twt, indicating the number of installed wind turbines for each model.

Extensive research, as documented by [52–54], has highlighted several key factors
influencing wind turbine energy production. These factors encompass the horizontal and
vertical components of wind speed, represented by Ugrd and Vgrd, respectively. In a typical
Cartesian coordinate system, the Ugrd component represents the wind speed along the x-
axis or the east–west direction. On the other hand, the Vgrd component represents the wind
speed along the y-axis or the north–south direction. If necessary, the Pythagorean theorem
can be used to compute the effective value and direction of the wind speed components.

More sophisticated models consider also the parameters Vin, Vout, and Vr which play a
significant role in characterizing the wind speed and its effects on electricity generation from
wind turbines. Vin represents the minimum or cut-in wind speed. It is the threshold wind
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speed at which a wind turbine starts to generate electricity. Below this value, the turbine
may not produce any significant power output. Vout refers to the maximum or cut-out wind
speed. It is the wind speed at which the wind turbine reaches its maximum power output
and beyond which the turbine is shut down or curtailed for safety reasons. Operating
the turbine at wind speeds higher than Vout may cause excessive stress on the turbine
components. Vr denotes the reference wind speed. It is typically a design parameter
specific to a particular wind turbine model or site. The reference wind speed represents the
wind speed at which the turbine is designed to achieve its nominal or rated power output.
It serves as a reference point for wind turbine performance evaluation and power curve
characterization. These parameters, namely, Vin, Vout, and Vr, help define the operational
range and performance characteristics of a wind turbine. They contribute to determining
the start-up, maximum power, and shutdown conditions, ensuring the turbine operates
efficiently and safely within specified wind speed ranges.

In some cases, non-linear curves with a few multiplicative coefficients, typically not
exceeding 6, are also proposed in the literature. These parameters are often extracted
from empirical tests. Therefore, six wind power coefficients (a, b, c, d, e, f ) are considered
sufficient to cover most of the functional forms commonly used in wind power modeling.

Notably, the effective power output at time t is indicated by Pwt, which may deviate
from the nominal power Pwt,nom under low wind speed conditions.

It is also crucial to consider the generation of noise DBwt during wind turbine opera-
tion, particularly within the context of ECs. Noise emissions can potentially pose risks or
discomfort to individuals, necessitating thorough examination and mitigation strategies.

Economically, the cost structure of wind turbine systems exhibits a step-wise trend,
wherein nopwt defines the number of steps. Each step encompasses specific power extremes
OPwt and incurs CAPEX costs CIwt related to initial investments, as well as maintenance
and operating expenses COwt. The projected lifespan of a wind turbine system is denoted
by ELwt.

It is worth mentioning that simulation tools have been developed to estimate the
time-series of renewable production by wind, which can be used to feed EC planning tools.
The first one is Wunderground [57], also known as Weather Underground, a popular online
weather service that provides various meteorological information and forecasts. It collects
weather data from a wide range of sources, including weather stations, personal weather
stations, and meteorological organizations. Another one is Renewable Ninja [51], an online
renewable energy assessment tool that provides data and analytics for various renewable
energy resources, including wind energy. It offers insights into the wind potential of
specific locations and helps assess the feasibility of wind energy projects. Finally, we cite
AEOLIAN [58], an Italian web-based service that aims to provide accurate and reliable
wind resource data for the Italian territory. It offers a database accessible through a user-
friendly WebGIS tool, providing info on the general distribution of wind resources across
Italy and helps identify areas suitable for wind energy exploitation.

2.5. Hydro-Electric

Hydroelectric power plants, specifically “run-of-river” systems, are a renewable energy
technology that harnesses the kinetic energy of flowing water to generate electricity.

Table 5 summarizes the essential elements used in modeling hydro-electric generation.
In the context of ECs, the modeling of hydro-turbines involves considering the number

of available hydro-turbine models, denoted as Nhydro, along with their respective instal-
lations within the community, represented by Zhydro. The effective hydropower output,
denoted as Phydro, may deviate from the nominal power, Phydro,nom, and is influenced by
factors such as the effective flow rate, Qhydro, and the minimum and maximum work-
ing flow rates, Qhydro,min and Qhydro,max, respectively. Additionally, the net head height,
Hhydro, which represents the vertical distance between the water source and the turbine,
significantly impacts hydropower generation. The turbine efficiency, denoted as ηhydro,
determines the effectiveness of converting kinetic energy into electrical power.
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It is worth noting that run-of-river hydroelectric plants differ from cascade hydro
generation. Run-of-river systems operate by utilizing the natural flow of a river without the
need for large reservoirs, allowing water to flow freely through the turbine (see, e.g., [59]).
On the other hand, cascade hydro generation involves a series of interconnected reservoirs
with varying water levels, allowing for better control of water flow and storage (see,
e.g., [60]. The choice between these approaches depends on various factors, including the
availability of suitable water resources and the specific objectives of the renewable energy
community. However, in the case of an energy community, the utilization of a run-of-river
system is more plausible.

From an economic perspective, the cost of a hydro turbine system within an EC
follows a step-wise trend, where the number of steps is defined by nophydro. Each step
represents different power extremes, OPhydro, and incurs a CAPEX cost, CIhydro, which
includes the initial investment and ongoing maintenance and operating costs, denoted as
COhydro. The expected life of the hydro turbine system is given by ELhydro.

Tools used for modeling hydro-electric power include HOMER Hydro Module [61]
and RETScreen [62], which can be used to provide a comprehensive view by considering
technical, financial, and environmental aspects.

Table 5. Hydro turbine parameters.

Cardinality Description Unit Value Ref

Nhydro - Number of available models of hydro-turbines - 1 * -
Zhydro Nhydro Number of already installed hydro-turbines - 0 * -
Qhydro T Effective flow m3/s 7.96–69.6 * [59]
Qhydro,min - Minimum working flow m3/s 5 * [59]
Qhydro,max - Maximum working flow m3/s 30 * [59]
Hhydro - Net head m 14 * [63]
ηhydro - Efficiency - 70 * [63]
Phydro T × Nhydro Effective hydro power kW 0.08–0.30 * [59]
Phydro,nom - Nominal power kW 0.3 * [64]
nophydro - Number of extremes of a scale cost function - 5 * [64]
OPhydro nophydro Power extremes of a scale cost function kW 500 − > 10,000 [64]
CIhydro nophydro Basically CAPEX cost € / kW 2300–6000 [46,64]
COhydro Nhydro Annual operating cost per Pwt € / kW 34.5–90 [65]
ELhydro - Expected life years 25 * [66]

* Refers to data sample at https://github.com/dimitri-thomopulos/DASH-EC, accessed on 9 August 2023.

