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Abstract: This paper proposes a recursive conic approximation methodology to deal with the optimal
power flow (OPF) problem in unbalanced bipolar DC networks. The OPF problem is formulated
through a nonlinear programming (NLP) representation, where the objective function corresponds
to the minimization of the expected grid power losses for a particular load scenario. The NLP
formulation has a non-convex structure due to the hyperbolic equality constraints that define the
current injection/absorption in the constant power terminals as a function of the powers and voltages.
To obtain an approximate convex model that represents the OPF problem in bipolar asymmetric
distribution networks, the conic relation associated with the product of two positive variables is
applied to all nodes with constant power loads. In the case of nodes with dispersed generation, a direct
replacement of the voltage variables for their expected operating point is used. An iterative solution
procedure is implemented in order to minimize the error introduced by the voltage linearization in the
dispersed generation sources. The 21-bus grid is employed for all numerical validations. To validate
the effectiveness of the proposed conic model, the power flow problem is solved, considering that the
neutral wire is floating and grounded, and obtaining the same numerical results as the traditional
power flow methods (successive approximations, triangular-based, and Taylor-based approaches):
expected power losses of 95.4237 and 91.2701 kW, respectively. To validate the effectiveness of the
proposed convex model for solving the OPF problem, three combinatorial optimization methods are
implemented: the sine-cosine algorithm (SCA), the black-hole optimizer (BHO), and the vortex search
algorithm (VSA). Numerical results show that the proposed convex model finds the global optimal
solution with a value of 22.985 kW, followed by the VSA with a value of 22.986 kW. At the same time,
the BHO and SCA are stuck in locally optimal solutions (23.066 and 23.054 kW, respectively). All
simulations were carried out in a MATLAB programming environment.

Keywords: unbalanced DC distribution networks; optimal power flow solution; recursive conic
approximation; power loss minimization

1. Introduction

Bipolar DC networks are emerging electrical systems composed of three poles, two of
them with ±VDC referenced to the neutral pole (third pole) [1,2]. These grids transfer two
times more power than a conventional monopolar DC grid, in addition to the possibility
of having special loads operated with two times the voltage, i.e., connected between the
positive and negative poles [3–5]. Bipolar DC networks have additional advantages when
compared to three-phase AC networks. The first advantage is the reduced level of energy
losses, in tandem with the high quality of the voltage profiles [6]; the second advantage is
the absence of reactive power and frequency variables, which allows for an easy control
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design, given that the only variable under control corresponds to the voltage profile at the
terminals of the substation [7,8].

Figure 1 presents a comparison between the monopolar and bipolar DC configura-
tions [9]. Figure 1a denotes a monopolar DC configuration, where it has been assumed
that all the nodes with constant power terminals are solidly grounded (the most common
assumption in the literature for monopolar DC configurations [10]). On the other hand,
Figure 1b shows a possible configuration of constant power loads in a bipolar DC grid
configuration, where the neutral wire is assumed to be solidly grounded [11]. However,
for bipolar DC networks, the neutral wire can also operate under floating conduction in all
the nodes except for the substation bus [12].

R12 R23 R34

P2 P3 P4−
+ Vdc

(a)

R12 R23 R34

Pp
3 Pp

4−
+ +Vdc

Pn
2 Pn

4−
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4
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Figure 1. Schematic representation of monopolar and bipolar DC networks: (a) monopolar configura-
tion and (b) bipolar configuration.

The main advantage of using bipolar DC configurations instead of monopolar DC
topologies is that, with an additional investment in conductors (negative pole) of 33.34%,
it is possible to supply more than two times the energy supplied by monopolar DC grids,
with the possibility of utilizing special loads, i.e., bipolar constant power terminals [13].
However, with this advantage, analysis methodologies must also be improved to deal with
bipolar DC configurations efficiently.

When analyzing bipolar DC networks under steady-state operating conditions, the
power and optimal power flow problems are essential to determining their operating
characteristics [13]. However, the solution to both issues requires advanced numerical
methods and optimization techniques. The power flow corresponds to a feasibility problem
where the main idea is to find the set of voltage values in all the poles for particular load
and generation conditions. It is formulated as a set of non-affine equations, whose solution
can only be reached with numerical methods [14]. On the other hand, the optimal power
flow problem (OPF) is more complex, since it includes the power flow problem as a set of
nonlinear constraints, and new restrictions such as the device’s capabilities and voltage
regulation bounds. Furthermore, the main idea of studying the OPF is to determine the
set of voltage profiles and generation inputs to minimize the total grid energy losses for
particular load conditions [15]. Some recently developed approaches regarding power flow
and OPF solutions are presented below.
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In the case of the power flow problem, the authors of [14] presented the application
of the successive approximations method to deal with the power flow solution in bipolar
unbalanced DC networks with radial and meshed topologies. The main characteristic of
this approach is the possibility of including the neutral wire as part of the power flow
problem if it only is solidly grounded at the terminals of the substation. The study by [16]
presents the application of a graph-based power flow formulation based on the upper-
triangular matrix originally developed for three-phase AC grids in [17], with the aim of
solving the power flow problem in bipolar unbalanced DC networks. Numerical results
in the 21- and 85-bus grids demonstrated the effectiveness of the power flow problem
for asymmetric bipolar DC networks. The work by [18] presents an admittance nodal
formulation to address the power flow problem in bipolar DC grids while considering
multiple constant power terminals. Numerical simulations in a three-bus system were
implemented using PSCAD/EMTDC software. Nevertheless, the authors did not present
any numerical solution method and only focused on using this software to obtain the
power flow solution. In [19], a derivative-based power flow formulation based on Taylor
series expansion is proposed. The authors defined this power flow formulation as the
hyperbolic approximation method, as it approximates the hyperbolic relation between
voltages and powers using a linear relationship. Numerical results in the 21- and 85-bus
grids demonstrated this proposal’s effectiveness at dealing with the power flow solution.
The authors of [20] presented the application of a fixed-point iteration method to solve
the OPF problem in bipolar DC networks with multiple constant power terminals while
considering current limitations in the power electronic converters that interface some of
these loads. The main contribution of this work is that it demonstrates the convergence and
uniqueness of the solution using the Banach fixed-point theorem. The work by [21] presents
a generic power flow formulation for bipolar DC networks based on the Newton–Raphson
power flow formulation. Numerical results in different test feeders demonstrate that the
proposed Newton–Raphson approach allows finding the voltage profile with very close
results to those provided by the PSCAD/EMTDC simulation software.

