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Abstract: The concept of local energy communities is receiving increasing attention. However, the
question of how to distribute the benefit of a community among its members is still open. It is
commonly desired that the benefit distribution is fair and stable. While benefit distribution schemes
such as the nucleolus, Shapley value and Shapley-core are known to perform well in terms of fairness
and stability, studies have shown that none of them can guarantee full fairness and stability at the
same time. However, the existing studies neglect the temporal component. Hence, in order to gain
more insights into the stability and fairness of the three aforementioned distributions in practice, we
investigate their performance over time in simulation experiments on real-world data from Australian
households. In about 90% of the cases, the Shapley value yielded a reasonably stable distribution,
while the nucleolus yielded a reasonably fair distribution in about 75% of the cases. Furthermore, the
experiments show an impact of the community size on the stability and fairness of the investigated
distributions. One can conclude that for small communities, the Shapley value is the best choice,
but that the nucleolus and Shapley–core become more and more attractive with increasing size of
the community.

Keywords: local energy community; fairness; stability; Shapley value; nucleolus; Shapley–core

1. Introduction

Due to the ongoing increase in distributed energy production, especially renewable
energy, there is increasing interest in local energy communities (LECs) [1]—also termed local
energy markets or renewable energy communities. In a local energy community, multiple
consumers, producers, and/or prosumers team up in order to benefit from exchanging
energy locally. An LEC can be, for example, formed by different parties living in the same
building or by multiple households in a neighborhood. With the revised renewable energy
directive (RED II) from 2018 and the internal electricity market directive (IEMD) from 2019, the
European Union (EU) established a legal framework for LECs [2]. In 2022, the EU launched
the Energy Communities Repository initiative for supporting the setup of LECs [3]. LECs
have been realized and demonstrated in different projects [4,5].

There are different models of local energy communities, which can be roughly divided into
market-based models and cost- or benefit-sharing models. In market-based models, users trade
energy with each other on a local energy market. Various market designs are proposed in the
literature, which differ in terms of aspects such as the time of trading (day-ahead market versus
real-time market), the level of centralization (peer-to-peer market versus centralized market),
and the way the final prices are determined. Mengelkamp et al. [6] compare a peer-to-peer
market design with a centralized market design. Lezama et al. [7] compare different approaches
for computing bids in a centralized day-ahead local energy market. Garcìa-Muñoz et al. [8]
propose a two-stage model for coordinated local trading in a day-ahead and a real-time market.
Etukudor et al. [9] describe a framework for bilateral negotiation in a local peer-to-peer market.
A detailed overview and categorization of existing local energy market designs is provided by
Capper et al. [10].
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Market-based models can be seen as non-cooperative models, where users act egois-
tically in order to maximize their own profit. In contrast, benefit-sharing models assume
that users cooperate to maximize the benefit of the whole community and that the resulting
benefit is distributed to the users in order to determine their energy bills. Typically, it is
assumed that such a community is managed by a central entity, also called the community
manager [11]. Assets, such as photovoltaics (PV) systems or stationary batteries, might
be bought and owned by the community instead of individual users [12]. Benefit-sharing
models have the advantage that they are more simple and require fewer actions from the
users compared to market-based models. It can be assumed that this is beneficial for the
user acceptance. The Community S project [13], which demonstrates an LEC in real-life
settings and real market conditions in Portugal, adopts a benefit-sharing model due to
its practicality.

Some works consider a mix of the market-based and benefit-sharing models, where
transactions in a local energy market are determined centrally without influence of the
users [14].