2.6. Battery Energy Storage System Features

Battery Energy Storage Systems (BESS) are critical for the integration of renewable en-
ergy into the grid, and Lithium–ion (Li-ion) batteries are commonly used due to their
high energy density, simple working principle, and decreasing costs. Among them,
lithium–iron–phosphate (LiFePO4) batteries are gaining popularity due to their higher
stability, lower specific costs, and longer lifespan. Several studies include BESS model-
ing, but there is no standard approach. Five main types of BESS models are identified:
ideal, charging/discharging efficiency, charging/discharging and self-discharging effi-
ciency, degradation, and the simulation tool. Many studies limit their analysis to charging
and discharging efficiencies, with only a few considering the self-discharging process or
battery degradation. Further research is needed to integrate degradation phenomena in
long-term studies [15,67–70].

Table 6 summarizes the essential elements used in modeling BESS usage in ECs.
Such table starts with Nbs which is the number of available models of BESS and Bbs,

which indicates, for each model, the number of already installed BESS. According to the
literature [71,72], the main features that influence the power modeling of BESS are the
self-discharge, charge, and discharge coefficients ηsl f , ηch, ηdch. The effective charging or
discharging power at time t is Pch and Pdch, respectively. Moreover, the knowledge of the
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initial state of charge SOC0 is essential to model the subsequent states, knowing also the
nominal capacity Cbsn . As for the economical aspects, the cost of a BESS is typically given
only from its purchase CIbs.

Table 6. BESS parameters.

Cardinality Description Unit Value Ref

Nbs - Number of available models of BESS - 2 * -

Bbs Nbs
Number of BESS already installed for
each model - 1–4 * -

ηsl f Nbs Self-discharge coefficient - 0.008–0.010 * [71]
ηch Nbs Charge coefficient - 0.975–0.978 * [71,72]
ηdch Nbs Discharge coefficient - 0.920–0.950 * [71,72]
Pch - Charge power kW 3.76–3.92 * [71,72]
Pdis - Discharge power kW 3.65–3.80 * [71,72]
SOC0 - Initial state of charge % 100 * [73]
CIbs Nbs Basically CAPEX cost €/kWh 550–580 [5]
Cbsn Nbs Nominal capacity kWh 3.84–4.00 * [74]
ELbs - Expected life years 15 * [14]

* Refers to data sample at https://github.com/dimitri-thomopulos/DASH-EC, accessed on 9 August 2023.

2.7. Heat Pumps

Decarbonizing thermal loads is classically difficult, due to the high requirements of
the buildings and the limited number of options compared with solutions for electrical
loads [75]; in the literature, this problem is recognized as a bottleneck [76]. Nowadays,
the most widespread solution to reduce the fossil-fuel requirements for buildings involves
electrically driven heat pumps, which can provide both cooling and heating loads to build-
ings. Focusing on heating loads, the heat is typically taken from an external source (e.g.,
outdoor air, ground-source, or water) and released in indoor spaces via a compression cycle
using electricity. The most widespread typology of heat pumps is the air-source one, which
exchanges energy with external air and provides heating/cooling for building through a
thermal exchange with either indoor air or water-based terminal units. Heat exchangers
and a vapor compressor are considered as a key technology to link the electric and thermal
energy sectors [77]. During the last decades, their electricity-to-heat efficiency, known
as COP (coefficient of performance), has increased, enabling the use of less electricity to
provide the same thermal outputs. At the same time, their use fosters the exploitation
of renewable energy sources: as an example, electrical energy provided by photovoltaic
modules can be successfully employed to supply heating/cooling load through the com-
pressor. In this way, it is possible to increase the rate of decarbonization in the building
sector, which represents a high share of the final energy consumption. On the other hand,
without a proper strategy to reduce electricity-related emissions, the employment of heat
pump may not result competitive in the context of building loads, also because of the high
operative costs of electrical energy compared with fossil fuels.

Integration of heat pumps in ECs is highly recommended for a twofold reason: they
increase the share of self-consumption of electrical energy from RES, and they can also pro-
vide a flexible load to manage, avoiding mismatch between production and consumption.
An additional increase in flexibility can be reached if thermal storages are used together
with heat pumps: in this way, hot water provided during daytime (so when the production
of RES is at its maximum) can be stored in thermal energy systems and then used during
nighttime. However, there are limits in this flexible behaviour, depending on the thermal
comfort experienced by the users. In some pieces of research [78,79], the proper operation of
heat pumps has proven to mitigate over-voltage problems due to photovoltaic production.

Table 7 summarizes the essential elements used in modeling heat pumps.
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To successfully integrate heat pumps into ECs, it is important to have data on the
thermal loads and the efficiency of the heating generators. Thermal loads (both heating
and cooling) can be monitored: they strongly depends on envelope characteristics, external
climate and users’ preference, so it is not possible to generalize. If a monitoring campaign
is not achievable, dynamic simulation tools can be employed (e.g., TRNSYS, EnergyPlus).
Then, the dynamic efficiency of the heat pump is also needed, to check the amount of
electrical energy to run the compressor and evaluate the rate of self consumption by RES.
Also in this case, having monitored data allows one to obtain a good correlation between
loads and factors influencing the COP (e.g., temperature lift, capacity ratio).

If these data are not available, it is also possible to use models. Typically, COP can be
evaluated using two different methods:

• Utilizing manufacturers’ data to provide COP at different values of internal and
external temperature and capacity ratio. A regression analysis is then performed to
assess the system’s performance for each combination of temperature and thermal
load;

• Employing equations specified in technical standards [80,81]. These equations express
the COP at full load as the product of the exergetic efficiency of the inverse thermody-
namic cycle (ηI I) and the ideal Carnot efficiency (COPid). The influence of partial load
conditions is evaluated through a reduction factor ( fCR).

