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Abstract: With the continual expansion of urban road networks and global commitments to net
zero, electric vehicles (EVs) have been considered to be the most viable solution to decarbonize the
transportation sector. In recent years, the electric road system (ERS) has been introduced and piloted
in a few countries and regions to decarbonize heavy-duty vehicles. However, little research has been
carried out on its reliability. This paper fills the gap and investigates the reliability of electric truck
power supply systems for electric road (ETPSS–ER), which considers both the power system and
truck traffic networks. First, a brief introduction of electric roads illustrates the working principle
of EV charging on roads. Then, an optimized electric truck (ET) travel pattern model is built, based
on which the corresponding ET charging load demand, including both static charging and dynamic
charging, is conducted. Then, based on the new ET travel pattern model, a daily travel-pattern-driven
Monte Carlo simulation-based reliability assessment method for ETPSS–ER system is presented. Case
studies based on the IEEE RBTS system shows that ETs driving on ERS systems can meet the daily
travel demands. The case studies also examine the impacts of increasing number of ETs, extra wind
power, and battery energy storage systems (BESS) on the reliability of ERS power systems.

Keywords: electric road system; electric trucks; dynamic charging mode; daily route optimization;
reliability assessment; genetic algorithm

1. Introduction

Over the past few decades, transportation electrification has become a global trend. It
can not only significantly decrease the enormous carbon emissions in the transport sector,
but can also reduce the consumption of the limited fossil fuel reserves that can be used for
other sectors. As of 2023, the transportation sector is still one of the largest contributors
to greenhouse gas emissions responsible for the global climate change [1,2]. As 30% of
railways have been electrified, road systems, which account for about 78% of CO2 emissions
in the transportation sector, have replaced railway (1%) as the most carbon-intensive means
of transportation [3]. To address this problem, electric vehicles (EVs) have become the most
viable solution to support future green-road systems [4]. Taking UK as an example, the
proportion of newly registered EVs in 2022 reached 16.6%, representing an explosive yearly
growth trend [5]. Up to date, about 7% of road vehicles in UK are electric, mainly including
passenger vehicles and public buses [6]. Meanwhile, China, as a world front-runner, has
more than half of the world on-road EVs, accounting for around 60% of global electric car
sales. Meanwhile, in Europe, EV sales also increased by over 15% in 2022 [7]. Furthermore,
to meet the net zero target by the middle of this century, freight vehicles, which account
for about 25% of emissions from the road sector, also need to be electrified in order to cut
down the total carbon emissions [3].

Although roll-out of electric trucks (ETs) is a potential solution for heavy-duty vehicles,
there are still several limiting factors to be addressed [8]. Different from passenger vehicles,
the heavy-load and long-distance features imply that ETs will not only need significantly
large battery capacity, but will also demand higher-power charging devices, which will lead
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to a significant increase in capital and operational costs [9,10]. To address this bottleneck,
an electric road system (ERS) that supplies dynamic charging power is considered to
be a promising solution for future road decarbonization [11]. ERS is a newly emerging
technology that can support vehicles charging while driving on the road via three different
power supply solutions, namely, overhead line, conductive rail, and inductive (wireless
power transfer) rail [12]. The first two modes are contact charging modes, which are
exposed to external weather conditions, while wireless charging is a non-contact charging
method, which may potentially make the charging smoother [13]. Therefore, this paper
primarily focuses on the ETs driving on the ERS, which integrates dynamic and static
charging to transmit electricity from the power grid to ETs.

To investigate the reliability of the ERS traction power supply system (TPSS) for
ETs, it is necessary to understand their travel routes and charging patterns. Taking deliv-
ery ETs as an example, their total delivery distance depends on the travel route, which
cannot exceed the total travel distance of fully charged ET batteries. Meanwhile, the ar-
rival time and service time at each delivery point are both limited. Once the remaining
battery capacity cannot support the ET to travel to the next service point, it needs to
be recharged midway. This routine can be summarized as follows: ETs start at a fully
charged state, may be recharged during the working hours, and return to the depot to
be fully recharged at the end of the day. It is noted that the electric truck power supply
system in electric road (ETPSS–ER) is a new research topic; little has been determined
about its reliability, though some research has been carried out on the EV routing prob-
lem (EVRP) and the integration of EVs in the power system. For example, ref. [14] has
proposed a load modeling approach for plug-in EVs, which can simulate different EV
operation schedules, charging levels, and customer participation. Meanwhile, ref. [15]
has considered several uncertainties and complex interdependencies of different factors
associated to the load modeling of plug-in EVs. Furthermore, refs. [16–18] have dis-
cussed the vehicle-routing problem and proposed several methods to search for the most
energy-efficient paths between any two nodes to be visited in the routes. In [19–21], an EV
energy-consumption prediction model is built, considering the impacts of the traffic flow
on the motor efficiency and driving resistances to improve the prediction accuracy. Further,
in [22], an order-first split-second max–min ant system algorithm has been developed to
generate routes that fulfill the demands of customers. And [23] has optimized the EV route
selection with time window to achieve an economically viable solution. Inspired by these
approaches, ET routing is introduced into the reliability study of the ETPSS–ER in this
paper. The main contributions of this paper are summarized as follows.