The application of a benefit-sharing model in practice requires deciding how the
benefit is distributed to the members of the community. The decision can be expected to
have a high impact on the user acceptance. However, as pointed out by Norbu et al. [15],
how to distribute the benefit in an LEC is still an open question of both academic and
practical interest. Different approaches for distributing the benefit to the users are proposed
in the literature, ranging from simple approaches such as mid-market rate [16], equal
split benefit [17], and virtual net-billing [18] to more complex approaches such as Shapley
value [19], nucleolus [20], MinVar [21] and Shapley–core [12]. Fioriti et al. [12] do not only
consider the fair distribution of benefits to the members of the community, but also a fair
payment of the community manager. An overview of existing benefit distribution schemes
can be found in [18]. The different approaches have different strengths and weaknesses.
Typically, it is desired that the benefit distribution is fair and stable. The latter means that
there are no sub-communities that can benefit from separating from the whole community.
The nucleolus is a benefit distribution derived from game theory. It is, by definition, the
distribution with maximum stability. Fairness can be interpreted in different ways and,
thus, there is no universal definition of what makes a benefit distribution fair or unfair.
However, the Shapley value is generally considered to be the most fair distribution [12,22].
We follow this definition of fairness and, thus, when we speak of fairness in the following,
we typically refer to fairness in the sense of the Shapley value. Like the nucleolus, the
Shapley value is derived from game theory. It distributes the benefit based on the marginal
contributions of the users. Since the nucleolus is stable but cannot guarantee fairness and
the Shapley value is fair but cannot guarantee stability, Fioriti et al. [12] proposed the
Shapley–core distribution scheme as a compromise between the nucleolus and Shapley
value. Of all the stable distributions, the Shapley–core is the distribution with the smallest
distance to the Shapley value.

In the present work, we analyze the Shapley value, the nucleolus, and the Shapley–
core in simulation experiments in a realistic use case in order to investigate the stability
and fairness of these three benefit distribution schemes in practice. There are already
comparisons of different schemes for distributing the benefit of a local energy community.
An overview to such works can be found in Table 1.

The works [21,23] investigate the stability, ref. [22] investigates the fairness, and [12,18]
investigate both the fairness and stability of the considered distribution schemes. In [11],
the impact of uncertainties on the analyzed distributions is investigated. While there are
already a number of works analyzing fairness and stability of different distributions, they
have a common drawback: all these works simulate and investigate the distribution of
the benefit an LEC gains in a fixed time period ranging from one day to one year. That
means they only consider a certain snapshot in the investigations. Over time, unfairness
and/or instability might diminish, since users who are treated disadvantageously in one
time period might be treated advantageously in another time period. This brings us to the
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question of how the fairness and stability develop over time. Thus, in the present study, we
focus on the temporal behavior of the three investigated distribution schemes. To the best
of our knowledge, this is the first work making a comparison of this type. Furthermore,
we propose the use of normalized measures for stability and fairness, since these can be
expected to be practically more relevant than absolute measures. In this way, we contribute
to the existing research by gaining new practical insights into the performance of the three
investigated benefit distribution schemes.

Table 1. Overview of existing works comparing benefit distribution schemes for local energy
communities.

Work Considered Horizon Considered Distribution Schemes

[21]
(2017)

1 day Shapley value, MinVar, per capita allocation,
per volume allocation, per capacity allocation

[22]
(2019)

1 year Shapley value, mid-market rate, bill sharing,
supply demand ratio

[23]
(2020)

1 day Shapley value, nucleolus, mid-market rate,
equal split benefit, bill sharing, and three other schemes

[12]
(2021)

1 year (?) Shapley value, nucleolus, Shapley–core,
Shapley–nucleolus, MinVar, MinVar/nucleolus

[11]
(2021)

1 day Mid-market rate, bill sharing, supply demand ratio

[18]
(2022)

1 month Shapley value, mid-market rate, bill sharing, MinVar,
virtual net billing, supply demand ratio

The rest of the paper is structured as follows: Section 2 describes the considered
model of local energy communities more in detail. Section 3 provides a few game theoretic
preliminaries, which are important to understand the rest of the manuscript. In Section 4,
the three investigated benefit distribution schemes are explained. In addition, two simple
distribution schemes are explained, in order to place the investigated schemes in a broader
context. Furthermore, the research questions are outlined more in detail. Section 5 describes
the setup of the experiments and presents and discusses their results. Finally, Section 6
provides a summary and conclusion.