Also the threshold values of operating ranges of heat pump should be known. Gen-
erally, heat pumps cannot properly operate at too low external temperatures or too high
supply temperatures.

Table 7. Heat pump parameters.

Cardinality Description Unit Value Ref

NHP - Number of heat pump models available in the EC - 1 * -
ZHP NHP Number of installed heat pumps for each model - 1 * -
Qnom,H NHP Nominal capacity of the heat pump in heating mode kW 200 * [82,83]
Qnom,C NHP Nominal capacity of the heat pump in cooling mode kW 200 * [82,83]

QH NHP × T
Thermal load provided by the heat pump in heating
mode kW 0–192.3 * [84]

QC NHP × T
Thermal load provided by the heat pump in cooling
mode kW 0–109.3 * [84]

TH NHP × T Supply fluid temperature in heating mode K 50 * [85]
TC NHP × T Supply fluid temperature in cooling mode K 10 * [86]
Text T Ambient temperature K −1.9–28.9 * [50]
COPnom,H NHP Nominal coefficient of performance in heating mode - 3.35 * [82,83]
Tnom,H NHP Nominal supply temperature in heating mode K 45 * [82,83]
Tnom,ext NHP Nominal ambient temperature in heating mode K 7 * [82]
COPnom,C NHP Nominal coefficient of performance in cooling mode - 3.51 * [82,83]
Tnom,C NHP Nominal supply temperature in cooling mode K 7 * [83]
Tnom,ext NHP Nominal ambient temperature in cooling mode K 35 * [82]
CIHP NHP CAPEX cost €/kW 700 [45,64]
ELHP - Expected life years 15 * [87]

* Refers to data sample at https://github.com/dimitri-thomopulos/DASH-EC, accessed on 9 August 2023.

2.8. Solar Thermal

Solar thermal collectors (also known as solar thermal) are devices converting solar en-
ergy into thermal energy, typically for domestic or small-commercial applications [45,64,88].
They are mainly used for space heating and domestic hot water; in some applications, the so-
lar energy collected through them can also be used for cooling services, together with an
absorption chiller, or for drying applications [45,64,89]. In this analysis, we focus only
on solar collectors for heating and domestic hot water purposes, and for typical civil ap-
plications: in other words, we do not consider parabolic collectors, solar furnaces, and
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solar towers for electricity production. Table 8 summarizes the essential elements used in
modeling solar thermal collectors.

In civil applications, flat-type collectors are typically used. They consist of an absorber
plate, tubes for the circulating fluid, and a glazing cover. The absorber has specific thermal
and optimal properties (high absorptance for solar radiation and low emissivity on infrared
wavelength), to maximize the absorbed radiation (both beam and diffuse radiation), which
are then transferred to the fluid circulating in the risers. A glazed cover is usually present
in the front of the collector, to limit the thermal losses due to convection with ambient air.
In mild-hot climates, the glazed cover may be absent.

Another type of solar thermal collector is the evacuated tube collector, which consists
of an evacuated cylindrical tube with a heat pipe inserted into it. The use of a vacuum-
sealed tube reduces the thermal losses, so this type of collector is characterized by high
efficiency and high values of temperature that can be reached by the circulating fluid.

The optimal position for solar thermal depends on the roof where it is installed on.
As a general rule of thumb, solar thermal should face south in the north hemisphere,
with an inclination of the latitude of the location [90]. Of course, shadowing from other
buildings or other orographic obstacles should be avoided.

Solar thermal collectors use either ambient air or water to deliver the thermal load
to the building. In the former case, the collector is known as a solar air heater, and in the
latter as a solar water heater. The main advantages to use air as heat transfer fluid are: no
freezing/boiling problems, lower cost, and absence of expansion vessel. However, as the
air heat transfer coefficient is lower than the water one, a higher flow rate is necessary to
deliver the same thermal load, with the consequence on the collector surface and electrical
energy at the fan. Using air allows one to directly warm up the indoor spaces; a heat
exchanger is instead necessary to warm the water within a domestic hot water tank. Solar
water heaters, instead, are not often used directly for space heating and domestic water
purposes, due to the presence of antifreezing fluids mixed with air. Hot water tanks are
used to store the warm water and use it in a following moment for domestic hot water or
space heating purposes.

One of the most widespread models to evaluate efficiency of solar thermal has been
provided by [90]: it uses the optical properties of the collector, the coefficients related
to thermal losses, the ambient temperature, the solar radiation, and the inlet tempera-
ture. The presence of a thermal storage should be considered as influencing the overall
performance of the system: see also Section 2.9. Also, TRNSYS, RETScreen, and Energy-
Plus can be used to evaluate the delivered thermal energy and the efficiency of the solar
thermal collectors.

Table 8. Solar thermal parameters.

Cardinality Description Unit Value Ref

NST - Number of solar thermal collectors available
in the EC - 1 * -

ZST NST
Number of installed solar thermal collectors
for each model - 3 * -

AST NST Area of installed solar thermal for each model m2 2.5 * [82]

βST NST
Tilt angle of installed solar thermal for each
model ° 30.0 * [91]

γST NST
Orientation angle of installed solar thermal
for each model ° 0.0 * [91]

bhi T Beam irradiance on the horizontal W/m2 0.0–735 * [50]

dhi T
Diffuse horizontal irradiance on the
horizontal W/m2 0.0–295 * [50]
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Table 8. Cont.

Cardinality Description Unit Value Ref

ri T Reflected irradiance on the horizontal W/m2 0.0 * [50]
gi T Global irradiance on the horizontal W/m2 0.0–858 * [50]
Text T Ambient temperature K −1.9–28.9 * [50]
Tin NST ×T Inlet fluid temperature at each ST K 13.6–71.5 * [91]
ṁ NST ×T Fluid flow rate for each ST kg/s 0.0–3.3 * [92]

c NST
Specific heat capacity for the circulating fluid
in each ST kJ/kgK 4.19 * [92]

η0 NST Optical efficiency of each ST - 0.79 * [82]
IAM NST Incidence angle modifier - 0.94 * [82]
α1 NST First factor for heat loss correction value W/m2K 3.59 * [82]
α2 NST Second factor for heat loss correction value W/m2K2 0.01 * [82]
CIST NST CAPEX cost €/collector 1200 [82]
ELST - Expected life years 15 * [93]

* Refers to data sample at https://github.com/dimitri-thomopulos/DASH-EC, accessed on 9 August 2023.