The study by [1] solved the OPF problem in highly unbalanced bipolar DC networks
by applying the current injection method. The authors took into account the effect of the
neutral wire in their formulation, along with the reduction of the grid congestion and
the calculation of the locational marginal prices, using a linear version of the OPF prob-
lem via Taylor series. The authors of [13] presented the application of a multi-objective
optimization approach to determine the optimal load balancing in bipolar DC networks
with a high number of asymmetric loads. The problem was formulated as a mixed-integer
linear programming model, where the constant power terminals were neglected, reducing
the power flow equations to linear affine constraints. Numerical results in experimental
bipolar DC networks composed of 15 and 33 nodes and multiple LED lighting systems
demonstrated the effectiveness of the proposed model when compared to different combi-
natorial methods. In reference [22], an optimal commutation strategy to solve the optimal
load-switching problem in bipolar asymmetric DC networks is proposed. The optimization
problem is formulated as a mixed-integer nonlinear programming optimization problem,
where DC monopolar constant power loads are interfaced with switching devices that
define its connection of the positive or negative pole as a function of the energy losses
and voltage behavior of the network. The proposed optimization model is solved using a
genetic algorithm that defines the set of optimal load connections. Numerical simulations in
MATLAB/Simulink demonstrate the effectiveness of the proposed load-switching strategy.

The work by [12] proposes the solution to the OPF problem for bipolar DC networks
using a Jacobian-based formulation by applying the Newton–Raphson method. The OPF
problem is formulated through a current injection power flow formulation. The authors
state that the problem can be convex if the constant power loads are neglected; otherwise,
the OPF becomes a nonlinear non-convex optimization problem. Numerical results in
three distribution grids with multiple constant power loads confirm the effectiveness of the
proposed OPF approach when compared to the solutions obtained via nonlinear solvers
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in commercial optimization tools. The authors of [23] presented a convex approximation
method for solving the OPF problem in asymmetric bipolar DC networks. The convex
equivalent model was reached by applying Taylor series expansion to the hyperbolic
relation between voltages and powers at the constant power terminals. In the case of
dispersed generation nodes, the hyperbolic relation between power and voltages is directly
relaxed by changing the voltage variable as the value used for linearization via Taylor series
expansion. Numerical results in the 21- and 33-node systems demonstrate the effectiveness
of the proposed OPF solution via recursive programming when compared to three different
combinatorial optimization methods.

Based on the above-presented literature review regarding the power flow and OPF
solution methodologies, this research presents the following contributions:

i. A convex approximation for the power balance constraint associated with constant
power loads using a conic representation of the hyperbolic relation between voltages
and currents, and a linear approximation for nodes with dispersed generation sources.

ii. An iterative convex solution methodology to minimize the error introduced by the
linear approximation of the hyperbolic relation between voltage and currents in the
dispersed generation sources via recursive convex programming.

Note that the numerical results obtained in the 21-bus grid demonstrate that the
proposed iterative convex solution methodology can deal with the power flow solution
while considering neutral floating or solidly grounded connections with the same nu-
merical performance as the specialized power flow approaches (successive approxima-
tions, triangular-based, and Taylor-based methodologies) [19]. In addition, a complete
comparative analysis with three combinatorial optimization methods to solve the OPF
problem (i.e., the sine-cosine algorithm, the black hole optimizer, and the vortex search
algorithm [23]) demonstrated that the proposed iterative convex solution methodology
could find the global optimal solution. In contrast, most combinatorial methods are stuck
in local optima.

It is worth mentioning that in this research, the following considerations are taken
into account: (i) the location and nominal capacities of the distributed generators were
previously defined by the utility company; (ii) the dispersed generation sources were
connected between one of the poles (positive or negative) and the neutral wire—i.e., there
were no bipolar power sources; (iii) all power consumptions were modeled as constant
power terminals—i.e., there were no included constant resistive or endless current loads;
and (iv) the monopolar DC distribution network can be operated with the neutral wire
solidly grounded at all the nodes or only at the substation bus (this case will be called the
neutral floating scenario).