2. Local Energy Communities

We consider a local energy community N consisting of N users or households, which
are equipped with PV systems. Each user n has a certain energy demand Dn,t ≥ 0 and PV
production Pn,t ≤ 0 in a time step t, resulting in a net consumption of dn,t = max{Dn,t +
Pn,t, 0} and a net production pn,t = min{Dn,t + Pn,t, 0} in time step t. The users can
buy energy from the grid for a price of cbuy monetary units per energy unit and can sell
overproduction to the grid for a price csell with cbuy > csell . Thus, without participation in
the energy community, the energy cost Cn of a single user n over a time period of T time
steps would be as follows:

Cn =
T

∑
t=1

(cbuydn,t + csell pn,t). (1)

It is assumed that users can exchange overproduction within the community. The energy
cost CN of the whole community over T time steps can then be computed as

CN =
T

∑
t=1

(
cbuy max{ ∑

n∈N
(dn,t + pn,t), 0}+ csell min{

N

∑
n=1

(dn,t + pn,t), 0}
)

(2)
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resulting in a total benefit v(N ) of

v(N ) = ∑
n∈N

Cn − CN (3)

for the whole community. Analogously, the benefit v(S) of each sub-community S ⊂ N
can be computed. The benefit is distributed among the users of the community according
to a certain distribution scheme r = {r1, . . . , rN}, with ∑n∈N rn = v(N ), where user n is
assigned a benefit rn. Thus, the energy cost of user n reduces to Cn − rn.

3. Game Theoretic Preliminaries

The energy community can be modeled as a cooperative game where the users are
players who cooperate in order to maximize the total and their individual benefits. Given a
benefit distribution r, the so-called excess e(S , r) of a sub-community S ⊂ N is

e(S , r) = v(S)− ∑
n∈S

rn. (4)

If e(S , r) ≥ 0, the sub-community S can increase its benefit by separating from the commu-
nity N . A benefit distribution r is called stable, if the maximum excess

ê(N , r) = max
S⊂N

e(S , r) (5)

is lower than or equal to zero, i.e., no sub-community has a reason to leave the community.
The so-called core of the game is the set {r|ê(N , r) ≥ 0} of all stable benefit distributions.
There are games with empty cores, but it can be shown that the core of the considered game
of an energy community is non-empty [18].

4. Benefit and Cost Distribution Schemes

There are different approaches for distributing the benefit or cost of the community
over the individual users. In the following, five common approaches are explained and
are illustrated with the following example. Let us assume there is an energy community
consisting of three users u1, u2, and u3. Furthermore, let the price cbuy for buying energy
from the grid be 30 monetary units per kWh and the feed-in tariff csell 10 monetary units
per kWh. We consider only one time interval with a net load of −50 kWh, 50 kWh, and
70 kWh for the users u1, u2, and u3, respectively. Thus, u1 has an overproduction, which
can be completely consumed by both u2 and u3. The total benefit of the community is
50 · 20 = 1000 monetary units.

The equal split benefit (EB) scheme [17] distributes the benefit equally among the
users. In the given example, all users would have a benefit of 1000/3. This can be considered
as unfair, since it does not take into account the individual contributions of the users to the
total benefit. Furthermore, stability is not guaranteed.

The mid-market rate (MMR) scheme [16] sets energy prices in each time step t as
follows. If the total load Lt = ∑n∈N(Dn,t + Pn,t) of the community is not negative, i.e., there
is no overproduction of the total community, the users with overproduction are paid

cmid =
cbuy + csell

2
(6)

monetary units per energy unit of their overproduction and the users with a positive net
consumption pay

cb
t =

cmid|∑n∈N pn,t|+ cbuyLt

∑n∈N dn,t
(7)

monetary units for each energy unit of their net consumption. If the total load Lt is negative,
i.e., the total community has an overproduction, the users with positive net consumption
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have to pay the price cmid for their net consumption and the users with overproduction sell
their overproduction for the price

cs
t =

cmid ∑n∈N dn,t + csell |Lt|
|∑n∈N pn,t|

. (8)

The MMR scheme considers the individual contributions of the users to a certain degree. In
time steps with overproduction of the community, the users with non-zero net consumption
benefit more, and in time steps without overproduction, the users with non-zero net gener-
ation benefit more. In our example, there is only one time step and the total community
has no overproduction. Thus, user u1 is paid cmid = 20 monetary units for each kWh of his
overproduction and the users u2 and u3 have to pay a price of cb

t = 20×50+30×70
120 = 25.83 for

each kWh of their net consumption, resulting in benefits of 500, 208.33, and 291.67 monetary
units for u1, u2, and u3, respectively. This appears unfair, since u3 does not contribute more
to the benefit than u2. Furthermore, the MMR scheme can also not guarantee stability.