1. Based on the specific charging modes of the electric road system, the ET driving and
charging patterns are defined and utilized to establish the interaction model between
the electric road and the power supply system;

2. In order to minimize the charging cost for ETs traveling on electric roads, an optimized
routing-planning algorithm is developed. It integrates ET charging cost control with
the routing planning, aiming to achieve the lowest charging cost while meeting all
designated delivery tasks;

3. Based on the optimized energy interaction model between the electric road and
power supply system, a daily GA-driven Monte Carlo simulation-based reliability
assessment method for ETPSS–ER system is proposed;

4. A case study is conducted to assess the reliability of an integrated power and road
system with different numbers of ET charging loads. It is shown that, in the case
study, introducing the load of 1000 ETs will not cause major reliability concerns on the
existing system, while, as the number of ETs exceeds 3000, it is necessary to introduce
additional renewable power and BESS for more reliable ETPSS–ER system operation.

The remainder of the paper is organized as follows. Section 2 introduces the ET
charging patterns and formulates the ET route optimization problem. Section 3 details
the reliability assessment approach for the ETPSS–ER system. Section 4 presents the case
studies and simulation results, and, finally, Section 5 concludes the paper.
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2. Interaction Modeling between Electric Roads and Power Supply Systems

Electric trucks, as an emerging technology, can replace the traditional fossil fuel trucks
to significantly reduce the carbon emissions in the road sector. To analyze the reliability of
the ETPSS–ER, it is necessary to establish the energy interaction model between the power
system and ERS with electric trucks. An ET traveling on the road has the following three
power supply scenarios:

1. Charging while traveling on ERS—ERS provides power to ET via dynamic wire-
less charging;

2. ET is powered by the on-board battery while traveling on non-electric road;
3. ET goes to a charging station to recharge the battery due to the energy shortfall before

completion of the journey/task.

2.1. ET Charging Patterns

As elaborated earlier, the ET charging patterns can be summarized as below:

• Overnight charging (AC charging): When ETs are parked and charged overnight at
depots, AC charging is the most common approach. This is usually a slow charging
mode with the longest charging time and lowest cost [24];

• High-power charging at station (DC charging): Direct current charging stations are
becoming more prevalent now for faster charging, which can shorten the charging time
significantly. It covers various power levels from 40–350 kW with different charging
tariffs [25];

• Pantograph charging (overhead line charging): Similar to DC railway or metro line
traction power supply, ERS can use DC overhead lines to supply power directly to the
trucks while driving. This approach sometimes is more suitable for special working
conditions, like mining operations [26];

• Dynamic wireless charging (inductive rail charging): It involves embedding charging
coils in the ERS and ETs are often equipped with receivers. This allows wireless
charging of the ETs while they are on the move [27].

The choice of ET charging modes usually depends on several external factors, such as
the range, battery capacity, operational needs, and available charging infrastructure of ETs.
Nowadays, ETs are charged either overnight at the depot or at the high-power charging
stations. As technology advances and the charging demand increases, a combination
of different charging modes can address the bottleneck for the mass roll-out of ETs in
alleviating range anxiety and improving user convenience. With the emergence of the
electric road technology, a dynamic charging mode can be added into the ET daily charging
patterns to achieve a longer driving distance and a lower charging time to meet more
customers’ demand. Since inductive ERS offers a smoother power delivery, the paper
primarily considers the wireless charging ERS.

Therefore, the charging modes of ETs on the ETPSS–ER system can be grouped into
two types: static charging at charging station/piles and dynamic wireless charging while
traveling on electric road sections.

2.1.1. Static Charging Mode

Compared with EVs, ETs have the same static charging modes, namely, overnight
charging and high-power charging, to extract power from the utility grid. This implies that
ETs need to either drive back to depot after completion of daily tasks or travel to a charging
station/pile to get the battery charged for a certain period of time. Depending on the travel
distance, this charging mode may satisfy most journey requirements, though it incurs extra
waiting time and driving distance.

2.1.2. Dynamic Charging Mode

ERS is introduced to alleviate the range anxiety for EVs (and ETs in particular). Wire-
less charging-based ERS allows smooth power transfer to EVs, including ETs. This dynamic
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charging mode can not only significantly extend the driving range of ETs, but also reduce
the time for frequent stops at charging stations. Although the wireless charging has a range
of benefits for ETs, some technical issues still remain to be addressed, such as more complex
maintenance requirements than traditional fixed charging stations, incurring both higher
upfront capital costs and operational costs.

In summary, a combination of static and dynamic charging provides ETs with a
great potential to extend the traveling distance and reduce the number of charging stops.
However, it also brings several challenges to the reliability of the power supply system,
which require careful analysis.

2.2. Mathematical Model of ET Route Optimization

As discussed earlier, the daily charging needs of ETs can be met by static and dynamic
charging. To minimize the operational costs, it is necessary to formulate the corresponding
ET route planning problem.