2.9. Thermal Storage

Thermal energy storage (TES) is an important element for a renewable energy com-
munities as it enables excess heat provided by renewable sources or by heat pumps to be
stored for use during times of low energy production. Traditionally, TES has consisted of a
large volume of water used to decouple the generation to the load, thus obtaining a double
beneficial result: on one hand, this decreases the size of the heating and cooling generators;
on the other hand, it exploits periods of low operating cost or high production from RES to
meet the loads required in less convenient periods [94].

However, in recent years, the literature has reported many interesting results on vari-
ous different TES-related topics, e.g., materials, optimal sizing and management. The first
way to categorize TES considers the type of heat transfer and the storage material [95,96]:

• Considering the type of heat transfer, two concepts can be defined:

– Active systems, where the thermal energy is stored using engineering systems,
controlling the heat transfer through forced convection and mass flow rate;

– Passive systems, where instead thermal energy is stored through natural convec-
tion, without specific control systems;

• Considering the storage material, two categories can be defined:

– Sensible storage, which is the most common type of storage; among the used ma-
terials, the most widespread are water, air, rocks, sand, and building construction
materials such as bricks and concrete;

– Latent storage, which consists of materials storing thermal energy through a
phase change, usually a solid-liquid phase change; these materials are known as
phase change materials (PCMs).

A common application of TES is the integration with solar thermal: in the passive
configuration, the thermal storage is closed to the solar collector; it takes advantage of the
increasing temperature within the risers to move the warm water in the store. In larger
systems, the thermal storage may be situated in other locations, far from the solar collectors,
and using pumps to circulate the water. Another typical integration of TES is related to
heat pumps: heating energy and cooling energyare provided by the thermal generator
during periods with high COPs or high RES production, stored within the TES, and then
used during peak loads.

Another novel technology is to use the building core itself as thermal storage [95]:
some examples include the use of TES in double skin facades or suspended ceilings, also
incorporating thermal activated materials.
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The previous analyzed configurations refer to systems to be used on hourly or daily
basis (the heat provided during daytime can be used during nighttime). In very large
systems, however, it is possible to also store energy on a seasonal basis, exploiting solar
energy provided during summer months during the winter period. This type of storage,
known as seasonal thermal energy storage, can be used in areas with high building density,
such as ECs. Even though various types of thermal storage systems exist, a common
characteristic is their utilization of the ground, which allows for the construction of large-
sized tanks or volumes. Examples include tank thermal storage, aquifer thermal storage,
and borehole thermal storage.

The actual efficiency of a thermal storage within an EC depends on its size and its
control; furthermore, the capital costs are factors strongly influencing the feasibility of TES
introduction within a grid.

Table 9 summarizes the essential elements used in modeling TES.
The most common parameters used to model thermal storage (and assess its suitability)

are the heat capacity of the storage material, its mass, the rate of charge and discharge (in
other words, the power available to meet the load), and the temperature difference the
storage is subject to. Tools used for modeling thermal storage include TRNSYS, EnergyPlus,
and Matlab.

Table 9. Thermal storage parameters.

Cardinality Description Unit Value Ref

NTS - Number of thermal storages available
in the EC - 1 * -

ZTS NTS
Number of installed thermal storages
for each model - 1 * -

VTS NTS Volume of each TS model m3 0.475 * [97,98]

STS NTS
Surface of each TS model subject to
thermal loss m2 9.0 * [99]

kboll,TS NTS Heat loss coefficient for each TS model W/K 2.49 * [97,100]

TTS,ext NTS ×T
Temperature of the environment
where the TS is installed K −1.9–28.9 * [100]

c NTS
Specific heat capacity of the fluid
within the TS kJ/kgK 4.19 * [97,100,101]

ρ NTS Density of the fluid within the TS kg/m3 1000 * [97,98,101]

Tmax NTS
Maximum temperature to be reached
inside the TS K 80 * [102]

λTS NTS
Latent heat of the phase-change
material kJ/kg - [98,101]

TPC NTS
Melting temperature of the
phase-change material K - [98]

ηHE NTS
Efficiency of heat exchange from the
helix to the bulk - 0.65 * [103]

TTS,in,g NST ×T
Inlet temperature of the fluid from
generator K 13.6–76.5 * [104]

ṁin,g NST ×T Flow rate of the fluid from generator kg/s 0–3.3 * [105]

TTS,in,l NST ×T
Inlet temperature of the fluid used for
the load K 15.0–25.0 * [104]

ṁin,l NST ×T Flow rate of the fluid used for the load kg/s 0.0–0.2 * [105]
CITS NTS CAPEX cost €/m3 712.5 [106–108]

* Refers to data sample at https://github.com/dimitri-thomopulos/DASH-EC, accessed on 9 August 2023.

2.10. Combined Cooling, Heating, and Power

Even if they generally use fossil fuels, combined cooling, heating, and power systems
(CCHPs) can be successfully integrated within an energy community: the possibility of
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providing electrical energy together with heating and cooling loads allows for the high
overall efficiency of these systems and a strong reduction in carbon dioxide emissions. IEA
research [109] has revealed that the global capacity of those systems is estimated to almost
double up to 2030.

CCHP systems usually include a power generation unit (e.g., microturbines, internal
combustion engines, and fuel cells), often fueled by natural gas; as a byproduct, the heat is
recovered and used for many heating applications, even at different temperature levels.
If only heating is recovered, these systems are known as combined heating and power
(CHP) or cogenerators. The recovered heat can also be used in absorption chiller or heat
pump to provide cooling load: these systems are CCHPs.

There are three typical operating modes of a CCHP [88]:

• The following electrical load: the fuel flow rate is chosen to meet the electrical load;
the thermal load provided is partially recovered, depending on the actual users’
requirements; in case of a surplus, the thermal energy is stored or wasted; and in case
of a deficit, a backup thermal system is used;

• The following thermal load: the fuel flow rate is chosen to meet the buildings’ thermal
load; the electrical energy is used for the electrical requirement, which involves con-
sidering either to sell the surplus to the grid if exceeding the users’ load or purchasing
an additional amount of energy from the grid in case of deficit;

• The base load: the fuel flow rate is chosen to provide a fixed amount of electrical
energy and thermal energy, which does not depend on the actual buildings’ load.