The remainder of this document is organized as follows. Section 2 presents the general
OPF model corresponding to a nonlinear non-convex programming problem. Section 3
describes the proposed conic and linear approximations applied to the power balance
constraints and the recursive approximation strategy while using an iterative solution
methodology. Section 4 outlines the main characteristics of the bipolar DC version of
the 21-bus grid with multiple unbalanced constant power loads. Section 5 shows the
main numerical results of the proposed convex approximated solution and its detailed
comparison with three different power flow methods and three combinatorial optimizers in
the case of the OPF solution. Finally, Section 6 describes the conclusions and future works
derived from this research.

2. Optimal Power Flow Modeling

The power flow problem in distribution networks is one of the most classical problems
studied in electrical engineering [24,25]. The main idea of this problem is to set the optimal
dispatch in all the distributed generators interconnected to the distribution grid in order to
minimize an objective function. Typically, this objective function corresponds to the total
grid power losses, i.e., the amount of power transformed into heat per unit of time in all
the resistive effects of the distribution branches.
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2.1. Objective Function Formulation

In the case of bipolar DC networks, this objective function can be formulated as follows:

min ploss = ∑
r∈P

∑
j∈N

Vr
j

(
∑

s∈P
∑

k∈N
Gjk

rsVs
k

)
, (1)

where ploss denotes the objective function associated with the total grid power losses; Vr
j

and Vs
k represent the voltage values at nodes j and k in the poles r and s, respectively;

Gjk
rs is a component of the conductance matrix G that associates nodes j and k and the

poles r and s. Note that this value is different from zero if and only if nodes j and k are
interconnected and r and s poles are the same. Moreover, P is the set that contains all the
poles of the DC network (i.e., the positive, neutral, and negative ones), and N is the set
that contains all the nodes of the bipolar DC grid under analysis.

2.2. Model Constraints

All the constraints associated with the OPF model are listed below:

Ip
g,k + Ip

dg,k − Ip
d,k − Ip−n

d,k = ∑
r∈P

∑
j∈N

Gpr
jk Vr

k , {∀k ∈ N} (2)

Io
g,k + Io

dg,k − Io
d,k − Iground

d,k = ∑
r∈P

∑
j∈N

Gor
jk Vr

k , {∀k ∈ N} (3)

In
g,k + In

dg,k − In
d,k + Ip−n

d,k = ∑
r∈P

∑
j∈N

Gnr
jk Vr

k , {∀k ∈ N} (4)

Ip
d,k =

Pp
d,k

Vp
k −Vo

k
, {∀k ∈ N} (5)

In
d,k =

Pn
d,k

Vn
k −Vo

k
, {∀k ∈ N} (6)

Io
d,k =

Pp
d,k

Vo
k −Vp

k
+

Pn
d,k

Vo
k −Vn

k
, {∀k ∈ N} (7)

Ip−n
d,k =

Pp−n
d,k

Vp
k −Vn

k
, {∀k ∈ N} (8)

Ip
dg,k =

Pp
dg,k

Vp
k −Vo

k
, {∀k ∈ N} (9)

In
dg,k =

Pn
dg,k

Vn
k −Vo

k
, {∀k ∈ N} (10)

Io
dg,k =

Pp
dg,k

Vo
k −Vp

k
+

Pn
dg,k

Vo
k −Vn

k
, {∀k ∈ N} (11)

Ip,min
g,k ≤ Ip

g,k ≤ Ip,max
g,k , {∀k ∈ N} (12)

Io,min
g,k ≤ Io

g,k ≤ Io,max
g,k , {∀k ∈ N} (13)

In,min
g,k ≤ In

g,k ≤ In,max
g,k , {∀k ∈ N} (14)

Pp,min
dg,k ≤ Pp

dg,k ≤ Pp,max
dg,k , {∀k ∈ N} (15)

Po,min
dg,k ≤ Po

dg,k ≤ Po,max
dg,k , {∀k ∈ N} (16)

Pn,min
dg,k ≤ Pn

dg,k ≤ Pn,max
dg,k , {∀k ∈ N} (17)
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Vp,min ≤ Vp
k ≤ Vp,max, {∀k ∈ N} (18)

Vn,min ≤ Vn
k ≤ Vn,max, {∀k ∈ N} (19)Vp

j
Vo

j
Vn

j

 =

 1
0
−1

Vnom, {j = slack} (20)

where Ip
g,k, Io

g,k, and In
g,k are the current injections at node k for the positive, neutral, and neg-

ative poles by the slack source; Ip
dg,k, Io

dg,k, and In
dg,k are the current injections at node k

for the positive, neutral, and negative poles by the dispersed generation sources; Ip
d,k, Io

d,k,
and In

d,k are the current consumptions at node k for the positive, neutral, and negative poles;

respectively; Ip−n
d,k is the current consumption of a load connected between positive and

negative poles; Iground
d,k is the total current drained to the ground under a neutral-grounded

operation scenario; Pp
d,k and Pn

d,k are the monopolar constant power consumptions at poles

p and n with respect to the neutral pole; Pp−n
d,k is the bipolar constant power consumption

connected between the positive and negative poles; Vp
k , Vo

k , and Vn
k are the voltage values

at node k for the positive, neutral, and negative poles, respectively; Ip,min
g,k , Io,min

g,k , and In,min
g,k

are the minimum current injections with a slack source connected at node k for the positive,
neutral, and negative poles, respectively; Ip,max

g,k , Io,max
g,k , and In,max

g,k are the maximum current
injections with a slack source connected at node k for the positive, neutral, and negative
poles, respectively; Pp,min

g,k , Po,min
g,k , Pn,min

g,k , Pp,max
g,k , Po,max

g,k , and Pn,max
g,k represent the minimum

and maximum power injections allowed for the dispersed sources; Vp,min and Vp,max are
the minimum and maximum voltage values allowed at node k for the positive pole; Vn,min

and Vn,max are the minimum and maximum voltage values allowed at node k for the
negative pole; and Vnom denotes the nominal voltage at the substation terminal (i.e., the
slack node).

