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Abstract: This paper presents a centralized disturbance suppression strategy for distributed drive
electric vehicles which is based on model predictive direct motion control. This strategy is capable of
addressing issues such as parameter uncertainties and external disturbances in vehicles. Firstly, the
paper provides a brief introduction to model predictive direct motion control. Secondly, it analyzes
the impact of vehicle parameter uncertainties and external disturbances on the mathematical model.
Finally, a centralized disturbance suppression strategy based on a sliding mode observer is proposed.
Simulation results demonstrate that this strategy exhibits excellent disturbance rejection capabilities.

Keywords: distributed drive electric vehicle; in-wheel motor; model predictive control; vehicle
motion control

1. Introduction

Distributed drive electric vehicles (DDEVs) are garnering significant attention in
vehicle research owing to their numerous benefits, including rapid dynamic response,
streamlined chassis structure, and adaptable control systems. Unlike centralized drive
setups, DDEVs provide greater controllability with additional degrees of freedom. How-
ever, their vehicle models display nonlinear characteristics, posing challenges for effective
control. As a result, optimizing driving conditions has emerged as a pivotal focus in DDEV
research endeavors.

Unlike centralized drive systems, DDEVs offer more controllable degrees of freedom,
and their vehicle models exhibit nonlinear characteristics. Traditional control systems for
DDEVs typically adopt a series-connected structure consisting of a vehicle controller and
four wheel hub motor controllers. The vehicle controller, which takes the vehicle body
state as the control object, designs overall control strategies to calculate torque expectations
for the four wheel hub motors. Then, the wheel hub motor controllers utilize appropriate
motor control strategies to calculate the input control signals for the inverters based on
these torque expectations, thereby achieving vehicle state tracking. The vehicle controller
used for driving and stability design often fully utilizes the independent controllability of
each wheel of distributed drive electric vehicles to achieve motion control in longitudinal,
lateral, and yaw directions. Firstly, reference [1] presents a lateral dynamic control system
tailored for electric vehicles, focusing on customized objectives to improve performance.
Then, reference [2] introduces a coordinated torque distribution method aimed at enhancing
vehicle lateral stability and ride comfort by merging balanced torque vectoring distribution
and differential braking methods. Moreover, reference [3] proposes a coordinated control
strategy specifically designed for DDEVs integrating adaptive model predictive control
and direct yaw moment control to ensure yaw stability. Additionally, reference [4] presents
a hierarchical coordinated control strategy to address challenges in maintaining speed and

Energies 2024, 17, 2268. https://doi.org/10.3390/en17102268 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17102268
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-5137-3953
https://doi.org/10.3390/en17102268
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17102268?type=check_update&version=1


Energies 2024, 17, 2268 2 of 21

desired distance within vehicle platoons, particularly under difficult conditions such as
low adhesion or curves. Furthermore, reference [5] introduces a robust framework merging
active front-wheel steering with direct yaw moment control to bolster maneuverability and
stability in DDEVs. Subsequently, reference [6] devises a supervisory control strategy for
DDEVs, amalgamating various controllers to enhance vehicle handling, lateral stability,
and energy efficiency. Lastly, reference [7] introduces an innovative motion control strategy
utilizing model predictive control to handle longitudinal and lateral motion concurrently
in DDEVs, resulting in cost reduction and improved handling performance through more
efficient control mechanisms. Due to the advantages of the model predictive direct motion
control strategy presented in reference [7], such as its simple structure, high integration, and
fast dynamic response, this paper chooses this control strategy as the foundational control
strategy for DDEVs. Based on this strategy, the paper conducts research on centralized
disturbance suppression in vehicles.

Model predictive control (MPC) offers simplicity in structure, excellent dynamic per-
formance, and ease in handling nonlinear systems, making it highly promising for DDEVs.
However, its efficacy in DDEVs hinges on the accuracy of the vehicle’s mathematical model
for predicting future states. Variations in inertia parameters, nonlinear tire forces, and ex-
ternal disturbances can introduce inaccuracies. As a result, scholars globally have explored
various disturbance suppression strategies for DDEVs, including centralized compensation
methods, parameter identification techniques, and robust control strategies.

Implementing MPC in DDEVs presents several challenges. Firstly, the nonlinear
characteristics of DDEVs escalate the complexity of required models for effective control.
Secondly, the distributed drive system introduces additional control degrees of freedom,
complicating predictive control design and execution. Moreover, DDEVs’ rapid dynamic
response may strain computational resources as MPC optimizes across multiple future time
steps, potentially impeding real-time performance. Additionally, real-time acquisition of
vehicle state and environmental data poses a challenge, given their critical role in MPC
control. Thus, effectively applying MPC in DDEVs remains a pertinent technical hurdle
requiring resolution.

(1) Centralized Disturbance Compensation Methods

Firstly, some researchers aim to suppress the impact of disturbances on vehicle motion
control by observing and compensating for these disturbances. In the context of lateral
motion disturbance suppression, reference [8] utilizes a second-order lateral dynamics
model to consolidate parameter uncertainties and external disturbances into a disturbance
term. They design an extended observer to estimate this disturbance and employ a robust
nonlinear control strategy based on obstacle Lyapunov functions to compensate for the
observed disturbance while achieving lateral vehicle control. In reference [9], a sliding mode
control strategy based on obstacle Lyapunov functions is employed to address unknown
lateral tire forces, road curvature angles, and parameter uncertainties, achieving robust
lateral vehicle control. Addressing disturbances caused by lateral wind, reference [10] uses
a combination of feedforward and feedback control strategies to achieve lateral vehicle
control. They also use a disturbance observer to mitigate the effects of disturbances
caused by lateral wind. To tackle the centralized disturbance issue resulting from model
errors and complex driving environments, reference [11] employs a nonlinear disturbance
observer for estimation and compensation, resolving the sliding mode control oscillation
problem caused by centralized disturbances. Reference [12] adopts model predictive
control as a vehicle stability control strategy, utilizing a disturbance observer based on
extended Kalman filtering to estimate the equivalent additional yaw moment generated
by external disturbances. This estimated moment is then incorporated into the linear
vehicle model for compensation, but the article only considers model errors in the yaw
direction. Reference [13] uses a disturbance observer based on sliding mode theory to
address uncertainties and unknown relationships between tire–road friction coefficients
and vehicle slip ratio. They propose a nonlinear sliding mode surface. Reference [14]
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employs an extended state observer to provide real-time estimation and compensation for
unmodeled dynamics and unknown external disturbances.