The Shapley value (SV) [19] distributes the benefit among the users based on their
marginal contributions to the total benefit. The benefit rSV

n of a user n is computed as

rSV
n =

1
N ∑
S⊆N\{n}

(
N − 1
|S|

)−1
· (v(S ∪ {n})− v(S)). (9)

The benefit distribution via Shapley value is considered to be fair [24,25]. The Shapley
value has the properties of symmetry , null-player property, and additivity. Symmetry means
that two players n and m with the same marginal contributions receive the same benefit:

v(S ∪ {n}) = v(S ∪ {m}), ∀S ⊆ N \ {n, m} → rn = rm. (10)

The null-player property means that a user without any contribution receives no benefit:

v(S ∪ {n}) = 0, ∀S ⊆ N \ {n} → rn = 0. (11)

Additivity means that given two functions v and w for the benefit of each sub-community,
the distribution r(v + w) of the benefit gained with v + w is the sum of the benefit distribu-
tions with v and w:

rn(v + w) = rn(v) + rn(w), ∀n ∈ N . (12)

The two benefit functions can be interpreted as benefits gained over two distinct time peri-
ods. Hence, the additivity is a very desirable property in the context of energy communities,
since it imposes that the benefits gained by the individual users are independent of the
length of the billing periods. For instance, the distribution of the total benefit gained in two
days is the same as the sum of the distributions of benefits gained at each of the two single
days. For the example described above, the SV would assign a benefit of 666.67 to user u1
and a benefit of 166.67 each to users u2 and u3.

The nucleolus (NC) [20] is a benefit distribution scheme focused on the stability. It dis-
tributes the benefits in order to minimize the maximum excess across all sub-communities:

rNC = arg min
r

ê(N , r). (13)

This can be computed by solving a linear optimization problem [18]. For the given example,
the nucleolus would assign user u1 the whole benefit of 1000, while the users u2 and u3
would not receive any benefit. This is the only stable benefit distribution for the example.
This can be seen as unfair, since u2 and u3 contribute to the total benefit but do not receive
a share of it. Furthermore, while this distribution is stable, it does not incentivize u2 and u3
to participate in the community.
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The Shapley–core (SC) benefit distribution was proposed by Fioriti et al. [12] as a
compromise between the nucleolus and the Shapley value. From all the benefit distributions
in the core, it chooses the one with the minimum distance to the Shapley values:

rSC = arg min
r|ê(N ,r)≤0

√
∑

n∈N
(rn − rSV

n )2. (14)

This can be computed analogously to the nucleolus by solving a quadratic optimization
problem. In our example, Shapley–core would distribute the benefit in a similar way to the
nucleolus, since, as already mentioned, this is the only benefit distribution in the core.

From the five described benefit distribution schemes, only the SV can be considered
to be fully fair, only the SV and EB are additive, and only the NC and SC guarantee
stability. SV, NC, and SC have the drawback that they have a computational complexity of
O(2N). However, they have the most appealing properties. Furthermore, for the practical
application, there are no real-time requirements and a runtime of a few hours can be
assumed to be acceptable. In the following, we analyze the stability and fairness of these
three benefit distributions with a realistic use case. More precisely, we investigate the
following questions:

1. How stable is the Shapley value distribution in practice? Does it typically or even
always yield an unstable distribution or not?

2. If the Shapley value distribution is unstable, there is a sub-community that can gain
a benefit from separating from the community. However, if this benefit is constant
or even decreases over time, this might be not an issue in practice. How does the
stability of the Shapley value progress over time?

3. How unfair is the nucleolus in practice and how does its unfairness progress over time?
4. Since the nucleolus is not additive, it does not guarantee maximum stability when

applied over multiple billing periods. How does the nucleolus applied over multiple
time periods perform in relation to the nucleolus applied to the full time frame?