(1) Problem definition
As illustrated in Figure 1, the ET route optimization problem can be defined as follows.

The ET leaves the depot D0 with full battery capacity, delivers goods to customers Vi,
and then return to the depot D0. ETs for urban delivery often focus on the designated
working area by traveling between different locations. In order to minimize the opera-
tional cost, it is necessary to plan the travel route and charging time based on the specific
customer service time window. For the delivery service, a time window represents the
allowable time interval for delivery. For instance, an ET may be required to arrive between
10 and 12 am to deliver the goods to the customer location Vi. The range of two hours is
the arrival time window for customer Vi. It is often assumed that each customer requires
a time window to receive the delivery service, including the waiting and handling time.
When an ET serves one area, it must meet all the time requirements (arrive and departure)
of the customers and the vehicle battery capacity limitation.

Figure 1. Example of an ET’s daily route.

The purpose of ET travel-route planning is to achieve the minimal operating cost
while meeting all the delivery requirements of customers within the specific time win-
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dows, namely, electric truck route problem with time windows (ETRP–TW). The following
assumptions are made in order to formulate the ETRP–TW problem:

• Only one visit for each customer location;
• The ET journey starts from the depot with full battery capacity, and returns to the

depot on completion of all tasks for overnight charging. In-between, they can charge
at charging stations;

• When an ET arrives earlier at a delivery location, it will incur additional waiting time,
reducing the delivery efficiency;

• If an ET arrives late at a delivery location, it may incur overtime cost;
• The battery capacity of ETs ranges between 0 and 100%.

(2) Objective Function
The objective function is defined in Equation (1), which includes static charging cost

(Φ1), dynamic charging cost (Φ2), fixed cost (Φ3), and penalty cost (Φ4). All the notations
and parameters in the model are described in detail in Tables 1 and 2.

Table 1. Notation of the ET model.

Notation Definition

SE = V1, V2, . . . , VN Set of ETs
CO = C1, C2, . . . , CN Set of customers
SFC = F1, F2, . . . , FN Set of fixed charging stations
SDC = D1, D2, . . . , DN Set of dynamic charging points
SD = P1, P2, . . . , PN Set of depots
SC = SFC + SD Set of total static charging stations
RN = R1, R2, . . . , RN Set of routes

Table 2. Parameters of the ET model.

Parameters Definition

γs
Charging cost factor of charging
station, GBP/minute

γd
Charging cost factor of electric road,
GBP/minute

γ f c Fixed costs of EVs, GBP
Rk Optimized route k

Bi,k
Advanced time to customer point i
on route k

Di,k
Delay time to customer point i on
route k

β1 Penalty factor for advanced arrival
β2 Penalty factor for delayed arrival

The mathematical model is shown below:

Min ∑(Φ1 + Φ2 + Φ3 + Φ4)

= ∑
i∈CO,j∈SC,k∈RN

xi,j,k × ti,j,k × γs+

∑
i∈CO,j∈SDC,k∈RN

yi,jd,k × ti,jd,k × γd + ∑
i∈RN

riγ f c

+ ∑
i∈CO,k∈RN

(z1i,k × Bi,k × β1 + z2i,k × Di,k × β2)

(1)

subject to
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xi,j,k =


Pslow j ∈ SD
Pf ast j ∈ SFC
0 arrive on time

(2)

yi,j,k =

{
Pdyna j ∈ SDC
0 arrive on time

(3)

RN

∑
i=1

ri = NCO (4)

where xi,j,k and yi,jd,k are the static and dynamic charging power from point i to j at route
k, respectively. ti,j,k and ti,jd,k present the charging times by static charging and dynamic
charging mode during the period from point i to j at route k. ri is the number of ETs on route
i. z1i,j,k and z2i,j,k display the status of ETs arriving early and late, respectively, from point i
to j. NCO is the total number of customers in this area. Pslow, Pf ast, and Pdyna are the defined
slow, fast, and dynamic charging powers, respectively, of ETs on ETPSS–ER systems.

The range of the single static charging and dynamic charging time during traveling
ti,j,k and ti,jd,k are shown below (in units of minutes):

0 ≤ ti,j,k ≤ 600 (5)

0 ≤ ti,jd,k ≤ 90 (6)

Additionally, when the state of zi is 1, this implies that the ET arrives before the
appointment time or after the appointment ending time. In contrast, when the state is
valued as 0, this implies that the ET arrives within the predetermined time. Further, the
penalty times tw1i,k and tw2i,k for failing to serve ith customer within the predefined delivery
windows are expressed as Equations (8) and (9):

zi =

{
1, ti ≤ ai

⋂
ti ≥ bi

0, ai ≤ ti ≤ bi
(7)

Bi,k = max{ai − ti, 0} (8)

Di,k = max{ti − bi, 0} (9)

where ai to bi is the range of the predetermined time for the ith customer. ti is the ET arrival
time at the ith customer.