Recently, renewable sources have also been used to fuel CCHP systems. As an example,
Denmark [110] has increased the ratio of RES used in CHP from 20% to 64% in 30 years,
mainly by using biomass. In some other cases, energy from sun or waste recovery is
also used. In [111], the authors discuss the advantages of using biomass gasification as a
fuel in small-scale CHPs. Among them, the most important one is the possibility of the
exploitation of local biomass resources with high efficiency, providing both heating and
electrical energy, differently from mere direct combustion, which only provides heating
low at a very-low thermal efficiency. In [112], the authors discuss the technoeconomic
feasibility assessment of a CHP using municipal solid waste to provide heat and electricity
for a university campus. The results shows that a high amount of CO2 emission can be
saved through the use of this CHP.

The assessment of the feasibility of a CHP within a grid is strongly affected by its
purchase cost, and the thermal and electrical loads it should meet, at least partially. In an
EC, this evaluation is even more important, due to the presence of renewable sources,
providing non-programmable energy, which should be used as a priority, then changing
the instantaneous share of thermal/electrical energy needed from the buildings. As the
cogeneration plant cannot overcome a minimum capacity ratio, the aleatory of RES can
reduce the efficiency of CCHP, leading to energy waste or RES curtailment, as recognized
by various pieces of research [113,114].

Table 10 summarizes the essential elements used in modeling CCHPs.
The main parameters used to model CCHPs include the provided electrical, the heating

and cooling load, the electrical and thermal efficiencies, the level of temperatures the heat
is recovered at, the fuel consumption rate, and the capacity factor. Tools used for modeling
cogenerators include TRNSYS, EnergyPlus, and HOMER.

Table 10. Cogenerator parameters.

Cardinality Description Unit Value Ref

NCCHP - Number of CCHP systems available in the EC - 1 * -

ZCCHP NCCHP
Number of installed CCHP systems for each
model - 1 * -
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Table 10. Cont.

Cardinality Description Unit Value Ref

TH,CCHP NT,CCHP
Levels of supply temperature delivered by
each CCHP system - 1 * [115]

Q̇C NCCHP × T
Thermal energy recovered for cooling from
each CCHP kW 0.0 * [116]

Q̇H
NCCHP×
NT,CCHP ×T

Heat recovered from each CCHP for each
level of supply temperature kW 6.6–14.3 * [117,118]

Ėel NCCHP × T Electrical energy provided by each CCHP kW 3.3–8.3 * [117,118]

ηH NCCHP ×T
Thermal efficiency of each CCHP for heat
recovery - 0.6–0.7 * [116–118]

ηC NCCHP ×T Thermal efficiency of each CCHP for cooling - 0.6–0.7 * [116]
ηel NCCHP ×T Electrical efficiency of each CCHP - 0.0 * [116–118]
ṁ f uel NCCHP ×T Fuel flow rate for each CCHP kg/s 0.3 * [116]

LHVf uel NCCHP
Lower heating value of the flow rate for each
CCHP MJ/kg 13 * [119]

CICCHP NCCHP CAPEX cost €/kW 37,589 [120,121]
ELCCHP - Expected life years 15 * [122]

* Refers to data sample at https://github.com/dimitri-thomopulos/DASH-EC, accessed on 9 August 2023.

2.11. Biomass and Other Thermal Generators

Backup thermal generators should be present in an energy community as it may
be impossible or unfeasible to meet the overall thermal loads only with the previously
mentioned systems: due to their intermittence and aleatory, solar thermal collectors may
provide only a share of the load, especially in the daytime and in summer in the absence of
thermal storages; heat pumps may operate in inefficient conditions, or even stop operating
in particularly extreme external conditions.

Typical backup generators are boilers, providing heating load by fuel combustion.
Nowadays, natural gas is the most widespread fuel used for heating: it represents more
than 40% of the heating mix in the European Union and more than 60% in the United
States [123]. If used in condensing boilers, efficiency can be around 100%.

However, to reach the goals of CO2 reduction, the heating system should use low-
emission fuels. Examples could be: a biomass source, a mixture of natural gas and hydrogen,
and a mixture of natural gas and biogas.

Biomass, which is derived from organic materials, can certainly play a role in the
context of reducing fossil-fuel use; however, its emission factor is quite high [124]. The
direct combustion of biomass is the most widespread process; it contributes to 97% of the
biomass use of energy production [125]. The efficiency of biomass boilers is, however, very
low; besides, particular technologies are necessary to reduce NOx and SOx during the
combustion process [111].

A mixture of natural gas and biogas, which is produced from raw biomass materials,
or a mixture of natural gas and hydrogen, known as hydrogen-enriched natural gas, are
also considered promising options in the heating sector. In particular, hydrogen can also be
produced using renewable energy sources through electrolysis technology. This process is
known as power-to-gas: electrical energy from RES is used to split water into hydrogen
and oxygen, thus allowing for the injection in the gas grid: it can be used for a heating
service, or the pipeline itself can act as an energy buffer [126].

Table 11 summarizes the basic elements used in modeling biomass.
Considering all the possible solutions that can be employed to provide heating,

the main parameters include all the features of the fuel: its heating value, its consumption
rate, and its efficiency in the combustion process.

https://github.com/dimitri-thomopulos/DASH-EC
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Table 11. Biomass system parameters.

Cardinality Description Unit Value Ref

NB - Number of thermal generators
available in the EC - 1 * -

ZB NB
Number of installed thermal
generators for each model - 1 * -

Q̇H NB ×T
Heating load provided by each
thermal generator kW 0.0–14.8 * [83]

ηH NB
Heating efficiency of each thermal
generator - 0.96 * [124,127]

LHVf uel NB
Lower heating value of the flow rate
for each thermal generator MJ/kg 13 * [128]

CIB NB CAPEX cost €/kW 6000 [106]
ELB - Expected life years 15 * [129]

* Refers to data sample at https://github.com/dimitri-thomopulos/DASH-EC, accessed on 9 August 2023.