(2) Parameter Identification Methods

Parameter identification methods are the primary approach for predicting and sup-
pressing certain external disturbances in distributed drive electric vehicles, such as tire
load, tire stiffness, vehicle mass, and center of gravity position. In reference [15], intelligent
tires with built-in sensors and vehicle states are employed to rapidly and stably estimate
tire load and vehicle parameters (total mass, center of gravity position). Reference [16] uses
nonlinear particle filtering to estimate vehicle mass. Reference [17] employs the method
of least squares with dual forgetting factors and an extended Kalman particle filter to
perform real-time estimation of vehicle mass and road incline. Reference [18] utilizes a
dual Kalman filter for real-time estimation of vehicle inertia parameters. In reference [19], a
sliding mode observer is designed to predict longitudinal and lateral tire forces separately.
Reference [20] adopts a cascaded observer approach to predict longitudinal and lateral tire
forces. Reference [21] utilizes existing vehicle sensors and a dual Kalman filter to design a
state parameter observer, enabling real-time estimation of vehicle mass. The article also
discusses the impact of mass changes on the vehicle. Reference [22] employs Bayesian
methods to predict tire stiffness.

(3) Disturbance-Resistant Robust Control Strategies

In addition to the aforementioned methods, some scholars have focused on enhancing
the disturbance resistance capabilities of the strategies themselves. Reference [23] proposes
a robust controller with adaptive gain scheduling for stability control incorporating linear
parameter-varying systems and H∞-optimized control. This controller utilizes linear ma-
trix inequalities to suppress system uncertainties and sensor noise. Reference [24] designs
a robust loop-shaping method and engineers weight functions according to engineering
specifications. Through this control structure, the strategy can overcome issues related to
model uncertainty, lateral wind disturbances, and parameter variations. Reference [25]
establishes a time-varying vehicle model considering changes in the center of gravity
position and uses sliding mode control to achieve lateral stability control. Reference [26]
develops a vehicle lateral dynamics model incorporating combined slip tire forces consid-
ering tire force nonlinearity and combined slip friction effects. The authors use this model
to design a model predictive controller that maintains the lateral response of the vehicle
within a constrained stable region. To address uncertainties in parameters such as vehicle
mass and longitudinal velocity, reference [27] employs a polytope uncertainty approach
to construct a linear parameter-varying lateral model. This leads to the design of an H∞
feedback control algorithm based on linear matrix inequalities. Given the presence of many
uncertain disturbances during vehicle operation, expressed as a random additional yaw
moment, reference [28] designs a state feedback elastic controller to ensure that yaw angle
and yaw angular velocity meet performance criteria for H∞ and L2-L∞. Reference [29]
uses global sliding mode control theory to derive the discontinuous part of the control
law, addressing issues related to changing vehicle parameters and model uncertainty. In
response to external disturbances caused by lateral wind, reference [30] designs a distur-
bance suppression strategy based on Lyapunov theory, restricting control objectives to a
reasonable range. The article presents a complex model, capturing the effects of lateral
wind, with disturbance terms in both the yaw and lateral directions. Reference [31] uses
a nonlinear model predictive control strategy to achieve stable control of vehicle lateral
dynamics. To enhance controller performance, the authors propose a high-order neural
network modeling method, enabling iterative optimization of the vehicle’s yaw angular
velocity and steady-state response of the center of gravity lateral deviation.

DDEVs are electric vehicles where each wheel is powered independently by its own
motor. This design offers several advantages, including improved traction, enhanced
maneuverability, and more efficient energy usage. Here are some examples of DDEVs
and their preferred fields of use: In reference [32], Rivian’s electric pickup truck (R1T) and
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SUV (R1S) are equipped with four electric motors, one for each wheel. These vehicles
are designed for off-road adventures and outdoor enthusiasts who require ruggedness,
versatility, and all-terrain capabilities. In reference [33], the Lordstown Endurance is an all-
electric pickup truck designed for commercial fleets. It features four in-wheel hub motors,
providing power to each wheel individually. This configuration enhances traction and
stability, making it suitable for utility companies, delivery services, and other fleet operators.
These examples demonstrate how DDEVs are utilized across various sectors, including
off-road exploration, high-performance driving, commercial fleet operations, and luxury
transportation. The distributed drive system offers benefits such as improved control,
efficiency, and performance, making DDEVs versatile options for a range of applications.

Scholars have conducted in-depth research on electric vehicles. In reference [34], a
bilayer coordinated operation strategy is introduced for a multi-energy building microgrid
(MEBM) to manage various uncertainties. This strategy involves a two-layer approach:
first, employing a stochastic-weighted robust optimization-based day-ahead operation to
dispatch energy storage assets and demand response followed by a second layer deter-
mining the operation of power-to-thermal conversion units, CCHP plants, and electricity
transactions with the utility grid considering uncertainty realizations. In reference [35],
researchers address challenges in vehicle-to-grid (V2G) technology, aiming to improve
load peak shaving, valley filling, and PV self-consumption. They introduce FedPT-V2G,
a federated transformer learning method, to handle data distribution disparities among
charging stations, facilitating real-time decision-making while preserving local privacy.
This approach integrates deep learning models trained on past and present data, incorpo-
rating the Proximal algorithm and Transformer model to synchronize local models and
leverage feature diversity, enhancing V2G scheduling predictions. Unlike these existing
studies, the paper focuses on the control problem under the complex disturbances of dis-
tributed drive electric vehicles and proposes a centralized disturbance suppression strategy
for disturbance mitigation.