Note that the optimization model (1)–(20) that represents the problem of the OPF
solution in bipolar DC networks qA originally reported in [23]. However, in order to make
it suitable for solving the OPF problem while considering a floating or solidly grounded
neutral wire, the following two aspects can be considered:

i. If neutral wire is assumed to be floating, then the variable Iground
d,k must be set as zero

for all the nodes.
ii. If the neutral wire is assumed to be solidly grounded at all nodes of the network, then

Iground
d,k is left as a free variable, and the voltage variable regarding the neutral pole

(i.e., Vo
k ) must be set as zero for all nodes of the network.

2.3. Model Interpretation

This subsection presents the complete interpretation of the OPF model, (1)–(20).
Equations (2)–(4) correspond to the current balance at each node of the network—i.e., the

application of Kirchhoff’s first law using the nodal voltage method. Equations (5)–(8) define
the calculation of the current demanded by a constant power terminal connected between
each pair of poles. These equality constraints are obtained by applying the definition of
electrical power for DC grids in the presence of constant power loads [26]. Equations (9)–(11)
determine the current injections at the nodes where dispersed generators are interconnected.
Box-type constraints (12)–(14) define the terminal limitations of the current outputs in the
conventional generation source (i.e., the slack node). Box-type constraints (15)–(17) present
the lower and upper bounds that limit power generation in dispersed sources in all the
poles. Inequality constraints (18) and (19) describe the well-known voltage regulation
constraints for the positive and negative poles. Finally, (20) defines the voltage output at
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the substation bus for each terminal; at this point, it is observed that the neutral wire is
solidly grounded.

Remark 1. By analyzing the NLP model that represents the OPF problem in unbalanced bipolar
DC networks, it can be stated that (i) the objective function in (1) is convex due to the positive
semi-definite nature of the conductance matrix [27]; (ii) the subset of constraints (5)–(11) shows
the hyperbolic relation between voltage and power at the generation and demand nodes, being the
non-convex component of the OPF problem for unbalanced bipolar DC grids.

3. Iterative Conic Solution Approach

This section presents the proposed convexification approach for the hyperbolic rela-
tions between powers and voltages in generation sources and constant power consumptions.
In the case of the power generation sources, an approximation based on slight variations
in the voltage profiles is considered, whereas for the constant power terminals, a conic
equivalent is formulated.

3.1. A Conic Approximation for Constant Power Loads

To represent the hyperbolic relation between voltage and powers in the demand nodes,
i.e., Equations (5)–(8), it is possible to obtain a conic relaxation to approximate their values
as convex equivalents [28]. Let us define a generic hyperbolic function to obtain the conic
equivalent representation of these currents:

f (x, y) = z =
C

x− y
, (21)

where C is a positive constant parameter, and x and y are two variables, such that x− y > 0,
which implies that z > 0. From (21), it is observed that:

C = (x− y)z,

C =
1
4
(z + (x− y))2 +

1
4
(z− (x− y))2,

4C + (z− (x− y))2 = (z + (x− y))2,∥∥∥∥2
√

C
x− y

∥∥∥∥
2
= z + (x− y). (22)

Remark 2. Equation (22) is entirely equivalent to the hyperbolic function (21). However, it can be
relaxed as a convex constraint by changing the equal condition for a lower equal one, as proposed
in [29]. This approximation is defined in Equation (23).∥∥∥∥2

√
C

x− y

∥∥∥∥
2
≤ z + (x− y). (23)

If the convex relaxation is applied to constraint (5), then the following conic approxi-
mation is obtained for the current demanded at the positive pole.∥∥∥∥∥ 2

√
Pp

d,k

Vp
k −Vo

k

∥∥∥∥∥
2

≤ Ip
d,k +

(
Vp

k −Vo
k

)
, {∀k ∈ N} (24)

In the case of the current demanded at the negative pole I, it is essential to mention that
Pn

d,k is positive. However, the denominator is negative (i.e., Vn
k −Vo

k < 0), which implies
that In

d,k is also negative. In light of this, some modifications regarding the current signs can
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be made to the optimization model (1)–(20) in order to ensure the correct application of the
conic approximation. ∥∥∥∥∥ 2

√
Pn

d,k

Vo
k −Vn

k

∥∥∥∥∥
2

≤ In
d,k + (Vo

k −Vn
k ), {∀k ∈ N} (25)

Now, the net current injection at the neutral pole (see Equation (7)) can be rewritten as
an affine equation, considering the definitions in (5) and (6):

Io
d,k = In

d,k − Ip
d,k, {∀k ∈ N} (26)

Finally, the bipolar current associated with the constant power load connected between
the positive and negative poles (see Equation (8)) can be expressed as a cone approximation
by using (23), as defined in (27).∥∥∥∥∥2

√
Pp−n

d,k
Vp

k −Vn
k

∥∥∥∥∥
2

≤ Ip−n
d,k +

(
Vp

k −Vn
k

)
, {∀k ∈ N} (27)

Remark 3. The constraints (24)–(27) (three conic approximations and one affine constraint) allow
turning the set of hyperbolic constraints (5)–(8) into a convex approximation, which constitutes the
main contribution of this manuscript.