5. Similar to the nucleolus, the Shapley–core is not additive and not fully fair. How
unfair is it and how do its unfairness and stability progress over time?

5. Experiments
5.1. Use Case

In the experiments, we consider publicly available data of half-hourly energy demand
and PV production of 300 Australian households equipped with PV systems [26]. We
consider a time period of 100 days, starting with the first of February 2011. Figure 1
shows the half-hourly gross demand and PV production of one exemplary user during the
considered time period.

A boxplot of the users’ average daily and maximum hourly demand and production
in the considered time period is shown in Figure 2.

We assume a price of AUD 0.338 per kWh for energy bought from the grid [27] and a
feed-in tariff of AUD 0.076 per kWh [28]. We executed 1000 trials. In each trial, an energy
community N consisting of three to 15 randomly selected households is simulated. For
each of the 100 considered days, the total benefit of the community gained on this day is
distributed among the users in the community. For each user, the cumulative sum of his
daily benefits is computed in order to compute his benefit gained between the start of the
considered time period and the end of each day of the period. This is calculated with the
SV, SC, and nucleolus benefit distribution schemes. Furthermore, for a comparison to the
day-wise benefit distributions, the whole benefit of the community over all 100 days is
distributed with the SC and nucleolus.
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Figure 1. Half-hourly demand (a) and PV production (b) of one user.
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Figure 2. Boxplot of the users’ average daily and maximum hourly demand and production.

5.2. Experimental Results
5.2.1. Shapley Value

Figure 3a shows the progress of the maximum excess over the 100 days for the 1000 tri-
als with Shapley value benefit distribution.
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Figure 3. Progress of maximum excess (a) and normalized maximum excess (b) with Shapley value
for 1000 trials.
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In 596 of the 1000 trials, the final maximum excess after 100 days is less than or equal
to zero, meaning that the benefit distribution is stable. In the remaining 404 trials, the
benefit distribution is unstable. However, as already stated, if the maximum excess does
not increase over time, one can assume that the energy community would be stable in
practice. Even if the maximum excess increases over time, it can be assumed that the sub-
community with the maximum excess has no strong reason to separate from the community
if their excess decreases in proportion to their benefit gained in the community. Figure 3b
shows the progress of the maximum excess with the Shapley value normalized to the total

benefit of the community e(N , rSV) = ê(N ,rSV)
v(N )

. With help of a Mann–Kendall test [29,30],
we determined whether there are statistically significant trends of the excesses and the
normalized excesses between day 20 and day 100 with a significance level of 0.05. We do
not consider the first 19 days in the test since, as one can see in Figure 3, there are high
fluctuations in the first days. Table 2 shows the results for the 404 unstable trials with
positive final excess.

Table 2. Numbers of unstable trials with increasing, decreasing, and no trend in the excess and
normalized excess between day 20 and 100 with Shapley value benefit distribution.

Trend Maximum Excess Normalized Maximum Excess

Increasing 210 46
Decreasing 132 322

None 62 36

For 210 trials, the maximum excess is increasing, but in 322 trials, the normalized
excess is decreasing. Thus, one can say that the Shapley value yielded a critically unstable
benefit distribution in only 82 of the 1000 trials.

Figure 4 shows boxplots of the final excesses and normalized excesses after the 100 days
subdivided by the number N of users in the energy community.
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Figure 4. Boxplot of final maximum excess (a) and normalized maximum excess (b) with Shapley
value in 1000 trials broken down by the number of users in the community.

As one can see, the final excess tends to increase with an increasing number of users.
Beginning with 10 users, the mean final excess is positive. Additionally, the final normalized
excess tends to increase with an increasing number of users. Thus, one can say the larger
the energy community, the more unstable the Shapley value becomes.

5.2.2. Nucleolus

Figure 5a shows the progress of the Shapley distance for the 1000 trials with nucleolus
benefit distribution.
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Figure 5. Progress of Shapley distance (a) and normalized Shapley distance (b) with nucleolus for
1000 trials.