In summary, compared to passenger EVs, the daily travel patterns of ETs are predomi-
nantly used in business fleets for delivering services to designated customers, which have
less uncertainty to meet their travel requirements. Therefore, their charging demands are
often more manageable and predictable. To minimize the operation and charging cost for
an ET fleet while meeting the customer delivery requirements, fleet operators often need to
optimize the ET route and charging time, based on which the ET charging load demand can
be established. This section has presented the formulation for the ET route-optimization
problem. By solving the above optimization problem, the optimal daily ET loads intro-
duced into the ETPSS–ER system can be obtained to assess the reliability of the power
supply system.

3. Reliability Assessment Method for ETPSS–ER Systems

For the ETPSS–ER system, various ET charging modes introduce additional variable
loads to the power system. The optimal ET route plan delivered from the model of the
ET route problem can effectively reduce unnecessary charging demands and even extend
the daily travel distance of ETs. However, the extra variable ET charging-load demand
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may also decrease the power system reliability. Therefore, it is necessary to establish a
reliability assessment approach for the ETPSS–ER system, integrating the route optimization
model. In this section, an improved genetic algorithm for ETRP is proposed. Then, a daily
genetic algorithm (GA)-driven Monte Carlo simulation-based reliability analysis approach
is introduced for ETPSS–ER systems.

3.1. ET Route Simulation

Route planning has significant impacts on operational cost of EVs [28]; it also has
impacts on the interactions between the ETs and the power grid and, hence, the reliability of
the whole system. An essential problem here is to investigate both the routing and charging
choices to build a complete load model of the ETPSS–ER system. This section proposes an
improved genetic algorithm simulation method for route selection and charging planning
of ETs on electric roads to establish the corresponding electric energy load model in an
ETPSS–ER system.

Figure 2 illustrates the searchable intelligent optimization algorithm model for ET
routing and charging station selection. It mainly includes the dynamic search rule and
the GA, named as the DS–GA intelligent algorithm. For vehicle routing problems (VRPs),
several heuristic algorithms are applicable, for example, GA, Ant Colony Optimization
(ACO), and Tabu Search (TS). However, both ACO and TS algorithms have long search
times; therefore, GA is used in this paper for the VRP problem. GA algorithm is an
intelligent meta-heuristic method that has been widely used in transportation routing
problems. Further, the dynamic search rule ID also adopted to give ERS dynamic charging
priority when the ET is within 2 miles of a dynamic road-charging section, and then
subsequent re-routing is applied.

Figure 2. Structure of DS–GA optimization algorithm for the ET routing problem.

For the ERS system, it is usually defined that the dynamic charging segments, S1, S2, . . .
Si, . . . SN , are each 2 km long. The dynamic charging search rule-based GA algorithm of
ETs traveling on electric roads is summarized as follows:

• When the battery capacity of the ET is lower than what is required to reach the next
delivery point, the vehicle travels to the nearest charging station/dynamic charging
segment to recharge the battery;

• When the ET travels within 2 miles of a dynamic charging road section, priority is
given to the on-road dynamic charging;

• The battery capacity is fully charged after each charge;
• ETs adopt fast charging mode while on duty and normal slow charging mode

in depots.
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Therefore, the working procedure of defining the most optimized traveling routes by
the proposed DS–GA algorithm for ETs, shown in Figure 2, can be detailed as follows:

• Set the values for all the parameters of the ERS system, including the number, the loca-
tion and charging power of the ETs, and the number and location of customers/depots.
Further, define the GA parameters, including cross-over and mutation rates;

• Calculate the travel distance between customer locations as well as the distances from
each customer point to charging stations and to the dynamic charging sections;

• Based on the randomly generated initial populations, conduct route searches and
calculate the total travel distance for each route defined in the GA initial population;

• Check the feasibility of each route generated in the population. The ET needs to
travel to the nearest charging station when the distance to the next customer location
exceeds the maximum driving range of the existing battery capacity. And the ET needs
travel to the charging road sections by checking the designed dynamic search rules
while on duty. Record and insert the charging station into the planned route as an
updated route;

• Calculate the charging cost for each route in the whole population, and calculate the
total charging costs when all ETs are counted;

• GA conducts the cross-over and mutation operation, and elite scheme is also adopted
to keep the best solutions achieved over the whole population;

• Repeat the above steps until the solutions converge. The final optimal solution gives
the optimal routes for all ETs and their associated daily travel costs. This allows for
determination of the daily charging requirements for all ETs.

3.2. Reliability Assessment of ETPSS–ER System

Given the optimized routes from Section B, ET traveling and charging behaviors can
be analyzed in detail. Correspondingly, the load demands can be incorporated into the
reliability analysis of the ETPSS–ER system. First, a few cost–benefit indices and reliability
indices are introduced.

3.2.1. Cost–Benefit Indices of Road Systems

Cost of charging (COC, GBP):

COC = C f astc + Cdync + Csloc + C f ixc + Covec (10)

where C f astc and Cdync are the total fast charging cost and the dynamic charging cost,
respectively. Csloc is the total slow charging cost at depots, and C f ixc and Covec are the
daily fixed cost and the overdue penalty cost for the ETs due to delays introduced by
charging, respectively.

