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Abstract: In recent years, there has been an increasing urgency among energy-intensive companies
to find innovative ways of mitigating the negative financial impacts of rising fuel and electricity
prices. Consequently, companies are exploring new technological solutions to lower electricity costs,
such as investing in their own power generation sources or storage systems. In this context, this
article presents a data-driven optimization-based framework to manage and optimize the operation
of a hybrid energy system within industries characterized by substantial power requirements. The
framework encompasses several key aspects: electricity generation, self-consumption, storage, and
electric grid interaction. The case of an energy-intensive company specializing in wood processing
and office furniture production is evaluated. This study explored two system configurations of hybrid
energy systems within an energy-intensive company. The result of the analyzed case shows that the
system’s flexibility is enhanced by its ability to store energy, resulting in electricity cost savings of
nearly 72% and total operating cost savings of 20%.

Keywords: hybrid energy systems; optimization; electricity; energy-intensive sectors

1. Introduction

Electricity prices are among the most significant cost drivers in the operation of energy-
intensive companies in sectors such as cement, paper, steel, and chemical [1]. In recent
years, the financial results of these enterprises have been impacted by the rise and high
volatility of electricity prices—mainly caused by the COVID-19 pandemic and the conflict
in Ukraine. The increasing urgency among enterprises to mitigate this negative impact on
operational costs is a response to the surge in fuel and electricity prices, as well as the risk
of further volatility in commodity markets.

For this purpose, companies are exploring innovative solutions to lower electricity
costs, such as investing in their own power generation sources (preferably renewables)
or storage systems. Strategies like integrating dispatchable power generation units with
renewable energy sources (RES) and energy storage technologies into a single hybrid system
or integrated system are becoming widely accepted [2]. Moreover, energy management
systems that promote energy self-sufficiency are gaining traction in energy clusters and
energy cooperatives [3].

A fundamental problem and research challenge lie in effectively managing such sys-
tems to either minimize energy consumption costs within a company or maximize the profit
related to the operation of the entire system, including energy generation, consumption,
purchase, and storage. In this context, decision-support tools such as mathematical models
to optimize the operation of hybrid energy systems in energy-intensive companies emerge
as promising solutions. Using these models, it is possible to reduce electricity costs by
optimizing energy production, purchase, self-consumption, and storage.

Energies 2024, 17, 1307. https://doi.org/10.3390/en17061307 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17061307
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-9578-8299
https://orcid.org/0000-0003-4587-9613
https://orcid.org/0000-0002-0600-4374
https://orcid.org/0000-0001-7514-8761
https://doi.org/10.3390/en17061307
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17061307?type=check_update&version=1


Energies 2024, 17, 1307 2 of 16

2. Literature Review

Developing optimization models to support decisions regarding the management
of energy generation, purchase, and storage systems is a complex task. In recent years,
researchers have directed their attention to the development of decision-support tools for
integrated distributed energy resources like local microgrids. Numerous articles in this
area explore the optimal control of integrated systems like microgrids in small energy coop-
eratives. Kriett and Salani proposed one such model in [4]. They employed a mixed integer
linear programming approach to minimize system operating costs. The microgrid was
modeled as a grid-connected system and included solar energy installations, distributed
generators (micro gas turbines, diesel generators), energy storage units, and load control
devices (controlled-load home appliances and electric vehicles).

A similar problem was solved by Su et al. in [5]. The authors described a two-
step stochastic model for managing a local microgrid in a grid-connected mode. The
proposed model considered the intermittency and variability of renewable energy sources
(i.e., wind and solar). Moreover, it minimized operating costs while reducing power
losses via an optimal storage operation and scheduling of controllable sources. A similar
approach was taken by Zhang et al. in [6]. Their study proposed a stochastic energy
management model for a microgrid. It was formulated as a quadratic mixed integer (MIQP)
programming problem and further applied within a stochastic model predictive control
(SMPC) framework. Renewables, controllable power generation units, energy storage,
and variable load devices were considered. RES production, demand, and electricity price
forecasts were treated as uncertain parameters and generated using Monte Carlo simulation
methods. In [7], Mansour Lakouraj et al. proposed a model for supporting decision-making
in microgrids. The model aimed to minimize energy costs in the day-ahead market and
was formulated as a mixed integer linear programming problem (MILP). The microgrid
included controllable units, energy storage systems, wind turbines, and demand response
capabilities. In the study, the microgrid operator could purchase active and reactive power
from the local distribution market. To ensure the optimal operation of the microgrid, an
effective short-term scheduling was implemented.

