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Abstract: The present work aims to optimize the magnetomotive force and the end-winding leakage
inductance from a discrete distribution of conductors in electrical machines through multi-objective
particle swarm heuristics. From the development of an application capable of generating the conduc-
tor distribution for different machine configurations (single or poly-phase, single or double layer,
integral or fractional slots, full or shortened pitch, with the presence of empty slots, etc.) the curves
of magnetomotive force and the end-winding leakage inductance associated with the winding are
computed. Taking as an optimal winding the one that presents, simultaneously, less harmonic distor-
tion of the magnetomotive force and less leakage inductance, optimization by multi-objective particle
swarm was used to obtain the optimal electrical machine configuration and the results are presented.

Keywords: magnetomotive force; winding optimization; particle swarm; multi-objective optimization

1. Introduction

One of the main concerns in the design of electrical machines is centered on the correct
determination of the constructive parameters of the windings, aiming at minimizing the
existing harmonic content in the waveform of the air gap magnetomotive force.

The existence of harmonics in the magnetomotive force curve leads to a decrease in
the machine performance, caused by current and parasitic fluxes, an increase in losses in
copper and iron, an increase in magnetic saturation, mechanical vibrations, and noise [1–4].
Furthermore, there are changes in torque and speed performance, since the magnetomotive
force is distorted from a purely sinusoidal wave [5–7].

On the other hand, in asynchronous machines, for example, characteristics such
as starting torque, maximum torque, rotor currents, and stator currents are intrinsically
linked to the leakage inductance presented by the machine [8–10]. These characteristics
directly affect the performance of motors and generators and their applicability, as well
as the materials used for their construction, with the optimization of these effects being of
financial and energetic interest.

There are four main topology optimization techniques concerned with improving the
material distribution of the rotor and stator: ON–OFF, as used in [11–14]; bi-directional
evolutionary structural optimization (BESO), shown in [15–17]; solid-isotropic material
with penalization (SIMP), as in [18,19]; and the level set, applied in [20–22]. These tech-
niques are used to maximize the average torque, minimize the ripple or cogging torque,
or minimize the weight of the machines but there are challenges to the manufacturability
of the optimized topologies when the final geometries are highly irregular.

Despite a vast literature on optimizing stator windings for common machine types
(three-phase and single-phase), e.g., [11,23,24], there remains a critical need to explore
unconventional configurations. Existing research on air gap MMF curve optimization, such
as the work by Marault et al. [25] focusing on specific harmonics, demonstrates the potential
of optimization techniques. However, these techniques often target common machine types
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and struggle with limitations. Bekka et al. [26] used genetic algorithms but were limited to
three-phase machines, while Franco et al. [4] expanded the genetic algorithm optimization
solution to poly-phase machines, which faced increased computational burden due to
testing infeasible windings.

There remains a critical need to explore unconventional machine configurations and
their refined optimization for the development of novel applications. Current research
suffers from a lack of studies dedicated to less common typologies, particularly for reduced
systems. Optimizing these unconventional windings is often a laborious task. Traditional
methods necessitate the exhaustive evaluation of all possible configurations, leading to
significant computational burden that renders such approaches impractical. Therefore,
there exists a critical need to develop novel tools capable of optimizing a vast array of
parameters within the winding construction process, independent of established topologi-
cal constraints.

This work aims to create an application capable of analyzing the main performance
characteristics of the windings and finding the best alternatives for winding construction,
trying to avoid a high computational cost.

2. Materials and Methods
2.1. Winding Design for Alternating Current Electric Machines
2.1.1. Machine Windings Characteristics

Types of windings:

• Lap winding: The lap winding is constructed by connecting adjacent coils in series.
Each coil has two sides. The coils are mounted in such a way that each coil is placed on
top of the previous one, but under the next one. This configuration allows for greater
ease of construction in either single or double layers since the coils have the same size
and geometry. Furthermore, it is simple to perform short-pitching [27–29].

• Wave winding: The wave winding is mounted in such a way that the sides of succes-
sive “coils” are connected in series. Therefore, one “coil” performs a complete “turn”
(wave) along the circumference of the air gap [27–29].

• Concentric winding: Concentric winding differs from the others by having coils of
different sizes. Each pole of each phase has a set of coils that share the same axis of
symmetry. In some cases, the spread of the phase winding is limited to one polar
pitch [27–29].

Number of phases:

• Normal systems: These have an odd number of phases (m = 1, 3, 5, 7, . . . ) not showing
neutral point asymmetry loading, except for m = 1 [28].