Mean cost of charging (MCOC, GBP):

MCOC = COC =
COC
NET

(11)

where NET is the total number of ETs.
Frequency of charging (FOC), which represents the number of chargings for each ET

while on duty:

FOC =
N

∑
i=0

f oci/NET (12)

where f oci is the number of chargings of the ith truck during delivery.
Ratio of delivery charging (RDC), which is the ratio of dynamic charging to static

charging cost of trucks while on duty:

RDC =
N

∑
i=0

Costdyn,i/(Coststa,i + Costdyn,i) (13)
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where Costdyn,i and Coststa,i are the dynamic and static charging cost for the ith trucks in
the ETPSS–ER systems.

3.2.2. Reliability Indices of ETPSS–ER Systems

Loss of load expectation (LOLE, hour/day), which is the daily expected energy gap
hours of power shortage:

LOLE =
T

∑
t=0

TLOL,t/60 (14)

TLOL =

{
1 if PG,t − Pload,t < 0
0 if PG,t − Pload,t ≥ 0

(15)

where TLOL is the state of load power shortage at time t, and T is the total system sim-
ulation time. And PG,t and Pload,t are the generated power and the load demand at time
t, respectively.

Loss of load probability (LOLP), which is the probability of the load loss:

LOLP =
∑T

t=0 TLOL,t

T
(16)

Energy not served (ENS), which presents the amounts of energy gap that the consump-
tion is higher than the supply:

ENS =
T

∑
t=0

(PG,t − Pload,t) ∗ TLOL,t (17)

3.2.3. Daily GA-Driven Monte Carlo Simulation-Based Reliability Assessment Method for
ETPSS–ER System

In order to compute the reliability indices introduced above, appropriate method
needs to be developed for simulating the ETPSS–ER system. Generally, in the ETPSS–ER
system, the supplied power comes from the thermal power plants, which is conventionally
used to cover the base load. As the most reliable generation technology, its working states
mainly have two modes, namely, normal operation and failure, which can be modeled by
a two-state Markov chain model, as shown in Figure 3a. It is assumed that the operation
and repair times obey exponential distributions. The working states of ’up’ and ’down’
represent the normal and failed operating states, respectively. This implies that the system
will stay in one state for a period of time before it changes to the other working state due
to failure or reparation. Next, the two states alternate and the durations of the two states
include time to failure (TTF) and time to repair (TTR), as shown in Figure 3b.

UNIT 

UP

UNIT 

DOWN

1/MTTF

1/MTTR

(a) Two-state model

0 TIME (hour)

TTF1TTR1 TTR2 TTF2

1

 

(b) Time cycle for a two-state model

Figure 3. Two -state model for the power system.

Accordingly, the system working state and generated system power at time t can be
expressed by Equations (18) and (19). Meanwhile, the total generated power is assumed via
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the inclusion of thermal and wind power generated power, working together for ETPSS–ER
power supply.

Sg,i,t =

{
1 if δ < pup→down

0 if δ < pdown→up
(18)

Pg,t =
Ng

∑
i=1

Pg,i,t × Sg,i,t (19)

where Sg,i,t and Pg,i,t are the state and the power of the ith generators at time t, respectively;
1 means the up state and 0 presents the down state. pup→down and pup→down are the transfer
probability of up to down state and down to up state. Pg,t is the total generated power of
thermal generators at time t. Ng is the total number of thermal generators.

In addition, the load power of the ith ET at time t, shown as PETload,i,t, is expressed as
Equation (20); the total load model PETload,t at time t is calculated by Equation (21):

PETload,i,t =


Pslow , ET charging in depots
Pf ast , ET charging in stations/roads
0 , ET no charging

(20)

PETload,t =
NET

∑
i=1

PETload,i,t (21)

The power shortage ∆PG,t at time t can be calculated by (22), which is depicted in
Figure 4.

∆PG,t = max
{(

Pg,t − Pbasedload,t − PETload,t
)
, 0
}

(22)

where Pbaseload,t and PETload,t are the total base load and ET load demand of the ETPSS–ER
system at time t.

P
o
w

e
r

0 T1

Pg,t1

T2 Time

Generated 
power

PL,t2 Load 
demand

Load 
gap

Figure 4. The daily Monte Carlo power shortage simulation.

For the ETPSS–ER system, the charging load model of ETs and the generated power
models have been introduced earlier. Next, a daily travel Monte Carlo simulation method
is proposed for ETPSS–ER systems to calculate the reliability indicators. According to their
separate delivery tasks, taking the daily travel of ETs as a cycle, the load and supplied
power supply can be time-sequentially simulated in minutes. The annual simulation time is
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usually set to 8760 h. The loop will start from the ET running on the first optimized routes,
followed by the next ET until all the routes are simulated and all the customer points have
been visited. The proposed daily GA-based Monte Carlo simulation reliability method can
be summarized in Figure 5, which has the following steps.