In summary, vehicles experience the influence of multiple disturbance factors during
operation. In the case of distributed drive electric vehicles, the research on disturbance
suppression methods is more flexible and complex due to their multiple power sources.
Implementing multiple-disturbance suppression through a multi-motor drive system for
distributed drive electric vehicles is expected to significantly enhance the vehicles’ maneu-
vering performance under complex operating conditions.

2. Model Predictive Direct Motion Control

The mathematical model of a distributed drive electric vehicle is primarily divided into
two parts: the vehicle mathematical model and the wheel hub motor mathematical model.
The vehicle mathematics is depicted in Figure 1, and its dynamic equation is as follows:

m
dvx

dt
= mvyr + cos δFx f l + cos δFx f r + Fxrl + Fxrr − sin δ

(
Fy f l + Fy f r

)
(1)

m
dvy

dt
= −mvxr + sin δFx f l + sin δFx f r + cos δ

(
Fy f l + Fy f r

)
+ Fyrl + Fyrr (2)

Jz
dr
dt

=
(
−d f l cos δ + l f sin δ

)
Fx f l +

(
d f r cos δ + l f sin δ

)
Fx f r − drl Fxrl + drrFxrr

+ l f cos δ
(

Fy f l + Fy f r

)
+ d f l sin δFy f l − d f r sin δFy f r − lr

(
Fyrl + Fyrr

) (3)

In the equations, vx, vy, and r represent the longitudinal velocity, lateral velocity,
and yaw angular velocity of the vehicle, respectively. Fx f l , Fx f r, Fxrl , and Fxrr denote the
longitudinal forces experienced by the front left, front right, rear left, and rear right wheels,
respectively. Fy f l , Fy f r, Fyrl , and Fyrr represent the lateral forces on the front left, front right,
rear left, and rear right wheels, respectively. σ is the steering angle of the front wheels, m
is the total vehicle mass, l f and lr represent the longitudinal distances from the vehicle’s
center of gravity to the front and rear axles, respectively. Iz is the vehicle’s rotational inertia,
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d f l + d f r and drl + drr are the front and rear axle distances, respectively. Additionally, the
dynamic equation for the wheels is as follows:

dωeij

dt
=

Teij

Jw
− R

Jw
Fxij (4)

In the equations, i = f , r represents the front or rear wheels, j = l, r represents the
left or right wheels, Teij is the electromagnetic torque of the wheel hub motor, Jω is the
rotational inertia of the wheel, R is the wheel radius, and ωeij is the wheel rotational speed.

vy

β

vxr

lf

Fyfl

Fxfl

δ

Fyfr

Fxfr

δ

lr

Fxrl

Fyrl

Fxrr

Fyrr

drl

drr

dfr

dfl

(a) Vehicle dynamics model.

Fxij
Fzij

R

ωij

Fxij
Fzij

R

ωij

(b) Wheel dynamics model.

Figure 1. Models.

The proposed model predictive direct motion control strategy can directly obtain the
optimal voltage vector combination applied to the wheel hub motors within a finite time.
As illustrated in Figure 2, the model predictive control used in this paper for DDEVs can
efficiently determine the optimal combination of voltage vectors applied to the motors
within a finite time frame. Essentially, the control strategy operates by considering the
discrete nature of motor inverters, resulting in a finite set of potential voltage vector combi-
nations for the four motor systems. By utilizing a unified mathematical model, predicted
values for a finite number of future vehicle states are obtained, followed by the design of an
evaluation function to assess these predictions while considering constraints. The selected
voltage vector combination that minimizes the evaluation function is then outputted to the
motor inverter, and this process is iteratively repeated for rolling optimization of the entire
system. The control objectives of the four motors are unified to represent core variables of
the vehicle state, encompassing longitudinal velocity, centroid lateral deviation angle, and
yaw angular velocity. By aligning motor control objectives with these core state variables,
a cohesive description of vehicle motion is achieved, thereby preventing inconsistencies
in objectives among the motors. This unified design ensures that all four motors work
towards the same overarching objective throughout the control process, thereby improving
system stability and coordination.

To achieve precise and stable operation of a DDEV, the vehicle control objectives are
primarily divided into two aspects: maintaining longitudinal speed for vehicle movement
along the longitudinal axis and controlling yaw rate and sideslip angle to ensure vehicle
stability. The calculation of specific setpoints can be found in reference [7].
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Figure 2. Model predictive direct motion control strategy.

3. Vehicle Disturbance Analysis

The cooperative model predictive control (MPC) strategy for a multi-motor vehicle
system utilizes the dynamic model of the vehicle and the mathematical model of the
permanent-magnet synchronous motor (PMSM) to predict and control the states of both
the vehicle and the motors. The accuracy of the mathematical models for both the vehicle
and the motors is crucial for the control performance of this strategy. The design and
effectiveness of the control system directly depend on the accuracy of the models. If
there are errors or uncertainties in the mathematical models, it will directly impact the
performance and stability of the control strategy. However, vehicles face even more complex
and variable disturbance factors during actual operation, which are challenging to precisely
estimate. Examples include variations in vehicle parameters, external disturbances, and
the nonlinear characteristics of the tires. Therefore, for the composite disturbances that a
vehicle may encounter during operation, adopting traditional methods of precise modeling
and estimation may be impractical or not accurate enough. This paper establishes a
vehicle dynamics model that incorporates disturbance factors. To effectively address these
disturbances, the paper represents them as a composite disturbance term in the dynamic
model and designs a sliding mode observer to estimate them.