2.12. Connection to Energy Networks

The users of the EC are generally connected to the electricity grid, yet other energy
networks may apply, e.g., the gas infrastructure. The connection characteristics and the
regulation in force may enable trading electricity using institutional markets and/or by
means of private agreements within the members of the EC, which can play a role in the
overall techno-economic and environmental performances of the community. In Table 12,
the major parameters regulating the connection are reviewed and summarized. A number
NV of energy networks (usually electricity and gas) may be available to each user, which
implies yearly costs due to the type of connection and energy flow. In particular, the type
of contract and the maximum capacity of the connection are usually quantized with power
values PCV and specific costs OCV . In particular, for each energy network, the construction
costs CIV for establishing the connection also apply. The energy flow is generally charged by
various fees, the most notable being the purchase πB

V and selling πS
V prices, also including

transport tariffs. Moreover, excise or taxes πE
V on consumption apply. In the field of ECs,

the so-called reward πR
V , awarded to shared energy, applies as well. A Boolean variable

NETV,n is assigned to each user and energy network (set to 1 if the energy network is
available, and 0 otherwise).

Table 12. Connection to energy networks.

Cardinality Description Unit Value Ref

NV - Number of energy vectors - 1 * -
NCPV NV Number of available committed power capacities - 1 * -

NETV,n N × NV
Boolean attribute of every user and every energy
vector (1 if energy vector available, 0 otherwise) - 1 * -

PCV NV × NCPV Available committed power capacities by vector kW 3 * [130]
OCV NV × NCPV Yearly cost for each committed power capacity €/y 30 * [4]
πB

V NV × NCPV × T Variable buying energy price €/kWh 0.16 * [4]
πE

V NV × NCPV × T Excise €/kWh 0.02 * [4]
πS

V NV × NCPV × T Selling energy price €/kWh 0.05 * [4]
πR

V NV × NCPV × T Reward to the community for the shared energy €/kWh 0.10 * [4]
CIV NV × NCPV Connection cost € 500 [131]

* Refers to data sample at https://github.com/dimitri-thomopulos/DASH-EC, accessed on 9 August 2023.

3. Data Structure for Renewable Energy Communities

Based on the extensive literature analyses and other novel parameters introduced in
Section 2, in the following we present a proposal of the data structure that captures the
major inputs needed for modeling energy communities, including all the various electric
and thermal assets involved, with the aim of overcoming the current lack of common data
format across ECs. To guarantee the readability of the format by most software, we propose

https://github.com/dimitri-thomopulos/DASH-EC
https://github.com/dimitri-thomopulos/DASH-EC
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a tabular format as shown in Figure 1 as a CSV file, where the first column and the first
row pertaining to a specific data point contain the corresponding data label. This visual
arrangement aims to improve the usability and accessibility of data.

The CSV is a very generic, flexible, and accessible file format that enables addressing
different data dimensions and cardinalities, wherein the dimensions of the parameters
are consistently indicated before the data itself. This versatility is exemplified by its
utilization in various fields, as demonstrated in previous works like [132]. In the case of
multidimensional matrices, they are projected into two-dimensional matrices. For example,
a data set with dimensions of n × m × o will be represented as o matrices of size n × m in
the CSV format.

The data format encompasses diverse types of information, where certain details may
be missing. Some data may appear redundant as they are interrelated. This design enables
the integration of different data sources within a single unified format. In cases where a
particular data point is not available, the corresponding element may be replaced with the
symbol “-”.

A first dataset with real and realistic data, concerning a potential EC in Pisa and
following the presented data format, is available in the GitHub repository https://github.
com/dimitri-thomopulos/DASH-EC, accessed on 9 August 2023. The proposed case can
be considered representative of the Italian scenario, since, according to the recent national
regulation that is being entered in force, users may join and form ECs if they are served by
the same primary substation [130]. This highlights the significant number of ECs that may
be potentially created, which in turn leads to standardization needs. We mention that some
of the proposed data are realistic due to privacy concerns. In these instances, the data have
undergone slight manipulation to ensure coherence without compromising privacy rights.

An example with a temporal resolution (∆t) of 15 min and 4 intervals of 3 days and 10
consumers should be formatted as in Figure 1.

∆t;15;;;;;;;;;;;
T;4;;;;;;;;;;;
St;20190115;20190415;20190715;20191015;;;;;;;;
Dt;288;288;;;;;;;;;;
λ;43,719;;;;;;;;;;;
φ;10,427;;;;;;;;;;;
N;10;;;;;;;;;;;
PRn;0;0;0;0;0;0;0;0;0;0;;
ρt;60.28;60.28;60.28;60.28;59;59;59;59;57.87;57.87;57.87;57.87,...
...

Figure 1. Example of data format.

Proposing a standardized data format for ECs is crucial for several reasons. Firstly,
ECs are a rapidly growing field that encompasses a wide range of stakeholders, including
energy providers, consumers, regulators, and researchers. With such diverse participants,
having a unified data format becomes essential for seamless communication, efficient
collaboration, and accurate analysis.

Secondly, the interdisciplinary nature of EC management poses significant challenges.
Integrating various aspects such as energy production, consumption patterns, environmen-
tal impacts, and socioeconomic factors requires the harmonization of data from multiple
sources. A standardized format would facilitate data collection, aggregation, and compari-
son, enabling researchers and practitioners to gain deeper insights into the performance
and dynamics of ECs.

Additionally, a common data format would enhance the accessibility and usability
of EC-related information. By providing a user-friendly platform that aggregates case
studies from around the world, stakeholders can easily access valuable data, benchmark
performance, and identify best practices. This not only accelerates the development of

https://github.com/dimitri-thomopulos/DASH-EC
https://github.com/dimitri-thomopulos/DASH-EC
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innovative solutions but also encourages the proliferation of knowledge and information
sharing within the EC community.

Moreover, a standardized data format would pave the way for establishing bench-
marks and reference points for EC management. By analyzing and comparing data across
different communities, researchers and policymakers can identify successful strategies,
evaluate the effectiveness of policies, and drive continuous improvement. These bench-
marks would serve as valuable resources for developing new problem-solving techniques
and enhancing the overall performance and sustainability of ECs.

Therefore, proposing a format for standardized data in renewable energy communities
is a crucial step toward fostering collaboration, improving data management, and promot-
ing innovation. By providing a unified platform and benchmarks, this approach can unlock
the full potential of ECs, leading to more efficient and effective renewable energy systems
on a global scale.