• Reduced systems: These have neutral point asymmetry loading (m = 2, 4, 6, . . . ) [28].
• Non-reduced systems: These combine previous systems, not showing neutral point

asymmetry [28].

Coil pitch: Coil pitch is obtained from the number of slots or the distance between the
sides of a coil. It is defined as the ratio between the coil pitch and pole pitch. Windings
that have unity coil pitch are called full-pitch windings. On the other hand, if the coil
pitch is less or greater than unity, the winding is said to be of shortened-pitch or increased-
pitch, respectively.

Number of layers:

• In single-layer windings, each slot holds only one coil side, so the number of coils is
half the number of slots. Thus, in the cases of wave and lap windings, the coil pitch is
always full [27–29].

• In double-layer windings, each slot holds two sides of coils, so the number of coils is
equal to the number of slots. Thus, there is a freedom in choosing the coil pitch [27–29].

Distribution of conductors:
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• Integral windings are characterized by having the same number of conductors for
each pole and phase, being symmetrical. This type of winding has an electric period
equal to twice the polar pitch [27–29].

• Fractional windings have a number of slots per pole and phase that is represented by
a fraction. In this case, in order to accommodate the coils, it is necessary to use more
than one electric period [27–29].

2.1.2. Feasibility Conditions and Symmetry

Feasibility conditions: As described by Jokinen et al. [28] and Caruso et al. [30],
to obtain feasible windings the number of coils per phase must be an integer. This is
accomplished when the number of slots of the winding satisfies condition (1):

nlay ·
Z − nes

2m
∈ N (1)

where Z is the number of slots, nlay is the number of layers, m is the number of phases,
and nes is the number of empty slots.

The phase span angle αph must be an integer multiple of the angle between phasors of
individual sides of the coil electromotive force (EMF) in the slots αZ. Therefore:

• For normal or non-reduced systems:

αph

αZ
=

2π/m
2πt′/Z

=
Z

mt′
∈ N (2)

• For reduced systems:
αph

αZ
=

Z
2mt′

∈ N (3)

where t′ is defined by
t′ = gcd(Z, p) (4)

which defines the number of repeating structures of the winding.
Therefore, the number of slots in one repeating structure of the winding is given

by Z/t′.
Once the choice of machine winding design parameters satisfy the conditions de-

scribed in Equations (1)–(3), feasibility of the winding is achieved.
Symmetry conditions: The symmetry of a winding can be checked using the phasor

diagram [30]. Each coil generates two electromotive force (EMF) phasors associated with
a shift angle according to its geometric position and the number of existing subsystems
for this winding. By carrying out the vector sum of the contributions of the phasors of the
individual coils of the same phase, the resulting voltage phasor is obtained.

The winding for which the resulting phase voltage phasors have the same magnitude
and with the same shift angles between them is said to be symmetrical, for this coil
distribution generates a symmetrical phasor diagram.

In order to illustrate this idea, consider a three-phase single-layer winding induction
motor with Z = 24 slots and 2p = 4 poles. From (4),

t′ = gcd(24, 2) = 2 repeating structures.

Therefore, there are 2 overlapping EMF sub-diagrams, each of them is formed by
Z′ = Z/t′ = 12 phasors shifted one from the other by the electrical angle α, as per
Equation (5):

α =
2π

Z/t′
= 2 · 2π

24
= 0.5236 rad, or 30 deg (5)

Each slot is associated with an electrical angle ϕk according to Equation (6):

ϕk = k · α (6)
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where k = 0, 1, 2, . . . , Z′ − 1.
For the example winding, the conductor distribution diagram is shown in Figure 1,

which demonstrates the phase coil allocation and corresponding current direction.
The current direction determines the direction of the phasor EMF generated by each

side of the coil. For the formation of the phasor diagram, the EMF contribution of the allo-
cated conductor for each slot is calculated. In this work, coils are always assumed to have
the same number of turns. Therefore, EMF contributions are always of the same amplitude.
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Figure 1. The arrangement of conductors in a three-phase single-layer machine with Z = 24 slots and
2p = 4 poles. The rows of the table stand for, respectively, slot number, and the first layer. Each color
and number are associated with a phase.

According to Figure 1, initially, there is one side of a coil, belonging to phase 1 and with
a positive current. From Equation (6), the initial argument is 0. Thus, the EMF contributions
of the coils of phase 1 in Figure 1 are determined as

EMF1,1 = 1∠ϕ1 = 1∠0◦

EMF1,2 = 1∠ϕ2 = 1∠30◦

and so on.
It can be seen from Figure 1 that the coils belonging to the first phase occupy slots 1, 2,

7, 8, 13, 14, 19, and 20. Therefore, Table 1 is filled with the contribution of all side coils of
phase 1. The last line of Table 1 is the complex sum of the last-column phasors.