In the motion of distributed drive electric vehicles, disturbance factors mainly include
variations in vehicle parameters, external disturbances, and the nonlinear characteristics of
the tire model, as illustrated in Figure 3.

During the operation of the vehicle, it may encounter different operating conditions,
such as changes in the load of goods or the number of passengers. These factors can cause
variations in the vehicle’s center of gravity position and total mass, leading to changes
in vehicle parameters. In Figure 3, the center of gravity position changes from CGold to
CGnew, resulting in errors ∆, ∆l f , ∆dl f , ∆d f r, ∆drl , and ∆drr in the distances from the center
of gravity to the front and rear axles and the front and rear wheelbase. The vehicle’s total
mass error is ∆m. Additionally, the vehicle may face external disturbances, w, such as
crosswinds or lateral forces on the center of gravity, which cause the vehicle to deviate
from the intended trajectory. Furthermore, the mechanical characteristics of the tire pose a
complex nonlinear problem. Under different conditions, the tire’s mechanical properties
can change, leading to variations in the vehicle’s longitudinal forces, i.e., ∆Fx f l , ∆Fx f r, ∆Fxrl ,
and ∆Fxrr. These changes in parameters introduce uncertainty into the mathematical model
of the vehicle, affecting the accuracy of the control system.
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CGold

Fyfl+ΔFyfl
Fxfl+ΔFxfl

δ

Fyfr+ΔFyfr

Fxfr+ΔFxfr

δ

lr+Δlr

Fxrl+ΔFxrl

Fyrl+ΔFyrl

Fxrr+ΔFxrr

Fyrr+ΔFyrr

CGnew

y

x

lf+Δlf

w

drl+Δdrl

drr+Δdrr

dfl+Δdfl

dfr+Δdfr

Figure 3. Vehicle dynamics model with error.

Therefore, incorporating these disturbance errors into Equations (5)–(7) yields the
actual mathematical model of the vehicle dynamics as follows:

vx(k + 1) =vx(k) + Tsvy(k)r(k) +
Ts cos δ

m + ∆m
(

Fx f l(k) + ∆Fx f l(k)
)

+
Ts cos δ

m + ∆m
(

Fx f r(k) + ∆Fx f r(k)
)
+

Ts

m + ∆m
(Fxrl(k) + ∆Fxrl(k))

+
Ts

m + ∆m
(Fxrr(k) + ∆Fxrr(k))−

Ts sin δ

m + ∆m
(

Fy f l + Fy f r
) (5)

vy(k + 1) =vy(k)− Tsvx(k)r(k) +
Ts sin δ

m + ∆m
(

Fx f l(k) + ∆Fx f l(k)
)

+
Ts

m + ∆m
(
cos δ

(
Fy f l + Fy f r

)
+ Fyrl + Fyrr

)
+

Ts sin δ

m + ∆m
(

Fx f r(k) + ∆Fx f r(k)
) (6)

From the above description, it can be concluded that the disturbance factors affecting
the vehicle are highly complex, including variations in vehicle parameters, external dis-
turbances, and the nonlinearities of the tire model. Unlike motor parameter errors, it is
challenging to individually identify and compensate for these vehicle disturbance factors.
Therefore, to effectively address the disturbance errors in the vehicle, all disturbance factors
are comprehensively considered and consolidated into a composite disturbance term. By
aggregating all disturbance errors into a composite disturbance term, it becomes more
efficient to observe and compensate for the disturbance errors in the vehicle. This inte-
grated approach is better equipped to handle various vehicle disturbance factors, thereby
enhancing the robustness of the control system against complex disturbances.

r(k + 1) =r(k) +
−
(
d f l + ∆d f l

)
cos δ

Jz + ∆Jz

(
Fx f l(k) + ∆Fx f l(k)

)
Ts

+

(
l f + ∆l f

)
sin δ

Jz + ∆Jz

(
Fx f l(k) + ∆Fx f l(k)

)
Ts

+

(
d f r + ∆d f r

)
cos δ

Jz + ∆Jz

(
Fx f r(k) + ∆Fx f r(k)

)
Ts

+
(lr + ∆lr) sin δ

Jz + ∆Jz

(
Fx f r(k) + ∆Fx f r(k)

)
Ts

− drl + ∆drl
Jz + ∆Jz

(Fxrl(k) + ∆Fxrl(k))Ts

+
drr + ∆drl
Jz + ∆Jz

(Fxrr(k) + ∆Fxrr(k))Ts

+
l f + ∆l f

Jz + ∆Jz
Ts
(

Fy f l + Fy f r
)

cos δ +
d f l + ∆d f l

Jz + ∆Jz
TsFy f l sin δ

−
d f r + ∆d f r

Jz + ∆Jz
TsFy f r sin δ − lr + ∆lr

Jz + ∆Jz
Ts
(

Fyrl + Fyrr
)
+

Ts

Jz + ∆Jz
w(k)

(7)
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In the centralized disturbance suppression strategy designed in this paper, only cen-
tralized disturbances in three directions exist. By employing a sliding mode observer to
observe and compensate for these three centralized disturbances, different disturbances to
the vehicle can be suppressed. The nonlinearity of the tire model is only a small part of
these three centralized disturbances and can indeed be ignored.

4. Observation and Suppression of Composite Disturbances Based on Sliding
Mode Observer

The composite disturbance suppression strategy based on the sliding mode observer
is employed to address the impact of parameter variations, external disturbances, and
nonlinearities in the tire model on the operation of distributed drive electric vehicles. This
strategy involves designing a sliding mode observer to centrally observe the composite dis-
turbance errors in the vehicle and achieve their suppression through online compensation.
The goal is to enhance the stability and control performance of the vehicle.