3.2. A Linear Approximation for Generation Sources

To approximate the hyperbolic relation between voltages and powers in the case of
power generation sources, the following concept is taken into account. Consider a function
g(w, x, y) with the form defined in (28).

g(w, x, y) = z =
w

x− y
, (28)

where w is a positive variable in the numerator, and the denominator denotes the voltage
difference between two poles, i.e., x− y.

Now, considering the regulatory policies for the voltage profiles and the typical
operating conditions, i.e., regarding slight variations in their magnitudes with respect to
their nominal rates [30], the voltage difference between these voltages can be linearized
as follows:

z ≈ w
x0 − y0 + ∆xy

, (29)

where if we consider that ∆xy is near zero (i.e., ∆xy ≈ 0), then Equation (29) takes the form
shown in (30).

z ≈ w
x0 − y0

, (30)

which is a linear function of the variable w, depending on the operating point assigned to
the variables x and y.

Remark 4. Considering the linear approximation in (30) for the hyperbolic Equation (28), the cur-
rent injections in the dispersed generation sources (9)–(11) are approximated to linear functions
(convex constraints) with the structure defined below:
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Ip,0
dg,k =

Pp
dg,k

Vp,0
k −Vo,0

k,0

, {∀k ∈ N} (31)

In,0
dg,k =

Pn
dg,k

Vn,0
k −Vo,0

k

, {∀k ∈ N} (32)

Io,0
dg,k = −Ip,0

dg,k − In,0
dg,k. {∀k ∈ N} (33)

Observe that, with the constraints (31)–(33) and the conic approximations presented in
the previous section, the OPF formulation (1)–(20) is convexified.

3.3. Approximate Convex Model and Iterative Conic Solution

For the sake of compactness, the NLP model (31)–(33) is rewritten, considering the
proposed convexification methodology presented in model (34). In this model, the ini-
tial values of the voltages

[
Vp,0

k Vo,0
k Vn,0

k

]
are redefined using the iterative counter t

as
[
Vp,t

k Vo,t
k Vn,t

k

]
.

Obj. Func. min ploss = ∑
r∈P

∑
j∈N

Vr,t+1
j

(
∑

s∈P
∑

k∈N
Gjk

rsVs,t+1
k

)
,

Subject to.Ip
g,k + Ip,t

dg,k − Ip
d,k − Ip−n

d,k = ∑
r∈P

∑
j∈N

Gpr
jk Vr,t+1

k , {∀k ∈ N}

Io
g,k + Io,t

dg,k − Io
d,k − Iground

d,k = ∑
r∈P

∑
j∈N

Gor
jk Vr,t+1

k , {∀k ∈ N}

In
g,k + In,t

dg,k + In
d,k + Ip−n

d,k = ∑
r∈P

∑
j∈N

Gnr
jk Vr,t+1

k , {∀k ∈ N}

∥∥∥∥∥ 2
√

Pp
d,k

Vp,t+1
k −Vo,t+1

k

∥∥∥∥∥
2

≤ Ip
d,k +

(
Vp,t+1

k −Vo,t+1
k

)
, {∀k ∈ N}

∥∥∥∥∥ 2
√

Pn
d,k

Vo,t+1
k −Vn,t+1

k

∥∥∥∥∥
2

≤ In
d,k +

(
Vo,t+1

k −Vn,t+1
k

)
, {∀k ∈ N}

Io
d,k = In

d,k − Ip
d,k , {∀k ∈ N}∥∥∥∥∥ 2

√
Pp−n

d,k

Vp,t+1
k −Vn,t+1

k

∥∥∥∥∥
2

≤ Ip−n
d,k +

(
Vp,t+1

k −Vt+1
k n

)
, {∀k ∈ N} (34)

Ip,t
dg,k =

Pp
dg,k

Vp
k,t −Vo

k,t
, {∀k ∈ N}

In,t
dg,k =

Pn
dg,k

Vn
k,t −Vo

k,t
, {∀k ∈ N}

Io,0
dg,k = −Ip,0

dg,k − In,0
dg,k , {∀k ∈ N}

Ip,min
g,k ≤ Ip

g,k ≤ Ip,max
g,k , {∀k ∈ N}

Io,min
g,k ≤ Io

g,k ≤ Io,max
g,k , {∀k ∈ N}

In,min
g,k ≤ In

g,k ≤ In,max
g,k , {∀k ∈ N}

Pp,min
dg,k ≤ Pp

dg,k ≤ Pp,max
dg,k , {∀k ∈ N}

Po,min
dg,k ≤ Po

dg,k ≤ Po,max
dg,k , {∀k ∈ N}

Pn,min
dg,k ≤ Pn

dg,k ≤ Pn,max
dg,k , {∀k ∈ N}

Vp,min ≤ Vp,t+1
k ≤ Vp,max, {∀k ∈ N}

Vn,min ≤ Vn,t+1
k ≤ Vn,max, {∀k ∈ N}

Vp,t+1
j

Vo.t+1
j

Vn,t+1
j

 =

 1
0
−1

Vnom, {j = slack}
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Remark 5. The convex optimization model (34) has, as one of its main variables, the voltages at
iteration t + 1, which are a function of the voltage in the current iteration t. This implies that an
iterative convex solution must be implemented in order to minimize/eliminate the error introduced
by the linearization of the voltages in the power generation sources.