Define parameters of general power, customers, depots and 
ETs. Initialize i=1 and t=0

Start

Preform the dynamic charging technique and sample the 
travel route of ETs in road system

Record the charging requirements of ETi at time t, and the 
operation state of all generation

Simulate the generated power state at time t by 
equation (17)

Update the indice  P by equation (19) 

DP<=0

Update LOLE, LOLP and ENS

t>=T

END

yes

no

no

yes

t=t+1

Pload,i,t=Pba sel,i,t+Pch,i,t

Normal charge

yes

no
Fast charge Dynamic

yes yes

no

i>=Nev

i=i+1
t=0

no

yes

Calculate the charging cost of ETs travelling on 
electric roads, and the reliability indices

Create the ET route set ΩET,route, then calculate the 
total generated power Pg,t by equation (18) 

Perform improved GA algorithm for ET routes

Figure 5. Flowchart of the proposed reliability assessment method.

1. Initialize parameters of electric road systems, including the number and charging power
of trucks, the location and number of customers and depots, and the sampling time;
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2. Determine the required arrival time, service time, and load requirements for each
customer point;

3. Generate the delivery routes of ETs to calculate the corresponding charging cost.
Then, obtain the optimal ET routes with minimal charging cost by the improved
GA algorithm;

4. Calculate the load power of ETs traveling on electric roads at time t based on the daily
travel and charging routes;

5. Update the EVs’ charging and annual load by the load power of trucks charging
dynamically on roads;

6. Count the total generated power by the annual data and sample the operation state of
each generator.

7. Determine whether the power supply exceeds the power demand. If this is true, there
will be no power shortage; otherwise, there will be a power shortage;

8. Calculate the proposed reliability indices, such as LOLE, LOLP, and ENS;
9. End the cycle if the time t reaches the total simulation time; otherwise, continue the

above steps. Then, update all the reliability indices.

4. Case Study

The case study is conducted using the IEEE Roy Billinton Test System (RBTS) 6-bus
system, featuring 6 buses, 11 generators, 9 branches, and 4 loads, with a designated peak
power of 185 MW. For the ERS system, ETs with dynamic charging mode are integrated into
the system. The paper employs an enhanced Genetic Algorithm (GA) presented in Section 3
to simulate the optimal daily travel routes of ETs, as illustrated in Figure 6. Subsequently,
the daily load model is derived through the integration of the ET travel and charging model,
facilitating relevant calculations.

Figure 6. The optimal routes of ETs traveling on electric roads.

4.1. Parameter Settings

In the year 2022, the total number of newly registered electric medium- and heavy-duty
trucks was nearly 60,000, which accounted for about 1.2% of truck sales worldwide [29].
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There were about 52,000 ETs sold in China, which dominated the production and sales of
ETs (86.7%), while UK and Europe sales accounted for 5.2% and 4.7% of the global sales of
ETs, respectively [30]. Furthermore, according to the new Global Drive to Zero Emission
Technology Inventory (ZETI) database, the number of ET models also continued to expand
in 2022, which may be used in the ERS system. Therefore, in this case study, medium-duty
ETs are used to build the road traffic model. The related parameters used in the simulation
of the ETPSS–ER systems are shown in Table 3.

Table 3. Parameters of the ETPSS–ER system based on the IEEE RBTS system.

Parameter Value

Electric trucks number 5
EV charging point ratio
(dynamic/static charging point)

1/10

EV full-charge driving distance (km) 150
EV full-load capacity (kg) 200
EV static/dynamic charging power
in mid-time (kW)

40

EV slow charging power
in depot station (kW)

6

In this case study, an ET fleet is used for daily delivery within 50 miles of the depot.
This ET fleet has five trucks, which can use slow charging in the depot, fast charging at
the road charging station, or fast dynamic charging when traveling on the road sections.
It is further assumed that all the trucks start from depot and drive back to the depot after
delivering all tasks. Hence, the operational framework can be delineated as follows. ETs
initiate their journeys at the depot. Subsequently, when the battery capacity becomes
insufficient to reach the next delivery location, the ETs proceed to the charging station for
battery replenishment. Following this charging interlude, the trucks resume their journeys,
completing all assigned delivery tasks. Finally, they return to the depot for parking and
subsequent recharging. It is evident that midway charging options, including fast charging
and dynamic charging, will benefit the ET fleet operation with a lower number of trucks.
In this case, the daily travel plan with minimal cost of ETs driving on the ETPSS–ER system
can be achieved by using the proposed GA algorithm method described in Section 3, as
shown in Figure 6.

4.2. ET Routing Results

According to the DS–GA algorithm, the optimized ET routes are illustrated in Figure 6.
There are five routes for the ETs working for the depot delivery, which are detailed below:

1. 0 → 32 → 18 → 33 → 17 → 16 → 8 → 21 → 12 → 45 → 0;
2. 0 → 30 → 10 → 31 → 3 → 20 → 50 → 19 → 23 → 0;
3. 0 → 13 → 36 → 11 → 34 → 9 → 2 → 35 → 42 → 0;
4. 0 → 24 → 14 → 7 → 29 → 4 → 38 → 37 → 41 → 39 → 0;
5. 0 → 22 → 26 → 1 → 40 → 5 → 28 → 27 → 15 → 47 → 6 → 25 → 0.