In addition, our vision extends to the future inclusion of this standardized format
in widely used file formats such as JSON, as well as in any programming language that
demonstrates user-friendly capabilities. By embracing multiple formats and languages,
we aim to maximize accessibility and ease of use for stakeholders involved in ECs. This
approach acknowledges the diverse backgrounds and preferences of users, enabling them
to work with familiar tools and languages while adhering to a unified data format.

4. Conclusions

This paper presents a comprehensive literature-based analysis to identify the major
input data for sizing ECs, classify them, and propose a data format template for sharing
the needed information, to promote standardization, facilitate data sharing, and fast-
forward ECs development. Environmental, social, and economical aspects have been taken
into account, providing a comprehensive outlook on ECs that can be useful to several
stakeholders, such as researchers and public authorities, to minimize the carbon footprint.

The proposed literature-based analysis highlights that various components covering
electricity, thermal, and cooling needs are needed, whose parameterization requires in-
formation of different types and sizes, to be captured by data standards. In particular,
the cardinality of those data has been extensively reviewed, and the results suggest that
tabular-like formats can successfully capture the required needs. However, the format shall
be sufficiently flexible to adapt to ECs with various numbers of members, technologies of
energy production, types of storage and conversion, energy vectors, and market structures.
A template for a numerical case study in Pisa, Italy is also proposed to suggest the suitabil-
ity of the proposed data format for planning and operation studies. The proposed dataset
employs a CSV-format, as an example, and it is largely populated with data derived from
measurements.

These findings lay the groundwork for defining standards of data collection and
data sharing for ECs and energy systems, which is of utmost importance to facilitate the
widespread adoption of decentralized renewable sources. Future works may involve
carrying out real case studies exploiting the collection and utilization of data in the pre-
sented format, as well as the definition of possible notable instances of data for algorithm
benchmarking.
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The following abbreviations are used in this manuscript:

EC Energy communities
REC Renewable energy communities
RES Renewable energy systems
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COP Coefficient of performance
ST Solar thermal
TES Thermal energy storage
CHP Combined heat and power
CCHP Combined cooling, heating, and power
CAPEX Purchase cost

References
1. Torabi Moghadam, S.; Di Nicoli, M.V.; Manzo, S.; Lombardi, P. Mainstreaming energy communities in the Transition to a

Low-Carbon Future: A Methodological Approach. Energies 2020, 13, 1597. [CrossRef]
2. Mutani, G.; Santantonio, S.; Beltramino, S. Indicators and representation tools to measure the technical-economic feasibility of a

renewable energy community. The case study of villar pellice (italy). Int. J. Sustain. Dev. Plan. 2021, 16, 1–11. [CrossRef]
3. Rathnayaka, A.; Potdar, V.; Dillon, T.; Kuruppu, S. Framework to manage multiple goals in community-based energy sharing

network in smart grid. Int. J. Electr. Power Energy Syst. 2015, 73, 615–624. [CrossRef]
4. Fioriti, D.; Frangioni, A.; Poli, D. Optimal sizing of energy communities with fair revenue sharing and exit clauses: Value, role

and business model of aggregators and users. Appl. Energy 2021, 299, 117328. [CrossRef]
5. Mariuzzo, I.; Fioriti, D.; Guerrazzi, E.; Thomopulos, D. International Journal of Electrical Power and Energy Systems Multi-

objective planning method for renewable energy communities with economic , environmental and social goals. Int. J. Electr.
Power Energy Syst. 2023, 153, 109331. [CrossRef]

6. Lowitzsch, J.; Hoicka, C.E.; van Tulder, F.J. renewable energy communities under the 2019 European Clean Energy Package –
Governance model for the energy clusters of the future? Renew. Sustain. Energy Rev. 2020, 122, 109489. [CrossRef]

7. Directive (EU) 2018/2001 of the European Parliament and of the Council on the promotion of the use of energy from renewable
sources. Off. J. Eur. Union 2018, 2018, 82–209.

8. European Parliament; Council of the European Union. Directive (EU) 2019/944 on Common Rules for the Internal Market for
Electricity and Amending Directive 2012/27/EU. Off. J. Eur. Union 2019, 2019. Available online: http://data.europa.eu/eli/dir/
2019/944/oj (accessed on 9 August 2023).

9. Ambole, A.; Koranteng, K.; Njoroge, P.; Luhangala, D.L. A Review of energy communities in Sub-Saharan Africa as a Transition
Pathway to Energy Democracy. Sustainability 2021, 13, 2128. [CrossRef]

10. Hampl, N. Equitable energy transition in Latin America and the Caribbean: Reducing inequity by building capacity. Renew.
Sustain. Energy Transit. 2022, 2, 100035. [CrossRef]

11. Gjorgievski, V.Z.; Cundeva, S.; Georghiou, G.E. Social arrangements, technical designs and impacts of energy communities: A
review. Renew. Energy 2021, 169, 1138–1156. [CrossRef]

12. Ye, G.; Li, G.; Wu, D.; Chen, X.; Zhou, Y. Towards cost minimization with renewable energy sharing in cooperative residential
communities. IEEE Access 2017, 5, 11688–11699. [CrossRef]

13. Moncecchi, M.; Meneghello, S.; Merlo, M. A Game Theoretic Approach for Energy Sharing in the Italian renewable energy
communities. Appl. Sci. 2020, 10, 8166. [CrossRef]

14. Cosic, A.; Stadler, M.; Mansoor, M.; Zellinger, M. Mixed-integer linear programming based optimization strategies for renewable
energy communities. Energy 2021, 237, 121559. [CrossRef]

15. Norbu, S.; Couraud, B.; Robu, V.; Andoni, M.; Flynn, D. modeling the redistribution of benefits from joint investments in
community energy projects. Appl. Energy 2021, 287. [CrossRef]

16. Fleischhacker, A.; Lettner, G.; Schwabeneder, D.; Auer, H. Portfolio optimization of energy communities to meet reductions in
costs and emissions. Energy 2019, 173, 1092–1105. [CrossRef]