The iterative convex solution of the approximated model (34) that represents the OPF
problem in unbalanced bipolar DC grids is illustrated in Figure 2.

Start: Iterative
convex solution

Load and gen-
eration data

DC network
information

Make t = 0

Define[
vp,t

k , vo,t
k , vn,t

kt

]
=

[1, 0,−1]>

Obtain the nodal
conductance matrix

Program the convex
optimization model

Solve the opti-
mization model

using a convex tool

Report voltages
and powers

Evaluation
ends?

End: Result analysis

Solution report

Increase the t value,
i.e., t = t + 1

no

yes

Figure 2. Proposed iterative convex solution for the approximated OPF model defined in Equation (34).

It is worth mentioning that, in this research, the stopping criterion applied to determine
the convergence of the optimization model (34) with the solution strategy illustrated in
Figure 2 is defined as the maximum voltage magnitude difference between two consecutive
iterations. This convergence criterion is presented in (34):

max
k∈N , r∈P

{∣∣Vr
kt+1|| − |V

r
kt|
∣∣} ≤ ε, (35)

where ε is the convergence error, assigned as ε = 1× 10−8.
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4. Test Feeder Characteristics

The 21-bus test feeder was considered in this research for all the numerical validations.
It is a monopolar DC network originally reported in [31], where the convergence of the
Newton–Raphson approach was demonstrated via the Kantorovich theorem.

4.1. Bipolar DC Configuration

The schematic single-line diagram of the 21-bus grid is presented in Figure 3. Note
that, in order to illustrate the connection of the dispersed generation sources to the positive
pole in the 21-bus grid, photovoltaic generation sources are employed; and in the case of
dispersed generators connected to the negative pole, wind power sources are used.

ac

dcslack (v)

12

34

5

6 8

9

1011

12

13
14

1516

17

18

19

20

21

7

Figure 3. Single-line diagram of the 21-bus grid.

The main characteristics of this bipolar DC network (see Figure 3) are the following:
(i) the substation bus operates with a voltage magnitude in the positive and negative poles
of about ±1000 V, maintaining a solidly grounded neutral wire, i.e., with a voltage value
equal to 0 V; and (ii) the monopolar power consumptions (constant power loads connected
between each pole and the neutral wire) for the positive and negative poles are 554 and
445 kW, respectively. In addition, the bipolar power consumption (loads connected between
the positive and negative poles) is 405 kW.

4.2. Branch and Loading Information

The information regarding the distribution branches’ constant power loads and resis-
tive values is listed in Table 1.
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Table 1. Data for branches and loads in the 21-bus grid (all powers in kW).

Node j Node k Rjk (Ω) Pp
d,k Pn

d,k Pp−n
d,k

1 2 0.053 70 100 0
1 3 0.054 0 0 0
3 4 0.054 36 40 120
4 5 0.063 4 0 0
4 6 0.051 36 0 0
3 7 0.037 0 0 0
7 8 0.079 32 50 0
7 9 0.072 80 0 100
3 10 0.053 0 10 0
10 11 0.038 45 30 0
11 12 0.079 68 70 0
11 13 0.078 10 0 75
10 14 0.083 0 0 0
14 15 0.065 22 30 0
15 16 0.064 23 10 0
16 17 0.074 43 0 60
16 18 0.081 34 60 0
14 19 0.078 9 15 0
19 20 0.084 21 10 50
19 21 0.082 21 20 0

4.3. Dispersed Generation Data

To assess the effectiveness of the proposed iterative convex solution for the OPF
problem in unbalanced bipolar DC networks, it is considered that the 21-bus grid has four
dispersed generation sources. The information on these generators is listed in Table 2.

Table 2. Dispersed generation sources’ locations and capacities.

Node Connection Capacity (kW)

3 p 300
3 n 100
11 p 400
17 p 200
17 n 300

5. Computational Results

The computational implementation of the proposed iterative convex solution (ICS)
was carried out in the MATLAB programming environment (version 2021b) on a PC
(64-bit version of Microsoft Windows 10 Single Language) with an AMD Ryzen 7 3700
with a 2.3 GHz processor and 16.0 GB RAM. To solve the approximated convex model (34),
a disciplined convex tool of MATLAB (CVX) was used with the SDPT3 and the SEDUMI
solvers. Power flows and OPF methods were implemented with MATLAB scripts in order
to compare the ICS approach.

To assess the efficiency of the ICS, two main simulations were carried out.

i. A comparative analysis with three different power flow algorithms, two of them
derivative-free and another one based on Taylor series expansion.

ii. A comparison between the solution of the OPF problem with three combinatorial
optimization methods and the proposed ICS approach.

5.1. Power Flow Solution

For comparison, three different power flow solvers are considered in order to validate
the effectiveness of the proposed ICS. These are recently developed power flow methods
for asymmetric bipolar DC networks, namely, (i) the successive approximations power
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flow (SAPF) method reported in [14], (ii) the triangular-based power flow (TBPF) approach
outlined in [16], and (iii) the hyperbolic approximated power flow (HAPF) approach pre-
sented in [19]. Table 3 lists the solutions found with the proposed and comparative methods
regarding the power flow problem for the 21-bus grid, considering the same convergence
error and the possibility of having the neutral wire solidly grounded or floating.

Table 3. Power flow solution with the ICS and the comparative numerical methods.