Table 1. EMF associated with the first phase in a three-phase single-layer induction motor with
Z = 24 slots and 2p = 4 poles.

EMFphase+,ϕk Slots Current Direction ϕk (deg) Phasor

EMF1,1 1 +1 0 1∠0◦

EMF1,2 2 +1 30 1∠30◦

EMF1,7 7 −1 180 1∠0◦

EMF1,8 8 −1 210 1∠30◦

EMF1,13 13 +1 360 1∠0◦

EMF1,14 14 +1 390 1∠30◦

EMF1,19 19 −1 540 1∠0◦

EMF1,20 20 −1 570 1∠30◦

EMF1 − − − 7.72∠15◦

In a similar way, the total EMF generated by the other phases can be determined.
The results are shown in Table 2.

Figure 2 shows the resulting phasor diagram representation for this winding. Red
dashed lines are the individual contributions from each coil side, obtained from Table 1.
Solid lines are the resulting phasor voltage.

Table 2. EMF associated with the winding of a three-phase single-layer induction motor with
Z = 24 slots and 2p = 4 poles.

EMFphase Phasor

EMF1 7, 72∠15◦

EMF2 7, 72∠135◦

EMF3 7, 72∠−105◦
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1 
 

 
 
 
 

 
 
 
 Figure 2. The phase diagram for a three-phase single-layer induction motor with Z = 24 slots and
2p = 4 poles where each color represents a phase. The dashed lines are the individual phasor voltage
from each slot while the solid line is the resultant phasor voltage. αd is the angle between the phases.

The displacement angle αd for normal or non-reduced systems is determined as shown
in Equation (7), and for reduced systems as shown in Equation (8).

αd =
360
m

(deg) (7)

αd =
180
m

(deg) (8)

Therefore, there is symmetry between the phasors from the diagram of Figure 2 being
correctly shifted by αd = αph = 360/m = 360/3 = 120 deg from each other, and all phasors
have the same magnitude as this is a symmetric winding.

2.1.3. Winding Distribution Table

The winding distribution table (WDT) is a method of determining the winding distri-
bution for single and multiphase alternating current (AC) machines described in [30].

The method starts from an empty table containing m rows and nc columns, according
to Table 3, where

nc =
Z
m

(9)

Table 3. Basic structure of the winding distribution table.

a11 a12 . . . a1nc

a21 a22 . . . a2nc
...

...
. . .

...
am1 am2 . . . amnc

It is assumed that the first element of the table, a11, corresponds to slot 1. Then, starting
from the position of the newly allocated slot, count, from left to right and top to bottom,
p (number of pole pairs) elements and set slot 2. To allocate slot 3, add p elements to
the newly allocated position of slot 2. The procedure continues until all slots have been
allocated. If, when adding p elements, it reaches a position already occupied by another
slot, it moves to the adjacent position until an empty position is reached.

To illustrate this method, consider the three-phase single-layer machine with
Z = 24 slots and 2p = 4 poles and its primitive winding distribution table, according
to Table 4.

In fact, the winding distribution table for this machine consists of t
′
= 2 subsystems

and, therefore, two sub-tables, where

Z
′
=

Z
t′

(10)
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p
′
=

p
t′

(11)

n
′
c =

Z
′

t′
(12)

Table 4. Primitive winding distribution table of a three-phase single-layer machine with Z = 24 slots
and 2p = 4 poles.

1 13 2 14 3 15 4 16
5 17 6 18 7 19 8 20
9 21 10 22 11 23 12 24

Therefore, the sub-tables have Z
′
= 24/2 = 12 slots and p

′
= 2/2 = 1 pole. The first

sub-table receives slots from 1 to 12 and contains 1 pair of poles, according to Table 5.
The second table, in turn, contains slots 13 to 24, also having 1 pair of poles, according to
Table 6.

Table 5. Sub-table 1 of winding distribution of a three-phase single-layer machine with Z = 24 slots
and 2p = 4 poles.

1 2 3 4
5 6 7 8
9 10 11 12

Table 6. Sub-table 2 of winding distribution of a three-phase single-layer machine with Z = 24 slots
and 2p = 4 poles.