The Shapley distance of a certain benefit distribution is the Euclidean distance between
the distribution and the corresponding benefit distribution with Shapley value. It can be
interpreted as a measure of unfairness [24,31]. Figure 5a shows that the Shapley distance of
the nucleolus distribution usually increases over time. However, this is not very surprising,
since the total benefit increases and, thus, the norm of the Shapley value also increases. A
better indicator for the unfairness is the Shapley distance normalized to the total benefit.
The progress of the normalized Shapley distance in the 1000 trials can be seen in Figure 5b.
Again, we used a Mann–Kendall test with a significance level of 0.05 to test the trends in
the Shapley distances and normalized Shapley distances starting with day 20. The results
are shown in Table 3.

Table 3. Numbers of trials with increasing, decreasing, and no trend in the Shapley distance and
normalized Shapley distance between day 20 and 100 with nucleolus.

Trend Shapley Distance Normalized Shapley Distance

Increasing 967 178
Decreasing 12 746

None 21 76

Although the Shapley distance increases in 967 trials, the normalized Shapley distance
increases in only 178 trials. In 746 trials, the normalized Shapley distance even decreases. Hence,
the nucleolus tends to become more fair over time. Figure 6 shows the distribution of the final
Shapley distance and normalized Shapley distance with nucleolus per number of users.
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Figure 6. Boxplot of final Shapley distance (a) and normalized Shapley distance (b) with nucleolus in
1000 trials broken down by the number of users in the community.
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While the absolute Shapley distance is rather independent of the number of users, the
normalized Shapley distance decreases with an increasing number of users. As stated, the
nucleolus is not additive. Thus, the day-wise computed nucleolus considered so far differs
from the nucleolus computed over the full period. Figures 7 and 8 show the distributions
of the differences between the final excess and Shapley distance of the day-wise and
full-period nucleolus separated by number of users.
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Figure 7. Boxplot of difference between final maximum excess (a) and normalized maximum ex-
cess (b) of day-wise and full-period nucleolus in 1000 trials separated by the number of users in
the community.
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Figure 8. Boxplot of difference between final Shapley distance (a) and normalized Shapley distance (b) of
day-wise and full-period nucleolus in 1000 trials separated by the number of users in the community.

The difference in the final excess is of course always positive, i.e., the stability of the
day-wise nucleolus is weaker than that of the full-period nucleolus. The absolute difference
is rather independent of the number of users, while the normalized excess decreases with a
higher number of users. The difference in the Shapley distance has a tendency to decrease
with an increasing number of users, and it is typically negative, meaning that the day-wise
nucleolus is more fair than the full-period nucleolus.

5.2.3. Shapley–Core

Figure 9 shows the progress of the excess and normalized excess with Shapley–core
benefit distribution. Table 4 shows the corresponding trends, and Figure 10 shows the
distributions per number of users.
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Figure 9. Progress of maximum excess (a) and normalized maximum excess (b) with Shapley–core
for 1000 trials.

Table 4. Number of trials with increasing, decreasing, and no trend in the excess and normalized
excess between day 20 and 100 with Shapley–core benefit distribution.

Trend Maximum Excess Normalized Maximum Excess

Increasing 0 226
Decreasing 1000 641

None 0 133
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Figure 10. Boxplot of final maximum excess (a) and normalized maximum excess (b) with Shapley–
core in 1000 trials broken down by the number of users in the community.

As can be seen, the excess increases, i.e., the stability of the benefit distribution becomes
weaker, with an increasing number of users in the community. Analogously, Figure 11,
Table 5, and Figure 12 show the progress, trends, and distributions per user of the Shapley
distance. The normalized Shapley distance tends to decrease over time, but to increase
with an increasing number of users.

Figure 13 shows the difference between the final maximum excess and normalized
excess of the day-wise and full-period Shapley–core. The difference is typically negative,
meaning that the day-wise Shapley–core is more stable than the full-period Shapley-core.
However, there are also a few cases in which the day-wise Shapley–core is less stable.



Energies 2023, 16, 1756 12 of 16

0 20 40 60 80 100
Day

0

10

20

30

40

Sh
ap

le
y 

Di
st

an
ce

(a)

0 20 40 60 80 100
Day

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

No
rm

al
ize

d 
Sh

ap
le

y 
Di

st
an

ce

(b)

Figure 11. Progress of Shapley distance (a) and normalized Shapley distance (b) with Shapley–core
for 1000 trials.