Neutral Wire Solidly Grounded

Method Losses (pu) Iterations Time (ms)

SAPF 0.954237 13 0.5275
TBPF 0.954237 13 0.8340
HAPF 0.954237 13 1.5542

ICS 0.954237 2 —

Neutral Wire Floating

Method Losses (pu) Iterations Time (ms)

SAPF 0.912701 10 0.4911
TBPF 0.912701 10 0.7672
HAPF 0.912701 4 1.0212

ICS 0.912701 2 —

The results in Table 3 show that:

i. The derivative-free power flow approaches (i.e., SAPF and SAPF methods) require the
same number of iterations in each simulation case. This implies that these methods are
numerically equivalent for power flow studies with linear convergence. The HAPF
approach for the solidly grounded case exhibited a linear convergence with the same
number of iterations as the SAPF and SAPF methods; and in the case of the floating
neutral wire, the convergence was quadratic, requiring four iterations, in contrast with
the ten iterations taken by the SAPF and SAPF methods.

ii. The main difference regarding the connections of the neutral wire (i.e., the solidly
grounded and the floating cases) was the total grid power loss. As expected, with the
floating neutral wire, the losses value was 95.4237 kW, which was reduced to 91.2701 kW.
i.e., a variation of about 4.1536 kW in favor of the solidly grounded connection. This
is an expected behavior, as the current in the neutral wire is directly drained to the
earth when it is solidly grounded, which helps to reduce power losses, in contrast with
the neutral floating wire, where the presence of asymmetric loads produces neutral
circulating currents.

iii. As for processing times, the ICS takes about 5 s to solve the power flow problem,
which is a higher value in comparison with the specialized power flow methods,
in which only milliseconds are spent. However, it is worth highlighting that the ICS
for model (34) involves an optimization problem with infinite feasible solutions and
only one global optimal solution. In contrast, the specialized power flow methods
can solve the problem without employing combinatorial optimization approach in a
master–slave connection.

5.2. OPF Solution

In this subsection, the solution to the OPF problem is presented, which was obtained by
implementing the proposed ICS methodology. Three combinatorial optimization methods
were implemented for the sake of comparison, as in shown Table 4.
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Table 4. Selected combinatorial optimization methods.

Method Ref. Evaluations Iterations Pop. Size

Black-hole optimizer (BHO) [32]
Sine-cosine algorithm (SCA) [33] 100 1000 20
Vortex-search algorithm (VSA) [34]

Note that the selection of the aforementioned combinatorial optimization algorithms
was based on their excellent results for solving NLP problems with a non-convex structure,
as was the case of model (1)–(20). In addition, 100 consecutive evaluations were performed
in order to conduct a statistical analysis. Note that, in order to implement the OPF problem
with metaheuristics, a master–slave optimization approach must be employed [35]. Here,
the SAPF method was selected for the slave stage, in combination with each one of the
algorithms in Table 4. The numerical results for the OPF problem are listed in Table 5. Note
that these results were obtained for the neutral wire floating, as in the scenario with the
highest possible power losses.

Table 5. Comparative analysis between combinatorial optimizers and the ICS methodology (all
values in pu).

Method Min. Mean Max. Std. Dev. Time (s)

SCA 0.23054 0.25305 0.29703 1.39× 10−2 6.7870
BHO 0.23066 0.23183 0.23329 5.90× 10−4 13.1513
VSA 0.22986 0.22986 0.22988 4.23× 10−6 8.3176

ICS 0.22985 0.22985 0.22985 <1× 10−16 11.6125

The numerical results in Table 5 show that:

i. The best combinatorial optimization method is the VSA, as demonstrated in [34]. This
algorithm found a solution of 22.986 kW, which is near the optimal solution reached
with the ICS (22.985 kW). The main difference between both approaches lies in their
standard deviation: the VSA reported about 4.23× 10−6, whereas that of the proposed
ICS was less than 1× 10−16. These values confirm two things. (i) It is impossible to
ensure 100% repeatability with the VSA approach, since the standard deviation is
a measure associated with the dispersion between solutions. Even if these are in a
closed ball, it is possible to obtain an answer out of it, as is the case of the maximum
solution (22.988 kW). (ii) Due to the convex nature of the solution space in model (34),
the proposed ICS always reaches the exact numerical solution, thereby confirming the
standard deviation’s negligible value.

ii. The BHO and SCA got stuck in locally optimal solutions, with values of 23.054 and
23.066 kW. However, these solutions can be regarded as acceptable for the power flow
solution, since both were less than 0.10 kW away from the optimal one (i.e., solution
found with the ICS). Nevertheless, the main problem with these solutions lies in the
high variability between their minimum and maximum values, which can be observed
in their standard deviation.

iii. Concerning the processing times, it is noted that all of the OPF algorithms in Table 4
required simulation times of between 8 and 13.5 s. However, each one of the combi-
natorial optimizers requires multiple evaluations in order to determine their average
behavior, which means that, after 100 consecutive evaluations, the processing times of
the ICS were effectively 100 times higher. This implies that the proposed methodology
is the most effective approach, given the fact that no statistical analysis is needed.

5.3. Complementary Analysis

To illustrate the effect of the optimal dispatch of dispersed generation sources on the
electrical behavior of bipolar DC networks, this subsection presents the behavior of the
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voltage profiles in the benchmark case and in the case with dispersed generation and a
floating neutral wire. Figure 4 presents the voltage profile at each pole for both comparison
simulation cases.
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Figure 4. Voltage profile performance before and after optimally dispatching dispersed genera-
tion sources.