13 14 15 16
17 18 19 20
21 22 23 24

For normal (odd number of phases) or non-reduced systems (even number of phases
and multiple of 3), after forming the primitive table it is necessary to roll the rows of the
“right member” of the table upwards ζ times and multiply all elements of “right member”
by −1, where

ζ =
m − 1

2
, if m is odd. (13)

ζ =
m
2
− 1, if m is even. (14)

This procedure is demonstrated in Figure 3.

Empty
Empty
Empty

Left member Right member

௓

௠
Columns

𝑚
Rows

The next integer greater than or 

equal to 
௓

ଶ௠
columns

The next integer less than or 

equal to 
௓

ଶ௠
columns

Shift
direction

Figure 3. Illustration of “right member” shift of the primitive winding distribution tables of normal
and non-reduced systems.

If the winding has empty slots, these must be removed from the winding distribution
table, excluding the last columns on the right member. In Figure 3, there is an example of a
winding that has 3 empty slots, so the last column on the right of the table must be deleted.
After removing columns, the “right and left members” of the table must be redistributed.
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After scrolling the rows of the “right member”, each row of the table represents the
slots occupied by a phase and the direction of current in the conductors, as represented in
the Table 7 (table shift of Table 4), where each color is associated with a phase.

Table 7. Winding distribution table for a three-phase single-layer machine with Z = 24 slots and
2p = 4 poles. Each color is associated with a phase.

1 13 2 14 −7 −19 −8 −20
5 17 6 18 −11 −23 −12 −24
9 21 10 22 −3 −15 −4 −16

If a reduced system is being considered, the winding distribution table is not affected
by the vertical shift described above. In these cases, quadrants 1 and 3 of Figure 4 are
swapped, and then, the “new right member” of the table is multiplied by −1.

After this operation, the rows of the primitive table must be reordered in an interleaved
way, as shown in Tables 8 and 9.

Quadrant 2 Quadrant 1

Quadrant 3 Quadrant 4

௓

௠
Columns

𝑚
Rows

The next integer greater than or 

equal to 
௓

ଶ௠
columns

The next integer less than or 

equal to 
௓

ଶ௠
columns

Figure 4. Illustration of the swap of quadrants 1 and 3 of primitive winding distribution tables of
reduced systems.

Table 8. Winding distribution table not yet reordered for reduced systems.

Phases Col. 1 · · · Col. Z/m

1 · · · · · · · · ·
... · · · · · · · · ·
m
2 · · · · · · · · ·

m
2 + 1 · · · · · · · · ·

... · · · · · · · · ·
m · · · · · · · · ·

Table 9. Reordered winding distribution table for reduced systems.

Phases Col. 1 · · · Col. Z/m

1 · · · · · · · · ·
m
2 + 1 · · · · · · · · ·

2 · · · · · · · · ·
m
2 + 2 · · · · · · · · ·

... · · · · · · · · ·
m
2 · · · · · · · · ·
m · · · · · · · · ·
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Reduced systems whose number of phases are not powers of 2 are composed of mg
subgroups of systems with mu phases each, where

mu = mp f (m) (15)

is the maximum prime fact of m, and

mg =
m
mu

(16)

Therefore, a system that has 12 phases can be decomposed into mg = 4 subgroups of
systems with mu = 3 phases each. The even phases of each subgroup must be multiplied
by −1 to obtain radial symmetry and avoid using a neutral line.

If the machine has two layers, the winding distribution table originally computed for
a single layer must be concatenated with a copy of it, but shifted by the coil pitch y and
multiplied by −1.

To elucidate the WDT computation for reduced systems, consider a machine with
m = 4 phases, Z = 32 slots, 2p = 4 poles, double layer, and coil pitch of y = 3 slots.
The primitive WDT computed for this machine is shown in Table 10. In Table 11, the WDT
of the first layer is shown after swapping quadrants 1 and 4 and multiplying the “right
member” by −1. In Table 12, there is the WDT for the first layer after row reordering,
as described by Table 9. Table 13 shows the second-layer WTD (copy of the first-layer
table, shifted by the coil pitch y = 3 slots and multiplied by −1). Finally, in Figure 5 the
arrangement of conductors for this machine is shown.

Table 10. Primitive WDT for a machine with m = 4 phases, Z = 32 slots, double layer, and coil pitch
of y = 3 slots.

1 17 2 18 3 19 4 20
5 21 6 22 7 23 8 24
9 25 10 26 11 27 12 28

13 29 14 30 15 31 16 32

Table 11. First-layer WDT after swapping quadrants 1 and 4 and multiplying the “right member” by
−1 for a machine with m = 4 phases, Z = 32 slots, double layer, and coil pitch of y = 3 slots.