By consolidating the disturbance errors caused by parameter variations, external
disturbances, and the nonlinearity of the tire model into a composite disturbance term, the
actual dynamics model of the vehicle can be rewritten as:



m
Ts

(vx(k + 1)− vx(k)) =mvy(k)r(k) + cos δ
(

Fx f l(k) + Fx f r(k)
)

+ Fxrl(k) + Fxrr(k)− sin δ
(

Fy f l + Fy f r

)
− fvx(k)

m
Ts

(
vy(k + 1)− vy(k)

)
=− mvx(k)r(k) + sin δ

(
Fx f l(k) + Fx f r(k)

)
+ cos δ

(
Fy f l + Fy f r

)
+ Fyrl + Fyrr − fvy(k)

Jz

Ts
(r(k + 1)− r(k)) =

(
−d f l cos δ + l f sin δ

)
Fx f l(k)

+
(

d f r cos δ + l f sin δ
)

Fx f r(k)

− drl Fxrl(k) + drrFxrr(k) + l f

(
Fy f l + Fy f r

)
cos δ

+ d f l Fy f l sin δ − d f rFy f r sin δ − lr
(

Fyrl + Fyrr

)
− fr(k)

(8)



fvx(k + 1)− fvx(k)
Ts

=Fvx

fvy(k + 1)− fvy(k)
Ts

=Fvy

fr(k + 1)− fr(k)
Ts

=Fr

(9)

In the equation, fvx, fvy, and fr represent the concentrated disturbances caused by
parameter variations, external disturbances, and the nonlinearity of the tire model. Addi-
tionally, Fvx, Fvy, and Fr denote the disturbance rates of fvx, fvy, and fr, respectively. The
composite disturbance terms fvx, fvy, and fr encapsulate the disturbance errors caused by
parameter variations, external disturbances, and the nonlinearity of the tire model. Their
specific expressions are as follows:

fvx(k) =
∆m
Ts

(vx(k + 1)− vx(k))− ∆mvy(k)r(k)

− cos δ
(

∆Fx f l(k) + ∆Fx f r(k)
)
− ∆Fxrl(k) + ∆Fxrr(k)

(10)

fvy(k) =
∆m
Ts

(
vy(k + 1)− vy(k)

)
+ ∆mvx(k)r(k)− sin δ

(
∆Fx f l(k) + ∆Fx f r(k)

)
(11)
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fr(k) =
∆Jz

Ts
(r(k + 1)− r(k)) +

(
∆d f l Fx f l(k) + d f l∆Fx f l(k) + ∆d f l∆Fx f l(k)

)
cos δ

−
(

∆l f Fx f l(k) + l f ∆Fx f l(k) + ∆l f ∆Fx f l(k)
)

sin δ

−
(

∆d f rFx f r(k) + d f r∆Fx f r(k) + ∆d f r∆Fx f r(k)
)

cos δ

−
(

∆l f Fx f r(k) + l f ∆Fx f r(k) + ∆l f ∆Fx f r(k)
)

sin δ

+ (∆drl Fxrl(k) + drl∆Fxrl(k) + ∆drl∆Fxrl(k))

− (∆drrFxrr(k) + drr∆Fxrr(k) + ∆drr∆Fxrr(k))− ∆l f

(
Fy f l + Fy f r

)
cos δ

− ∆d f l Fy f l sin δ − ∆d f rFy f r sin δ + ∆lr
(

Fyrl + Fyrr

)
+ w(k)

(12)

To design the corresponding sliding mode observers, consider the following:

m
Ts

(v̂x(k + 1)− v̂x(k)) =mvy(k)r(k) + cos δ
(

Fx f l(k) + Fx f r(k)
)
− f̂vx(k)

+ Fxrl(k) + Fxrr(k)− sin δ
(

Fy f l + Fy f r
)
− Uvxsmo

m
Ts

(
v̂y(k + 1)− v̂y(k)

)
=− mvx(k)r(k) + sin δ

(
Fx f l(k) + Fx f r(k)

)
+ cos δ

(
Fy f l + Fy f r

)
+ Fyrl + Fyrr − f̂vy(k)− Uvysmo

Jz

Ts
(r̂(k + 1)− r̂(k)) =

(
−d f l cos δ + l f sin δ

)
Fx f l(k)

+
(
d f r cos δ + l f sin δ

)
Fx f r(k)

− drl Fxrl(k) + drr Fxrr(k) + l f
(

Fy f l + Fy f r
)

cos δ

+ d f l Fy f l sin δ − d f r Fy f r sin δ

− lr
(

Fyrl + Fyrr
)
− f̂r(k)− Ursmo

(13)



f̂vx(k + 1)− f̂vx(k)
Ts

=λvxUvxsmo

f̂vy(k + 1)− f̂vy(k)
Ts

=λvyUvysmo

f̂r(k + 1)− f̂r(k)
Ts

=λrUrsmo

(14)

In the equation, v̂x, v̂y, and r̂ are the predicted values of the longitudinal velocity,
lateral velocity, and yaw rate, respectively. Similarly, f̂vx, f̂vy, and f̂r are the predicted
values of the rates of change for fvx, fvy, and fr. The parameters λvx, λvy, and λr are sliding
mode parameters, and Uvxsmo, Uvysmo, and Ursmo are sliding mode functions.