Here, number 0 is the depot, and numbers 1 to 40 present the customer locations.
Numbers 41–44 and 46–50 are the fast charging locations, while number 45 is the dynamic
charging road location. Moreover, it is also assumed that the working time of ETs are 9:00–12:00
and 13:00–17:00.

It is clear that these five ET routes all start from the depot packaged with goods needed
to be delivered, then travel to different customer points until the battery capacity cannot
support the distance to the next planned point. In the meantime, they travel to the nearest
charging point to recharge the power in order to continue the delivery task. For example,
the ET on route 1 drives from the depot in the morning, travels through eight customer
locations, then goes back to the depot after charging at the electric road section. All the daily
charging moments of the five ET routes on the ETPSS–ER system are listed in Table 4. It is
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shown that, on these five routes, only an ET traveling on route 1 uses the dynamic charging
mode to recharge the battery. And most of the ETs are charged for the first time while in
transit at around 13:00, and return to the depot for the second charging at around 15:00.
This has impacts on the peak power demand periods, which may decrease the reliability of
the ETPSS–ER systems.

Table 4. The daily charging moments of ETs on electric roads.

Route
Charging Moment (Time t)

Static Charging
Midtime

Dynamic Charging
Midtime

Static Charging
Depot

1 - 14:44 15:23

2 13:37 - 15:34

3 14:13 - 15:01

4 13:41 - 15:39

5 13:55 - 15:55

4.3. Reliability Indices
4.3.1. Load Cost–Benefit Model

Based on the optimal ET routes in Figure 6 and the corresponding charging moment
in Table 4, the load model of the ETPSS–ER system can be established. It shows that, when
considering the mid-charging, five ETs could meet the delivery needs within a given area,
taking into account mid-way charging. Moreover, the charging load fluctuation of ETs is
presented in Figure 7. It is evident that ETs began to charge at the charging stations in
the afternoon at 13:37, until all vehicles were fully charged at around 19:30 in the evening.
Therefore, the normal load model of ETs on the ETPSS–ER systems can be established.
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Figure 7. The charging load fluctuation of ETs for the ETPSS–ER system.

Then, the average cost–benefit indices for a specific delivery area supported by the ET
fleet are as listed in Table 5. This shows that the total daily charging cost for ETs is about
GBP 517, while the mean charging cost for an ET is about GBP 100 per day. Meanwhile,
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each ET has an average of 2 charging times charging while on duty, while the dynamic
charging mode in this team accounts 10% of the total charging amount.

Table 5. Charging cost indices for ETPSS–ER power supply.

Indexes COC (GBP) MCOC (GBP) FOC (Times/per ET) RDC

Value 517.1918 103.4384 2 10%

4.3.2. Power System Reliability

Table 6 lists the reliability indices for the ETPSS–ER system with no trucks introduced.
These reliability indices mainly show the annual energy shortage situation. It can be
clearly seen that the basic annual energy shortage time is around 35 h for about 147 MWh.
Generally speaking, to shorten the energy shortage time, introducing additional renewable
wind power is an indispensable step for the ETPSS–ER system. Therefore, it is assumed
that there are three wind generators introduced here, for which the rated powers are set as
3.5 MW. The corresponding reliablity indices are also illustrated in Table 6. This shows that,
when an additional renewable wind power is introduced into the ETPSS–ER system, the
power shortage situation has improved significantly. The annual energy shortage hour has
decreased from 35 h to 6 h, while the amount of annual energy shortage is reduced from
147 MWh to 21 MWh.

Table 6. Reliability indices for basic ERS (no trucks) power supply system.

Indexes LOLE (h) LOLP ENS (MWh)

Basic ETPSS–ER 35.0000 0.0040 147.6334

ETPSS–ER with wind power 6.0000 6.8681 × 10−4 21.5492

(1) Indexes of ET penetration in ETPSS–ER system

In this case, the indexes of the ET number in ETPSS–ER system were determined,
as delineated in Table 7. The results show that the increased number of ETs imposed
pressure on the power system. Specifically, the annual energy shortage experienced a
notable surge, ranging from 148 to 10,523 MWh as the number of ETs increased from 100 to
5000, accompanied by a substantial increase in load loss hours, escalating from 35 to 356 h.
Conversely, within the range of up to 1000 ETs, the energy shortage and load loss indices
remained rather constant at 150 MWh and 35 h, respectively. This indicates that the current
road power system could accommodate approximately 1000 ETs as the maximal additional
load, maintaining stable operation for the ETPSS–ER system.