1 17 2 18 −9 −25 −10 −26
5 21 6 22 −13 −29 −14 −30
3 19 4 20 −11 −27 −12 −28
7 23 8 24 −15 −31 −16 −32

Table 12. The first-layer WDT after row reordering for a machine with m = 4 phases, Z = 32 slots,
double layer, and coil pitch of y = 3 slots.

1 17 2 18 −9 −25 −10 −26
3 19 4 20 −11 −27 −12 −28
5 21 6 22 −13 −29 −14 −30
7 23 8 24 −15 −31 −16 −32

Table 13. The second-layer WDT for a machine with m = 4 phases, Z = 32 slots, double layer,
and coil pitch of y = 3 slots.

−4 −20 −5 −21 12 28 13 29
−6 −22 −7 −23 14 30 15 31
−8 −24 −9 −25 16 32 17 1
−10 −26 −11 −27 18 2 19 3
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Figure 5. The arrangement of conductors in a machine with m = 4 phases, Z = 32 slots, 2p = 4 poles,
double layer, and coil pitch of y = 3 slots. The rows of the table stand for, respectively, the slot
number, the first layer, and the second layer. Each color and number are associated with a phase.

The vertical shifting or quadrant swapping and reordering operations made with the
primitive WDTs are necessary to achieve radially symmetrical windings, avoiding the use
of a neutral line in reduced systems. Note that the WDT computed for the machine with
m = 4 phases, Z = 32 slots, double layer, and coil pitch of y = 3 slots results in a symmetric
magnetomotive force (MMF) curve along the slots, as shown in Figure 6.

1 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. The MMF curve of a machine with m = 4 phases, Z = 32 slots, double layer, and coil pitch
of y = 3.

2.2. Total Harmonic Distortion of the MMF of the Winding

The air gap magnetomotive force (MMF) is the effect of the electric current flowing
through conductors. The MMF waveform depends mainly on the coil span and distribution,
and air gap geometry.

2.2.1. Magnetomotive Force (MMF) of a Winding

The waveform of the MMF generated in the air gap of a machine by a conductor
carrying current can be satisfactorily approximated by a “sawtooth” wave [31,32].

Figure 7a shows the MMF generated by ns-phase conductors of slot 1 of a single-layer
machine winding with Z = 12 slots and 2p = 2 poles. The instantaneous conductor current
i is assumed as constant and directed axially.

The returning conductor of the coil with it is corresponding current and respective
MMF is illustrated in Figure 7b. Conductors in slots 1 and 7 form a coil belonging to phase 1
and, together, generate a rectangular MMF, corresponding to the sum of the individual
contributions of the conductors belonging to each slot [32].

This methodology permits the total MMF of the entire winding to be obtained. For the
12 slots example, the resulting three-phase MMF obtained is as shown in Figure 8.

In this work, the quality of the MMF wave generated by the proposed winding is
analyzed. Therefore, as shown in Figure 9, the amplitude of the MMF wave is normalized.
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Figure 7. Composition of the MMF of phase 1 of a three-phase single-layer machine with Z = 12 slots
and 2p = 2 poles. (a) MMF produced by ns conductors of phase 1 belonging to slot 1. (b) MMF
produced by a 1-phase coil placed in slots 1 and 7.
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Figure 8. Total MMF curve composition of a three-phase single-layer machine with Z = 12 slots and
2p = 2 poles.
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Figure 9. Fourier series approximation of the MMF curve of a three-phase single-layer machine with
Z = 12 slots and 2p = 2 poles.
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2.2.2. Total Harmonic Distortion (THD)

Once the MMF wave is obtained, its decomposition by the Fourier series can be
calculated by Equation (17).

F(θ) =
∞

∑
n=1

ancos
(

n
2π

τ0

)
+ bnsen

(
n

2π

τ0

)
(17)

where

an =
2
τ0

∫ τ0

0
F(θ)cos

(
n

2π

τ0
θ

)
dθ (18)

bn =
2
τ0

∫ τ0

0
F(θ)sen

(
n

2π

τ0
θ

)
dθ (19)

In Equations (17)–(19), τ0 is the period of the fundamental wave in radians, n is the
harmonic order, and θ is the angular position, also in radians.

In Figure 9, the Fourier series approximation of the MMF curve of a three-phase
machine with Z = 12 slots and 2p = 2 poles and a single layer is represented, as postulated
in Equation (17), with a maximum harmonic limit of n = 200.