17. Ebrahimi, M. Storing electricity as thermal energy at community level for demand side management. Energy 2020, 193, 116755.
[CrossRef]

https://github.com/dimitri-thomopulos/DASH-EC
https://github.com/dimitri-thomopulos/DASH-EC
http://doi.org/10.3390/en13071597
http://dx.doi.org/10.18280/ijsdp.160101
http://dx.doi.org/10.1016/j.ijepes.2015.05.008
http://dx.doi.org/10.1016/j.apenergy.2021.117328
http://dx.doi.org/10.1016/j.ijepes.2023.109331
http://dx.doi.org/10.1016/j.rser.2019.109489
http://data.europa.eu/eli/dir/2019/944/oj
http://data.europa.eu/eli/dir/2019/944/oj
http://dx.doi.org/10.3390/su13042128
http://dx.doi.org/10.1016/j.rset.2022.100035
http://dx.doi.org/10.1016/j.renene.2021.01.078
http://dx.doi.org/10.1109/ACCESS.2017.2717923
http://dx.doi.org/10.3390/app10228166
http://dx.doi.org/10.1016/j.energy.2021.121559
http://dx.doi.org/10.1016/j.apenergy.2021.116575
http://dx.doi.org/10.1016/j.energy.2019.02.104
http://dx.doi.org/10.1016/j.energy.2019.116755


Energies 2023, 16, 6268 23 of 26

18. De Vizia, C.; Patti, E.; MacIi, E.; Bottaccioli, L. A User-Centric View of a Demand Side Management Program: From Surveys to
Simulation and Analysis. IEEE Syst. J. 2022, 16, 1885–1896. [CrossRef]

19. Berg, K.; Löschenbrand, M. A data set of a Norwegian energy community. Data Brief 2022, 40, 116755. [CrossRef]
20. Kazmi, H.; Munné-Collado, Í.; Mehmood, F.; Syed, T.; Driesen, J. Towards data-driven energy communities: A review of

open-source datasets, models and tools. Renew. Sustain. Energy Rev. 2021, 148, 111290. [CrossRef]
21. Pipattanasomporn, M.; Kuzlu, M.; Rahman, S.; Teklu, Y. Load profiles of selected major household appliances and their demand

response opportunities. IEEE Trans. Smart Grid 2014, 5, 742–750. [CrossRef]
22. Goncalves, C.; Barreto, R.; Faria, P.; Gomes, L.; Vale, Z. energy community Consumption and Generation Dataset with Appliance

Allocation. IFAC-PapersOnLine 2022, 55, 285–290. [CrossRef]
23. Setlhaolo, D.; Xia, X.; Zhang, J. Optimal scheduling of household appliances for demand response. Electr. Power Syst. Res. 2014,

116, 24–28. [CrossRef]
24. Moret, F.; Pinson, P. Energy Collectives: A Community and Fairness Based Approach to Future Electricity Markets. IEEE Trans.

Power Syst. 2019, 34, 3994–4004. [CrossRef]
25. Nazemi, S.D.; Jafari, M.A.; Zaidan, E. An incentive-based optimization approach for load scheduling problem in smart building

communities. Buildings 2021, 11, 237. [CrossRef]
26. ur Rehman, H.; Reda, F.; Paiho, S.; Hasan, A. Towards positive energy communities at high latitudes. Energy Convers. Manag.

2019, 196, 175–195. [CrossRef]
27. Cielo, A.; Margiaria, P.; Lazzeroni, P.; Mariuzzo, I.; Repetto, M. renewable energy communities business models under the 2020

Italian regulation. J. Clean. Prod. 2021, 316, 128217. [CrossRef]
28. Bielig, M.; Kacperski, C.; Kutzner, F.; Klingert, S. Evidence behind the narrative: Critically reviewing the social impact of energy

communities in Europe. Energy Res. Soc. Sci. 2022, 94, 102859. [CrossRef]
29. Gatsis, N.; Giannakis, G.B. Cooperative multi-residence demand response scheduling. In Proceedings of the 2011 45th Annual

Conference on Information Sciences and Systems, CISS 2011, Baltimore, MD, USA, 23–25 March 2011; pp. 1–6. [CrossRef]
30. National Renewable Energy Laboratory. End-Use Load Profiles for the U.S. Building Stock; National Renewable Energy Laboratory:

Golden, CO, USA, 2023.
31. Broden, D.A.; Paridari, K.; Nordstrom, L. Matlab applications to generate synthetic electricity load profiles of office buildings and

detached houses. In Proceedings of the 2017 IEEE Innovative Smart Grid Technologies—Asia: Smart Grid for Smart Community,
ISGT-Asia 2017, Auckland, New Zealand, 4–7 December 2017; pp. 1–6. [CrossRef]

32. Entriken, R.; Hu, R.L.; Skorupski, R.; Ye, Y. A Mathematical Formulation for Optimal Load Shifting of Electricity Demand. IEEE
Trans. Smart Grid 2015, 6, 1–46.

33. Qayyum, F.A.; Naeem, M.; Khwaja, A.S.; Anpalagan, A.; Guan, L.; Venkatesh, B. Appliance Scheduling Optimization in Smart
Home Networks. IEEE Access 2015, 3, 2176–2190. [CrossRef]

34. van Leeuwen, G.; AlSkaif, T.; Gibescu, M.; van Sark, W. An integrated blockchain-based energy management platform with
bilateral trading for microgrid communities. Appl. Energy 2020, 263, 114613. [CrossRef]

35. Gatsis, N.; Giannakis, G.B. Residential demand response with interruptible tasks: Duality and algorithms. In Proceedings of the
2011 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, 12–15 December 2011;
pp. 1–6. [CrossRef]

36. Althaher, S.; Mancarella, P.; Mutale, J. Automated Demand Response From Home Energy Management System Under Dynamic
Pricing and Power and Comfort Constraints. IEEE Trans. Smart Grid 2015, 6, 1874–1883. [CrossRef]

37. Evans, D.L. Simplified method for predicting photovoltaic array output. Sol. Energy 1981, 27, 555–560. [CrossRef]
38. Gu, Z.; Xiong, G.; Fu, X. Parameter Extraction of Solar Photovoltaic Cell and Module Models with Metaheuristic Algorithms: A

Review. Sustainability 2023, 15, 3312. [CrossRef]
39. Božiková, M.; Bilčík, M.; Madola, V.; Szabóová, T.; Kubík, L’.; Lendelová, J.; Cviklovič, V. The effect of azimuth and tilt angle
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