In this paper, the estimation errors of longitudinal velocity, lateral velocity, and yaw
rate are chosen as the linear sliding mode surface as follows:

svx =v̂x(k)− vx(k)
svy =v̂y(k)− vy(k)
sr =r̂(k)− r(k)

(15)

To suppress the chattering issue, the following sliding mode reaching law is chosen,
where β is the sliding mode reaching law parameter:

ds
dt

= −β|s|sign(s) (16)

Reference [36] examines the observation effects of different sliding mode surfaces,
which could be referenced in future research to further optimize the sliding mode observer
proposed in this paper.
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The discrete equation for the sliding mode reaching law is:
svx(k + 1)− svx(k)

Ts
=− βvx |svx(k)|sign(svx(k))

svy(k + 1)− svy(k)
Ts

=− βvy
∣∣svy(k)

∣∣sign
(
svy(k)

)
sr(k + 1)− sr(k)

Ts
=− βr |sr(k)|sign(sr(k))

(17)

The error equation for the sliding mode observer is:

svx(k + 1)− svx(k)
Ts

=− 1
m

e f vx(k)−
1
m

Uvxsmo

e f vx(k + 1)− e f vx(k)
Ts

=λvxUvxsmo − Fvx

svy(k + 1)− svy(k)
Ts

=− 1
m

e f vy(k)−
1
m

Uvysmo

e f vy(k + 1)− e f vy(k)
Ts

=λvyUvysmo − Fvy

sr(k + 1)− sr(k)
Ts

=− 1
Jz

e f r(k)−
1
Jz

Ursmo

e f r(k + 1)− e f r(k)
Ts

=λrUrsmo − Fr

(18)

In the equations, e f vx is the predicted error for longitudinal disturbance, e f vy is the
predicted error for lateral disturbance, and e f r is the predicted error for yaw disturbance.
Thus, the sliding mode control functions are given by:

Uvxsmo =mβvx |svx(k)|sign(svx(k))

Uvysmo =mβvy
∣∣svy(k)

∣∣sign
(
svy(k)

)
Ursmo =Jz βr |sr(k)|sign(sr(k))

(19)

Finally, the sliding mode observer can be written in the following discrete form:

v̂x(k + 1) =v̂x(k) + Tsvy(k)r(k) +
Ts

m
cos δ

(
Fx f l(k) + Fx f r(k)

)
+

Ts

m
(Fxrl(k) + Fxrr(k))

+
Ts

m

(
− sin δ

(
Fy f l + Fy f r

)
− f̂vx(k)− Uvxsmo

)
v̂y(k + 1) =v̂y(k)− Tsvx(k)r(k) +

Ts

m
sin δ

(
Fx f l(k) + Fx f r(k)

)
+

Ts

m
(
cos δ

(
Fy f l + Fy f r

)
+ Fyrl + Fyrr

)
+

Ts

m

(
− f̂vy(k)− Uvysmo

)
r̂(k + 1) =r̂(k) +

Ts

Jz

(
−d f l cos δ + l f sin δ

)
Fx f l(k)

+
Ts

Jz

(
d f r cos δ + l f sin δ

)
Fx f r(k)

+
Ts

Jz
(−drl Fxrl(k) + drr Fxrr(k))

+
Ts

Jz
l f
(

Fy f l + Fy f r
)

cos δ

+
Ts

Jz

(
d f l Fy f l sin δ − d f r Fy f r sin δ

)
+

Ts

Jz

(
−lr

(
Fyrl + Fyrr

)
− f̂r(k)− Ursmo

)

(20)
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f̂vx(k + 1) = f̂vx(k) + TsλvxUvxsmo

f̂vy(k + 1) = f̂vy(k) + TsλvyUvysmo

f̂r(k + 1) = f̂r(k) + TsλrUrsmo

(21)

The block diagram of the proposed FPLO is shown in Figure 4.
To ensure the stability of the sliding mode observer, it is necessary to reasonably select

the sliding mode parameters for the longitudinal, lateral, and yaw directions. According to
the sliding mode stability condition, the derivative of the Lyapunov function V = 1/2s2

needs to be negative, i.e., V̇ = sds/dt < 0. Therefore, the following inequality must
be satisfied:

svx
dsvx

dt
=svx(k)

(
− 1

m
e f vx(k)−

1
m

Uvxsmo

)
=svx(k)

(
− 1

m
e f vx(k)− βvx |svx(k)|sign(svx(k))

)
< 0

=


svx(k)

(
− 1

m
e f vx(k)− βvx |svx(k)|

)
< 0(svx(k) > 0)

svx(k)
(
− 1

m
e f vx(k) + βvx |svx(k)|

)
< 0(svx(k) < 0)

(22)

svy
dsvy

dt
=svy(k)

(
− 1

m
e f vy(k)−

1
m

Uvysmo

)
=svy(k)

(
− 1

m
e f vy(k)− βvy

∣∣svy(k)
∣∣sign

(
svy(k)

))
< 0

=


svy(k)

(
− 1

m
e f vy(k)− βvy

∣∣svy(k)
∣∣) < 0

(
svy(k) > 0

)
svy(k)

(
− 1

m
e f vy(k) + βvy

∣∣svy(k)
∣∣) < 0

(
svy(k) < 0

)
(23)

sr
dsr

dt
=sr(k)

(
− 1

Jz
e f r(k)−

1
Jz

Ursmo

)
=sr(k)

(
− 1

Jz
e f r(k)− βr |sr(k)|sign(sr(k))

)
< 0

=


sr(k)

(
− 1

Jz
e f r(k)− βr |sr(k)|

)
< 0(sr(k) > 0)

sr(k)
(
− 1

Jz
e f r(k) + βr |sr(k)|

)
< 0(sr(k) < 0)

(24)

Therefore, the admissible ranges for the reaching law parameters βvx, βvy, and βr are:
βvx >

∣∣∣∣ e f vx

msvx

∣∣∣∣
βvy >

∣∣∣∣ e f vy

msvy

∣∣∣∣
βr >

∣∣∣∣ e f r

Jzsr

∣∣∣∣
(25)

When the sliding mode observer converges, the sliding mode surface and its derivative
satisfy s = ds/dt = 0. Equation (17) can be simplified to:

e f vx(k + 1)− e f vx(k)
Ts

+ λvxe f vx(k) + Fvx = 0

e f vy(k + 1)− e f vy(k)
Ts

+ λvye f vy(k) + Fvy = 0

e f r(k + 1)− e f r(k)
Ts

+ λre f r(k) + Fr = 0

(26)