Table 5. Numbers of trials with increasing, decreasing, and no trend in the Shapley distance and
normalized Shapley distance between day 20 and 100 with Shapley–core.

Trend Shapley Distance Normalized Shapley Distance

Increasing 935 128
Decreasing 36 816

None 29 56
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Figure 12. Boxplot of final Shapley distance (a) and normalized Shapley distance (b) with
Shapley–core in 1000 trials broken down by the number of users in the community.
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Figure 13. Boxplot of difference between final maximum excess (a) and normalized excess (b) of
day-wise and full-period Shapley–core in 1000 trials separated by the number of users in the community.
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Figure 14 shows the difference between the final Shapley distance and normalized
Shapley distance of the day-wise and full-period Shapley–core. The distance is always pos-
itive, meaning that the day-wise Shapley–core is less fair than the full-period Shapley–core.
This is not surprising, since it is typically also more stable. With an increasing number of
users, the loss of fairness compared to the full-period Shapley–core tends to increase.
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Figure 14. Boxplot of difference between final Shapley distance (a) and normalized Shapley dis-
tance (b) of day-wise and full-period Shapley–core in 1000 trials separated by the number of users in
the community.

5.2.4. Comparison of Distributions

Figure 15 shows the mean final normalized excess and normalized Shapley distance
per user number for the day-wise and full-period versions of nucleolus and Shapley–core
and the Shapley value.
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Figure 15. Mean final normalized excess (a) and normalized Shapley distance (b) with different
benefit distribution schemes in 1000 trials broken down by the number of users in the community.

It can be seen that all distributions become less stable with an increasing number of
users. The day-wise and full-period nucleolus become more fair with an increasing number
of users, while the day-wise and full-period Shapley–core become less fair. Furthermore,
the day-wise nucleolus and Shapley–core provide more and more similar results with an
increasing number of users.

6. Conclusions

In simulation experiments, we investigated the stability and fairness of the Shapley
value, the nucleolus and the Shapley–core. A total of 1000 cases of local energy communities
were considered in the experiments. Based on the experimental results, we can answer the
questions from Section 4 as follows:
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1. Q: How stable is the Shapley value distribution in practice? Does it typically or even
always yield an unstable distribution or not?
A: The Shapley value does not necessarily yield an unstable distribution. In the
experiments, it yielded a stable distribution in about 60% of the cases. However, with
increasing size of the community, the Shapley value tends to become more unstable.

2. Q: If the Shapley value distribution is unstable, there is a sub-community that can gain
a benefit from separating from the community. However, if this benefit is constant
or even decreases over time, this might be not an issue in practice. How does the
stability of the Shapley value progress over time?
A: In most of the cases where the Shapley value yielded an unstable distribution, the
normalized maximum excess decreased in a statistically significantly way over time.
In only about 8% of the considered cases, the Shapley value yielded an unstable distri-
bution without a decreasing normalized maximum excess. Thus, in the remaining
92% of the cases, the Shapley value can be considered to be reasonably stable, at least
from a practical point of view.

3. Q: How unfair is the nucleolus in practice and how does its unfairness progress
over time?
A: The nucleolus tends to become more fair with increasing size of the community.
While the maximum Shapley distance typically increases over time, the normalized
Shapley distance decreased in a statistically significantly way in about 75% of the
cases, meaning that in these cases, the nucleolus becomes more fair over time.

4. Q: Since the nucleolus is not additive, it does not guarantee maximum stability when
applied over multiple billing periods. How does the nucleolus applied over multiple
time periods perform in relation to the nucleolus applied to the full time frame?
A: In the experiments, the day-wise nucleolus yielded a higher maximum excess, i.e., a
less stable distribution, than the full-period nucleolus in nearly all cases. For small
communities, the day-wise nucleolus is typically also less fair. However, beginning
with a certain community size, the day-wise nucleolus becomes more fair than the
full-period nucleolus and the difference in stability in terms of normalized maximum
excess decreases with increasing size of the community.