The THD is an important quality parameter of the generated MMF, since it numerically
quantifies the influence of the harmonics present in the MMF. The THD is determined as
shown in Equation (20).

THD =
1

C f

√
∞

∑
n=2

Cn
2 (20)

where
Cn =

√
a2

n + b2
n (21)

C f =
√

a2
1 + b2

1 (22)

The closer the THD is to zero, the lower the harmonic content present and, therefore,
the less distortion there will be in the MMF wave of the proposed winding.

2.3. End-Winding Leakage Inductance

Within rotating machines, a portion of the magnetic flux deviates from the primary
path responsible for electromechanical energy conversion. These leakage fluxes, as explored
by Jokinen in [28], induce a heightened skin effect within the stator slot conductors, conse-
quently elevating stator copper losses. Furthermore, Lipo, in [8], established a fundamental
link between leakage inductance and crucial machine characteristics, including starting
torque, maximum torque, rotor currents, and stator currents. This inherent connection
underscores the significant impact of leakage inductance on the performance, applicability,
and material selection for both motors and generators. Therefore, optimizing these interre-
lated effects becomes paramount from both economic and energy efficiency perspectives.

The end-winding dispersion flux, illustrated by Figure 10a from the side cutaway of
an electrical machine with stator windings, corresponds to flux lines outside the magnetic
package and an air gap coming from the end or turns of the coils.

In [33], there is an analytical and empirical study of the leakage inductance from
windings with diamond-shaped coils, as shown in Figure 10b representing two adjacent
coil ends of an electrical machine stator.

The end-winding leakage inductance per phase Lew is determined according to
Equation (23).

Lew =
9, 6
Z

µ0mk2
p1k2

d1N2
s

(
le2 +

le1

2

)
(23)

where

le1 =
yτp(ave)(bc + te)

2
√

τ2
s(ave) − (bc + te)2

(24)
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bc + te = sen(σ)τs (25)

where bc corresponds to the slot depth, te the slot tooth width, and τs(bird) the slot width.

(a) (b)

Figure 10. Illustration of end-winding dispersion flux. (a) The end-winding dispersion flux in side
cutaway view. (b) Two adjacent diamond coil ends of an electrical machine stator.

Also, µ0 is the vacuum magnetic permeability constant; kp1 and kd1 are, respectively,
the pitch factor and the distribution factor, both for the fundamental frequency; and le2 and
le1 are constructive geometric parameters of the winding, as shown in Figure 10b. Ns is the
number of turns connected in series per phase, m is the number of phases in the system,
and Z is the number of slots in the machine.

This work considers lap and wavy windings with geometrically symmetric coils, so
τs = τs(ave) and yτs(ave) = yτp(ave). The constructive parameters of the coils, for all the
studied machines, were taken as being Ns = 1 turn, le2 = 15 mm, τs = 10 mm, σ = 30◦,
and therefore, bc + te = 5 mm.

2.4. Multi-Objective Particle Swarm Optimization (MOPSO)

Among the numerous existing implementations of metaheuristics, this work uses par-
ticle swarm optimization (PSO) and multi-objective problem solving concepts using Pareto
frontiers [34,35] to find optimized proposals for electrical windings that simultaneously
produce MMF curves with lower THD and lower end-winding leakage inductance.

In the algorithm, each particle (possible solution) has a position and a velocity de-
scribed by Equations (26) and (27).

p⃗i,t(x⃗) = (x1i, x2i, x3i, . . . , xji) (26)

v⃗i,t(x⃗) = Wv⃗i,t−1(x⃗) + c1r1

[
p⃗ best

i − p⃗i,t(x⃗)
]
+ c2r2

[
p⃗gbest − p⃗i,t(x⃗)

]
(27)

where p⃗i,t(x⃗) and v⃗i,t(x⃗) are, respectively, the position and velocity of particle i at iteration
t; and x⃗ is the vector of positions for each j dimension (machine parameter). p⃗i

best is the
best position found by particle i in its trajectory and p⃗gbest is the best position found by
the swarm so far. The r1 and r2 coefficients are random numbers between 0 and 1 used to
introduce uncertainty and avoid local optima and premature convergence. c1 and c2 are
the influence factors for the individual and collective search, respectively. W is the inertia
coefficient that tries to hold the particle in its trajectory.
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For each iteration, the new positions of the particles are computed by Equation (28).

p⃗i,t+1(x⃗) = p⃗i,t(x⃗) + v⃗i,t(x⃗) (28)

As this is a multi-objective problem, the Pareto frontier and the density criteria are
used to classify the solutions and p⃗gbest, respectively, as described below.