The solutions for the predicted errors of the compound disturbances in the longitudi-
nal, lateral, and yaw directions are as follows:
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e f vx =e−λvxt
[

Kvx +
∫

Fvxeλvxtdt
]

e f vy =e−λvyt
[

Kvy +
∫

Fvyeλvytdt
]

e f r =e−λrt
[

Kr +
∫

Freλrtdt
] (27)

Here, Kvx, Kvy, and Kr are constants. According to the above equations, the sliding
mode parameters λvx, λvy, and λr need to be positive to ensure that the disturbance
prediction errors e f vx, e f vy, and e f r converge to zero.

sign
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(a) Sliding mode observer of vx.
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(b) Sliding mode observer of vy.
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(c) Sliding mode observer of r.

Figure 4. Block diagram of sliding mode observer.



Energies 2024, 17, 2268 13 of 21

5. Simulation Verification

To validate the composite disturbance suppression strategy for the vehicle’s multi-
motor system, the MCMPC with disturbance compensation is tested in response to distur-
bances such as changes in vehicle parameters, external perturbations, and nonlinearities in
the tire model. In the simulation, the standard D-series SUV from CarSim is chosen as the
control object, as shown in Figure 5. The key parameters for the vehicle and hub motors
are listed in Table 1. The algorithm validation platform consists of MATLAB and CarSim.
MATLAB is primarily used for algorithm implementation (including MPDMC and the
disturbance compensation proposed in this paper) and motor simulation. The high-fidelity
CarSim is mainly used for vehicle simulation and scenario simulation. The combined
simulation of MATLAB and CarSim enables effective validation of the algorithms proposed
in this paper.

Figure 5. Block diagram of MATLAB and CarSim co-simulation.

Table 1. Main parameters for vehicle model.

Symbol Description Value

m Vehicle total mass 1430 (kg)
l f Center of gravity to front axle distance 1.05 (m)
lr Center of gravity to rear axle distance 1.61 (m)
d f Distance between front left and right wheels 1.565 (m)
dr Distance between rear left and right wheels 1.565 (m)
R Tire radius 0.364 (m)
Jz Yaw moment of inertia of vehicle 2059 (kg·m2)
Jω Rotational moment of inertia of each wheel 0.9 (kg·m2)
C f Equivalent nominal front-tie cornering stiffness 79,240 (N/rad)
Cr Equivalent nominal rear-tie cornering stiffness 87,002 (N/rad)
L d- and q-axis inductances 0.000124 (H)
Rs Stator resistance 0.0286 (Ω)
Ψ Flux linkage 0.164 (Wb)
p Pole pairs 4

5.1. Pure Acceleration Scenario

The results shown in Figure 6 indicate that the impact on longitudinal velocity is
small, mainly due to the high weighting coefficient of longitudinal velocity, which ensures
unaffected tracking performance. However, under disturbances, fluctuations occur in the
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yaw rate and lateral deviation angle of the center of mass in the lateral direction. Therefore,
the stability of the vehicle is not as good without compensation as it is with compensation.
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Figure 6. Responses of DDEV under pure acceleration scenario.

5.2. Acceleration and Steering Scenario

The operating conditions are set to comprehensively verify the vehicle’s longitudinal,
lateral, and yaw motion acceleration under a double-line moving condition. Specifically,
the configuration is as follows: double-line moving condition, µ = 0.85, the vehicle starts
with an initial speed of 50 km/h, and, at 4 s, the reference speed Vxref changes to 80 km/h.
The vehicle’s total mass error is ∆m = 0.5 m, including errors in the distance from the center
of gravity to the front and rear axles and front and rear track errors ∆l f = 0.5l f , ∆lr = 0.5lr,
∆d f l = 0.5d f l , ∆d f r = 0.5d f r, ∆drl = 0.5drl , and ∆drr = 0.5drr. The additional yaw torque
caused by external disturbances is 0.3 times the original yaw torque and random term,
ω = 0.3Mz + Mzran, and the vehicle’s longitudinal force error caused by the nonlinearity
of the tire model is ∆Fx f l = 0.4∆Fx f l , ∆Fx f r = 0.4∆Fx f r, ∆Fxrl = 0.4∆Fxrl , ∆Fxrr = 0.4∆Fxrr.

The waveforms before and after disturbance compensation are shown in Figure 7.
Figure 7e shows the response of the vehicle’s longitudinal speed, where the speed response
before compensation fluctuates about 1% more than after compensation. Figure 7b displays
the lateral trajectory error waveform, indicating that the lateral trajectory error of the
vehicle before compensation ranges from −0.88 m to 1.00 m, while, after compensation,
the lateral trajectory error ranges from −0.86 m to 0.80 m, showing a 20% improvement.
This optimization in trajectory tracking is attributed to the enhanced performance of the
composite disturbance suppression strategy. Figure 7c,d represent the response waveforms
of the yaw angular velocity and center of gravity lateral deviation angle, respectively. In
the presence of a disturbance, the yaw angular velocity exhibits a maximum fluctuation
of 0.044 rad/s. However, after compensating for the composite disturbance term using
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the disturbance suppression strategy, the disturbance-induced fluctuations in yaw angular
velocity are effectively eliminated.

In conclusion, this section validates the effectiveness of the vehicle compound distur-
bance suppression strategy based on the sliding mode observer in the control of multi-motor
systems in simulated analyses. The designed sliding mode observer can systematically
observe and compensate for compound disturbances experienced by the vehicle during
operation. This strategy is proven to significantly enhance the tracking performance of
distributed drive electric vehicles and reduce fluctuations in the multi-motor system caused
by disturbances.
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(d) Sideslip angle.
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(e) Longitudinal speed.