However, beyond 1000 ETs, particularly when the ET number exceeds 3000, the energy
shortage started to intensify. As indicated in Table 7, the introduction of 5000 ETs into the
ETPSS–ER system resulted in a critical energy shortage situation. The escalating number of
ETs in road systems translates to heightened load demands throughout the day for the power
supply system. Consequently, in this context, the incorporation of additional wind power
emerges as a viable solution to meet the escalating demands of the ETPSS–ER system.

(2) Impact of wind power for ETPSS–ER system

To further alleviate the pressure of ET charging load on the power system, three wind
generators were introduced. The rated power of the introduced wind power was 3.5 MW.
Then, the reliability indices of the ETPSS–ER system, augmented with renewable wind
power, are presented in Table 8, encompassing scenarios with 100 to 5000 ETs traveling on
the road. A comparative analysis with the basic ETPSS–ER system reveals a pronounced
reduction in the energy shortage for the wind-powered ETPSS–ER system, specifically with
1000 ETs, where the power shortage is reduced markedly from 150 to 20 MWh, representing
an 85% reduction. Simultaneously, the annual load loss hours also reduced significantly,
indicative of a more stable operational environment for the ETPSS–ER system.
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Table 7. Reliability indices for basic ETPSS–ER power supply.

Truck Number LOLE (h) LOLP ENS (MWh)

100 35.0000 0.0040 148.2694

300 35.0000 0.0040 149.5412

500 36.0000 0.0041 150.8484

1000 36.3833 0.0042 156.1793

3000 55.9500 0.0064 297.3056

4000 202.7000 0.0232 2647.4440

5000 356.4500 0.0408 10523.0063

Table 8. Reliability indices for ETPSS–ER with integrated wind power.

Truck Number LOLE (h) LOLP (∗10−4) ENS (MWh)

100 6.0000 6.8681 21.5492

300 6.0000 6.8681 21.5492

500 6.0000 6.8681 21.5492

1000 6.2333 7.1352 21.5692

3000 13.5333 15.4914 60.7609

4000 110.1667 126.1065 1420.1682

5000 285.4167 326.7133 7895.4413

(3) Impact of BESS for ETPSS–ER system

It is evident that the introduction of additional renewable power can effectively
mitigate the pressure on the power system induced by the charging loads of ETs. However,
as the number of ETs increases, the energy shortage gap also continues to broaden. Given
the uncertainty of wind power, a blanket incorporation of intermittent renewable power
into the power system without constraints is evidently impractical. Therefore, the Battery
Energy Storage System (BESS), which is capable of managing battery charge and discharge,
offers great potential in smoothing the renewable power generation.

The reliability indices for the ETPSS–ER system integrated with wind power and BESS
are given in Table 9. Compared with the ETPSS–ER system integrated with wind power,
its energy shortage is significantly decreased. Notably, the benefits are apparent when the
BESS is integrated into the ETPSS–ER system with wind power.

Table 9. Reliability indices for ETPSS–ER power supply integrated with wind power and BESS.

Truck Number LOLE (h) LOLP ENS (MWh)

3000 13.5333 0.0015 60.7609

4000 109.4000 0.0125 1418.8391

5000 281.2000 0.0322 7863.9448

6000 381.7167 0.0437 17,543.9211

7000 429.1333 0.0491 29,216.4485

8000 454.5500 0.0520 41,285.3816

In summary, for the ETPSS–ER system in the current setting, the introduction of fewer
than 1000 ETs usually does not require installation of additional power-generating units
such as renewable power. However, as the number of ETs increases, it is necessary to
integrate additional renewable wind energy to not only alleviate the power supply pressure
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of the system, but also to reduce the carbon emissions of the entire road system. In addition,
for ETPSS–ER system with high ET load, integrating a BESS system will not only reduce
the energy shortage, but will also improve the flexibility of the transportation system.

5. Conclusions

In order to accelerate the transport electrification, the introduction of dynamic charging
into the road system will significantly extend the ET driving distance and benefit the roll-
out of ETs. However, the escalation of electricity demand due to mass roll-out of ETs also
introduces unforeseen reliability challenges to the existing power systems. This study
has investigated the reliability of an ETPSS–ER system by considering the introduction of
dynamic ET charging and the roll-out of ETs. To achieve this, a comprehensive modeling
approach has been proposed, which combines an optimization model for ET routing
and a Monte Carlo-based reliability assessment method. The study has investigated
the reliability of ETPSS–ER systems considering the roll-out of ETs and the benefits of
integrating additional renewable power generation and BESS in alleviating the escalation of
power demand due to the increase of ETs and fluctuations of renewable power generation.

The case study results show that, for the specific power system setting, the introduction
of 1000 ETs will not cause major impact on the reliability of the existing system. As
the number of ETs continues to increase, it will bring huge power demand pressure to
the existing power supply system. It is, therefore, valuable to introduce supplementary
renewable power into the existing power grid to alleviate the pressure of power demand
due to increase in ET roll-out while reducing the carbon emissions. When the number of
ETs exceeds 3000, it is necessary to introduce additional renewable power and BESS for
more reliable ETPSS–ER system operations.
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