Consider a multi-objective problem described by Equations (29), where y⃗(x⃗) is the set
of fitness functions f1(x⃗), f2(x⃗), . . . , fk(x⃗) to be optimized and Equations (30) and (31) are
constrain functions.

min[⃗y(x⃗)] := [ f1(x⃗), f2(x⃗), . . . , fk(x⃗)] (29)

gl(x⃗) ≤ 0, l = 1, 2, . . . , m (30)

hj(x⃗) = 0, j = 1, 2, . . . , p (31)

The Pareto frontier is defined by the best solutions that are not fully dominated by any
other. For illustration, consider the bi-objective minimization problem shown in Figure 11a,
where the green points are the solutions that form the Pareto frontier. After some iterations
of PSO, it is expected that the Pareto front is well distributed and as close to the minimum
as possible, without trespassing the constraints gl(x⃗) and hj(x⃗), as shown in Figure 11b.

There are some approaches to determine the p⃗gbest, such as the niche count, the
ϵ-dominance, and the density criterion δ. The last one is implemented in this work and
described in Equation (32).

δi =
k

k
∑

j=1
dij

(32)

where k is the number of neighbors considered for computation and dij is the Euclidean
distance between solutions i and j, as shown in Figure 11c.

For each iteration, the solution with the lowest density is selected as p⃗gbest. This
uniformly populates the Pareto frontier.

f1

f2
Constraint

(a)

f

1

f

2

Constraint

(b)

Constraint

d

1

d

2

d

3

f

1

f

2

(c)

Figure 11. The evolution of the Pareto frontier during a bi-objective optimization problem solving.
The green points stand for non-dominated solutions, the blue points are the dominated solutions, and the
yellow point is the solution for which the density is being calculated. The hatched area is the area
delimited by constraints. (a) The beginning of optimization. The Pareto frontier is far from the optimized
solution set. (b) The expected optimization results. The Pareto frontier is at the limit of the restrictions to
achieve the set of optimized solutions. (c) The density criterion computation for the yellow solution.

The cases to be solved in this work are formulated by first restricting the acceptable
parameter ranges (dimensions):

• m, the number of phases;
• Z, the number of slots;
• p, the number of pole pairs;
• nlay, the number of layers;
• y, the coil pitch.
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The algorithm seeks min(THD, Lew). For each proposed winding (particle), the feasi-
bility of the winding is verified. For each valid winding, MMF, THD, and Lew are computed.
The flow diagram of the algorithm is the same as the classic MOPSO, as shown in Figure 12.

1 
 

 
 
 
 

 
 
 
 

Figure 12. Flow diagram of the methodology applied to optimize the windings.

The methodology used to verify the accuracy of the algorithm is described in Section 3.1.

3. Results
3.1. Validation Tests

To validate the accuracy and robustness of the application, the algorithm was sub-
mitted to two different validation scenarios, according to Table 14. For each scenario, all
possible solutions were computed (without optimization strategies) to check their solu-
tion sets in an integral way by identifying local and global optima in order to compare
them with the solutions that were found by MOPSO. The last column of Table 14 repre-
sents the number of possible windings within the search space defined by changing the
constructive parameters.

Table 14. Validating solution scenarios by the application.

Scenario m Z p nlay y Possibilities

1 3 3–90 1–3 2 1–4 1056
2 6 120–180 3–5 1–2 1–6 1281

Based on the validation tests, it was possible to correctly choose the inertia coefficient
W = 0.3 and the individual influence (c1 = 0.5) and collective influence (c2 = 1) coefficients.
The swarm size is 5% of the total possibilities for the search field defined.

For better graphic representation, all the figures presented in this section have the
ordinate Lew, in henry (H) and on a logarithmic scale of base 10, while the abscissas, THD,
are on an arithmetic scale.

3.1.1. Validation Scenario 1

According to Table 14, the search space belonging to validation scenario 1 contains
normal systems (odd number of phases) and is restricted to double-layer windings.

In Figure 13, the ideal Pareto frontier is represented in yellow circles, and the Pareto
frontier computed by MOPSO is shown in black diamonds. For this scenario, the solu-
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tions obtained by the algorithm reached an accuracy of 94%, finding 16 of the 17 global
optimal solutions.
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Figure 13. Ideal Pareto frontier and MOPSO for validation scenario 1.

3.1.2. Validation Scenario 2

The search space for validation scenario 2, according to Table 14, refers to non-
reduced systems (even number of phases and multiple of 3) comprising single- and double-
layer windings.