Figure 7. Responses of DDEV under acceleration and steering scenario.
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5.3. Double-Lane-Change Scenario

To verify the influence of longitudinal vehicle disturbances on control and the effec-
tiveness of suppression strategies, a double-lane-change scenario is simulated. The results
shown in Figure 8 indicate that disturbances have a significant impact on the lateral stability
of the vehicle. The uncompensated vehicle exhibits significant deviations from the trajec-
tory and high-frequency fluctuations in yaw rate. After compensating for disturbances, the
stability and maneuverability of the vehicle are greatly improved.
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(c) Yaw rate.
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Figure 8. Responses of DDEV during double-lane-change scenario.
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5.4. Comparison with Nonlinear Model Predictive Control

In this section, the proposed method is compared with the nonlinear MPC from
reference [37], with a contrast condition differing from that in reference [7]. In contrast to
the previous conditions, this study incorporates vehicle disturbance factors with specific
settings, consistent with previous conditions.

This situation mainly verifies the effectiveness of the proposed MPC in the longitudinal
motion drive control of a DDEV. The simulation results are shown in Figure 9. Figure 9a
shows the longitudinal speed responses. The vehicle accelerates from a standstill to
120 km/h in a straight line and then decelerates to 0 after running stably for 5 s. It
can be seen that the dynamic response of the longitudinal motion under the proposed
MPDMC is faster than that of the nonlinear MPC.

The effectiveness of the proposed MPC in the lateral and yaw motion stability control
of the DDEV is verified in this part. The vehicle completed a double-lane-change maneuver
at a longitudinal speed of 90 km/h. Figure 9b shows that the trajectory of the vehicle using
the proposed MPC is closer to the reference trajectory, so this strategy should be more
effective for the lateral and yaw motion control of DDEVs.
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Figure 9. Responses of DDEV with nonlinear MPC.

5.5. Validation of Effectiveness

To validate the effectiveness of the method proposed in this paper, a four-motor
control platform is designed. The motor experiment platform is shown in Figure 10.
The experimental platform includes two LAUNCHXL-F28379D control boards from TI,
four BOOSTXL-3PhGaNInv drive boards from TI, and four M-2310P permanent-magnet
synchronous motors from Teknic. The main control chip used by the LAUNCHXL-F28379D
control board is TI’s TMS320F28379D. The chip’s main frequency is 200 MHz, and there
are two 32-bit CPUs inside. Its peripheral configuration can meet the control requirements
of four motors. However, because a LAUNCHXL-F28379D board only leads out half of
the chip’s pins, this article uses two LAUNCHXL-F28379D control boards to realize the
function of a complete TMS320F28379D chip, and each board uses only one CPU to control
two motors. The experimental program is based on MATLAB’s Motor Control Blockset,
and the experimental data are transmitted to the PC through the SCI serial communication
interface and then read with MATLAB, thus omitting the use of the oscilloscope. The
mechanical equation of the motor is used to replace the dynamic equations of the vehicle to
implement the proposed MPC strategy.

The experimental results are shown in Figure 11. The four motor drive systems can
realize speed control of 500 rpm, 1000 rpm, 1500 rpm, and 2000 rpm, respectively, which
proves that the proposed MPC strategy is feasible.
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6. Conclusions

This paper establishes a composite disturbance model that incorporates disturbances
such as vehicle parameter errors, external disturbances, and tire nonlinearity. It proposes
a vehicle composite disturbance suppression strategy based on a sliding mode observer,
enhancing the robustness of the multi-motor cooperative model predictive control strategy.
Simulation results demonstrate that this strategy effectively reduces system disturbances.

This paper aims to conduct related research on model predictive control with DDEVs.
In addition to the research described in the paper, further exploration and discussion can be
extended to the following issues: (1) To better achieve motion control of DDEVs, targeted
optimization is needed for various special application scenarios such as rainy and snowy
weather, climbing, rapid turning, etc., to achieve more stable and faster maneuverability;
(2) considering the different driving habits of different drivers, the designed control al-
gorithm should be extended to the vehicle’s optimal operating mode, summarizing the
vehicle’s operating status combined with driving habits for targeted optimization.
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Nomenclature

vx, vy, and r
the longitudinal velocity, lateral velocity, and yaw angular velocity
of the vehicle.

Fx f l , Fx f r, Fxrl , and Fxrr
the longitudinal forces experienced by the front left, front right, rear left,
and rear right wheels.

Fy f l , Fy f r, Fyrl , and Fyrr
the lateral forces on the front left, front right, rear left, and
rear right wheels.

σ the steering angle of the front wheels.
m the total vehicle mass.

l f , lr
the longitudinal distances from the vehicle’s center of gravity to
the front and rear axles.

Iz the vehicle’s rotational inertia.
d f l + d f r and drl + drr the front and rear axle distances.
i = f , r the front or rear wheels.
j = l, r the left or right wheels.
Teij the electromagnetic torque of the wheel hub motor.
Jω the rotational inertia of the wheel.
R the wheel radius.
ωeij the wheel rotational speed.

fvx, fvy, and fr
the concentrated disturbances caused by parameter variations,
external disturbances, and the nonlinearity of the tire model.

Fvx, Fvy, and Fr the disturbance rates of fvx, fvy, and fr.

v̂x, v̂y, and r̂
the predicted values of the longitudinal velocity, lateral velocity,
and yaw rate.

f̂vx, f̂vy, and f̂r the predicted values of the rates of change for fvx, fvy, and fr.
λvx, λvy, and λr sliding mode parameters.
Uvxsmo, Uvysmo, and Ursmo sliding mode functions.
e f vx the predicted error for longitudinal disturbance.
e f vy the predicted error for lateral disturbance.
e f r the predicted error for yaw disturbance.
Kvx, Kvy, and Kr constants.
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