The voltage behavior of the positive, neutral, and negative poles depicted in Figure 4
shows that:

i The minimum voltage in the benchmark case (without dispersed generation) occurred
at the positive pole, i.e., a value of 0.8883 pu at node 17, which implies that the voltage
regulation of the bipolar DC network was about 11.17%. This is a significant result,
as it demonstrates that, without dispersed generation, the 21-bus network does not
fulfill the voltage regulation condition for distribution networks (typically ±10%).
However, this only occurs for the positive pole because it is the most loaded pole.
In the case of the negative pole, the minimum voltage was −0.9098, which implies
that the voltage regulation for this pole is below the permitted limits.

ii. The behavior of the neutral pole shows that, once the dispersed generation is intro-
duced into the distribution network, it helps balance the voltage behavior of the sys-
tems. Note that the maximum voltage in the neutral wire was 0.02434 pu, i.e., 24.34 V
at node 17 in the benchmark case. In contrast, when the dispersed generation was
optimally dispatched, the maximum voltage deviation in the neutral wire was about
0.0139 pu, i.e., 13.90 V at node 12.

iii. The presence of dispersed generation in bipolar DC networks has important effects on
the performance of the voltage profile. Note that node 17, for the positive and negative
poles, has a magnitude of 1.0 pu, i.e., an ideal voltage profile due to the injection of
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power at this node with the dispersed sources. In addition, the voltage regulation for
this system with dispersed sources was 3.32%. The minimum voltage at node 12 had
a magnitude of 0.9668 pu in the negative pole.

Finally, to show the convergence of the proposed ICS in solving the power flow and
OPF problems in bipolar DC networks, Figure 5 presents the convergence properties of the
algorithm, considering the tolerance assigned for ε = 1× 10−8, by plotting the following
function log

(
maxk∈N , r∈P

{∣∣∣Vr
kt+1|| −

∣∣Vr
kt

∣∣∣∣∣}). This function is plotted for the power flow
problem and the OPF solutions reached with the proposed ICS while considering floating
and neutral solidly grounded neutral connections.
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Figure 5. Convergence behavior of the proposed ICS methodology for the power flow and optimal
power flow problems.

Figure 5 shows that the proposed ICS methodology, which is based on the conic
representation of the hyperbolic relations between voltage and powers in the constant
power loads, exhibits linear convergence. In the case of the power flow, it found the optimal
solution in two iterations, whereas for the OPF problem, the solution was found after four
iterations. Note that, in the OPF solution, when the neutral wire was solidly grounded at
each node, the final power loss was about 18.1385 kW, which confirms that, with regard
to the floating operation case, dispersed generation involves an additional reduction of
about 4.8470 kW. This result confirms that the best possible operation scenario for bipolar
DC networks is when all the nodes are solidly grounded in the neutral wire, as the power
losses are minimal.

6. Conclusions and Future Work

In this research, a convex approximation was implemented for the OPF problem
in monopolar DC distribution networks. This convex model was obtained using two
approximation concepts. The first relates to the conic equivalent representation of the
product between two variables for constant power loads, and the second one is associated
with the relaxation of the hyperbolic relation between voltage and powers in the dispersed
generation sources, based on the slight variations in the voltages compared to the power
inputs. To reduce/eliminate the error introduced by the use of the initial voltages vp,t

k , vo,t
k ,

and vn,t
k to determine the next set of values vp,t+1

k , vo,t+1
k , and vn,t+1

k , a recursive solution
approach (ICS) was implemented.

The numerical results in the 21-bus grid demonstrated that:
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i. The proposed ICS reached an equal solution for the power flow problem when com-
pared to three different specialized power flow approaches (SAPF, TBPF, and HAPF)
for both simulation cases associated with the neutral wire’s connection, i.e., the solidly
grounded and floating cases.

ii. The OPF solution showed that the ICS found the global optimal solution for the 21-bus
grid, with a value of 22.985 kW. The VSA approach, with a near-optimal solution, only
followed the ICS. However, the proposed method always reached an equal optimal
solution due to the convex nature of the solution space. In contrast, the VSA and the
other comparison methods (BHO and SCA) can get stuck in locally optimal solutions,
as evidenced by the statistical analysis.

iii. The voltage profile analysis showed that, for the benchmark case, when the neutral
wire is floating, the voltage regulation in the test feeder is about 11.17%. However,
when the dispersed generation is optimally dispatched, the voltage regulation of the
21-bus grid is improved, with a final value of 3.32%. This implies that dispersed
generators allow for an improvement of about 7.85%.

Regarding processing times, the proposed OPF approach via the ICS methodology
took 11.6125 s to solve the studied problem while a global optimum global, with the main
advantage that its convergence to the solution is linear, only taking four iterations when the
convergence error is set as 1× 10−8. At the same time, the processing times required by the
other approaches oscillate between 6.7870 and 13.15 s on average. The main problem is that
a global optimum cannot be ensured. These times are also multiplied by all the evaluations
required for the statistical analyses.

Possible future works derived from this work are (i) the inclusion of the optimal
dispatch of renewable generation sources and batteries in the ICS approach and (ii) the
implementation of the proposed convex model for solving the optimal pole-swapping
problem in highly asymmetric DC networks.
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