In Figure 14, the ideal Pareto frontier is represented in yellow circles, and the Pareto
frontier computed by MOPSO is shown in black diamonds. The performance of the
algorithm for this scenario was 93%, finding 14 out of 15 global optimal solutions.
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Figure 14. Ideal Pareto frontier and MOPSO for validation scenario 2.

3.2. Application

Once the accuracy of the optimization algorithm has been proven, obtaining in all
cases an accuracy greater than 90%, the resolution methodology can be extrapolated to
cases with vast search spaces and complex configurations; see Table 15.

Table 15. Application scenarios.

Scenario m Z p nlay y Possibilities

1 3 3–300 1–6 1–2 1–4 8940
2 5–7 70–210 1–6 1–2 1–4 12,690
3 9–12 90–250 1–5 1–2 1–8 28,980
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For the application cases described in this section, to which the algorithm was submit-
ted, the Pareto frontier is computed by MOPSO and there is no comparison between the
ideal solution (global optimum) since there is a high computational effort in the integral
exploration of the search spaces, making this type of solution unfeasible.

3.2.1. Application Scenario 1

According to Table 15, the search space belonging to application scenario 1 refers to
single- and double-layer three-phase systems.

In Figure 15, the Pareto frontier computed by MOPSO is shown in black diamonds.
The results found, which add up to 36 different windings, demonstrate a satisfac-

tory distribution of solutions on the Pareto frontier, indicating that the solution is not
prematurely biased.
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Figure 15. Pareto frontier computed by MOPSO for application scenario 1.

3.2.2. Application Scenario 2

The search space belonging to application scenario 2, shown in Table 15, contains
normal and non-reduced systems covering single- and double-layer windings.

Again, in Figure 16, the Pareto frontier computed by MOPSO is shown in black diamonds.
A satisfactory distribution of the solutions on the Pareto frontier is observed, comput-

ing values in both THD and Lew limits.
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Figure 16. Pareto frontier computed by MOPSO for application scenario 2.
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3.2.3. Application Scenario 3

As in the previous cases, application scenario 3 and its search space are listed in
Table 15, composed of normal and non-reduced systems that cover single- and double-
layer windings.

In Figure 17, the Pareto frontier computed by MOPSO is shown in black diamonds.
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Figure 17. Pareto frontier computed by MOPSO for application scenario 3.

4. Discussion

While a comprehensive comparison with existing methods remains challenging due to
the limited application of metaheuristics to poly-phase machine optimization, the MOPSO
approach demonstrates several advantages. Unlike analytical methods, which can struggle
with intricate machine designs, MOPSO efficiently navigates large search spaces defined
by numerous winding parameters. This capability allows the algorithm to identify near-
optimal solutions for complex motor configurations. However, as an iterative algorithm,
MOPSO may require significant computational time to achieve absolute optimality, de-
pending on the problem’s complexity.

The effectiveness of the MOPSO approach is further validated by its ability to perform
bi-objective minimization optimization of the THD of the MMF curve and the end-winding
leakage inductance with approximately 20 times less computational effort compared to an
exhaustive search of the solution space. Validation tests yielded accuracy exceeding 90%,
demonstrating the algorithm’s robustness in finding optimized solutions. Consequently,
MOPSO proves to be a valuable tool for tackling complex and extensive search spaces
encountered in electrical machine design.

Beyond optimization, the application extends its functionality to user-friendly visual-
ization. For any electrical machine with feasible windings, the application can generate
graphical representations of the winding diagram by the WDT and the phasor diagram.
Additionally, for symmetrical windings, the application computes the MMF curve by phase
and its corresponding Fourier series approximation. This comprehensive visualization
suite effectively communicates the results to the user, providing valuable insights into the
optimized winding design.

5. Conclusions

In conclusion, this paper proposes a MOPSO approach for optimizing winding de-
sign in poly-phase machines. MOPSO effectively tackles complex winding configurations,
achieving high accuracy in validation tests, and offers a powerful tool for real-world elec-
trical machine design. By integrating the presented methodology into a comprehensive
design framework, engineers can optimize motor windings for specific applications, po-
tentially reducing energy losses by THD minimization and improving motor performance
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by end-winding leakage inductance reduction. This can lead to the development of more
efficient and reliable electrical machines for various industrial applications.

Future research can explore techniques to accelerate convergence or combine MOPSO
with local optimization methods for fine-tuning. Additionally, a broader comparison
with existing methods would be valuable once more studies utilizing metaheuristics for
poly-phase machine optimization become available.
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