5. Q: Similar to the nucleolus, the Shapley–core is not additive and not fully fair. How
unfair is it and how do its unfairness and stability progress over time?
A: The day-wise Shapley–core is typically more stable but less fair than the full-period
Shapley–core. With an increasing number of users, it becomes more and more similar
to the day-wise nucleolus.

From this, we can conclude that for small communities, the Shapley value appears
to be the best choice. However, with increasing community size, the risk that it yields a
highly unstable distribution increases. By contrast, the nucleolus becomes more fair with
increasing size of the community and, thus, it seems to be a better option than the Shapley
value for larger communities. Alternatively, the Shapley–core could be employed, which
behaves in a similar way to the nucleolus for large communities.

Funding: This research received no external funding.

Data Availability Statement: The used Australian household data is publicly available under https:
//www.ausgrid.com.au/Industry/Our-Research/Data-to-share/Solar-home-electricity-data (ac-
cessed on 7 February 2023).

Conflicts of Interest: The author declares no conflict of interest.

References
1. Bauwens, T.; Schraven, D.; Drewing, E.; Radtke, J.; Holstenkamp, L.; Gotchev, B.; Yildiz, Ö. Conceptualizing community in energy

systems: A systematic review of 183 definitions. Renew. Sustain. Energy Rev. 2022, 156, 111999. [CrossRef]
2. Krug, M.; Di Nucci, M.R.; Caldera, M.; De Luca, E. Mainstreaming Community Energy: Is the Renewable Energy Directive a

Driver for Renewable Energy Communities in Germany and Italy? Sustainability 2022, 14, 7181. [CrossRef]

https://www.ausgrid.com.au/Industry/Our-Research/Data-to-share/Solar-home-electricity-data
https://www.ausgrid.com.au/Industry/Our-Research/Data-to-share/Solar-home-electricity-data
http://doi.org/10.1016/j.rser.2021.111999
http://dx.doi.org/10.3390/su14127181


Energies 2023, 16, 1756 15 of 16

3. Energy Communities Repository. Available online: https://energy-communities-repository.ec.europa.eu/about_en (accessed on
23 January 2023).

4. Zhang, C.; Wu, J.; Long, C.; Cheng, M. Review of Existing Peer-to-Peer Energy Trading Projects. Energy Procedia 2017,
105, 2563–2568.

5. Rahmani, S.; Murayama, T.; Nishikizawa, S. Review of community renewable energy projects: The driving factors and their
continuation in the upscaling process. IOP Conf. Ser. Earth Environ. Sci. 2020, 592, 012033. [CrossRef]

6. Mengelkamp, E.; Staudt, P.; Garttner, J.; Weinhardt, C. Trading on local energy markets: A comparison of market designs and
bidding strategies. In Proceedings of the 2017 14th International Conference on the European Energy Market (EEM), Dresden,
Germany, 6–9 June 2017; pp. 1–6. [CrossRef]

7. Lezama, F.; Soares, J.; Faia, R.; Vale, Z.; Kilkki, O.; Repo, S.; Segerstam, J. Bidding in local electricity markets with cascading
wholesale market integration. Int. J. Electr. Power Energy Syst. 2021, 131, 107045. [CrossRef]

8. Garcìa-Muñoz, F.; Teng, F.; Junyent-Ferré, A.; Díaz-González, F.; Corchero, C. Stochastic energy community trading model for
day-ahead and intraday coordination when offering DER’s reactive power as ancillary services. Sustain. Energy Grids Netw. 2022,
32, 100951. [CrossRef]

9. Etukudor, C.; Couraud, B.; Robu, V.; Früh, W.G.; Flynn, D.; Okereke, C. Automated Negotiation for Peer-to-Peer Electricity
Trading in Local Energy Markets. Energies 2020, 13, 920. [CrossRef]

10. Capper, T.; Gorbatcheva, A.; Mustafa, M.A.; Bahloul, M.; Schwidtal, J.M.; Chitchyan, R.; Andoni, M.; Robu, V.; Montakhabi, M.;
Scott, I.J.; et al. Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy
market models. Renew. Sustain. Energy Rev. 2022, 162, 112403. [CrossRef]
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