Subsequent publications have concentrated on models that support energy consump-
tion management. Ottesen and Tomasgard [8] proposed a model for energy consumption
management in a university college building, introducing the concept of an energy hub.
The system included multiple energy carriers, converters, and storage units to increase the
system’s flexibility. The study presented two models (one deterministic and one stochastic)
and emphasized the role of the retail side in the electricity market. A similar approach was
proposed by Brahman et al. in [9].

A critical issue that arises in the effective management of controllable units involves
the careful planning of startup and shutdown procedures, taking into account the dynamics
of ramping and the technical restrictions of the units. This problem was considered by
Liu et al. [10], who proposed a decision-support tool that integrates dynamic temperature
and startup/shutdown modeling. Similar issues were considered by Correa-Posada CM
et al. in [11] and Jin et al. in [12]. Srilakshmi and Singh proposed a social micro-network
management model in [13]. The authors developed a model for the optimal operation of
the social microgrid with photovoltaics (PV), energy storage systems (ESS), and electric
vehicles (EV) as alternative energy sources. In their work, the surplus energy stored in
electric vehicles can be transferred to the grid or consumed locally (two-way energy flow
strategy). The EV charging/discharging schedules were modeled as a MILP problem.

Soares et al. [14] proposed a model for integrated energy management that accounts for
several sources of uncertainty. The uncertainties in power demand, wind and photovoltaic
(PV) energy, the demand for electric vehicles, and the volatility of market prices were
considered. The proposed method was based on stochastic programming. The authors
formulated a two-stage stochastic problem for energy resource scheduling to address
the challenge posed by the demand, renewable sources, electric vehicles, and market
price uncertainty.
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Recent articles also describe models that support the decision-making process in local
electricity grids, accompanied by relevant case studies. Carli et al. [15] delved into the en-
ergy scheduling of a smart microgrid problem with shared photovoltaic panels and storage,
using the Ballen Marina in Samsø, Denmark, as an example. The case study demonstrates
energy scheduling in a system with non-controllable and controllable electrical devices, as
well as photovoltaic (PV) panels and a battery energy storage system (BESS). By utilizing
a model predictive control, the self-supply increased by 1.6%, resulting in 8.2% savings
in yearly energy costs. Another example concerns the optimization of the operation of
multiple micro-energy systems in a science and education park in Guangzhou, China [16].
The study demonstrated that Shared Energy Storage Systems (SESS) for different local
systems can help reduce up to 10% of the capital investments in energy storage units
and operating costs. The case of a microgrid aggregator that manages microturbines,
wind and photovoltaic systems, energy storage, electric vehicles, and usage of energy
was explored by Gomes et al. in [17]. They proposed a microgrid support management
system based on a stochastic mixed-integer linear programming formulation. The cases
concerned the application of demand response and the associated risks of participating in
the electricity market.

Other applications of decision-support tools for energy management involve stand-
alone rural electrification systems based on photovoltaic technologies, including both
microgrids and individual supply configurations. The results of using mathematical
models for these purposes are illustrated, among others, in the examples of Bolivia [18],
Ecuador’s Amazon Region [19], and the Galapagos Region [20]. The abovementioned stud-
ies offer various approaches for determining optimal system configurations and propose
decision-support tools based on linear and mixed integer linear programming models, with
economic, technical, and social aspects integrated as model constraints.

Examples of decision-support tools for energy-efficiency planning in production
systems powered by renewable energy can also be found in the literature. Materi et al. [21]
proposed an optimization solution that incorporated manufacturing parameters as inputs.
The decision-support tool aimed to optimize the production planning while aligning it
with the availability of renewable energy. Wang et al. [22] formulated a two-stage multi-
objective stochastic MILP for production planning. In the first stage, optimal schedules
were generated to minimize the total production completion time. The second stage
determined the energy supply decisions to minimize energy costs under a time-of-use
electricity pricing scheme. Although the approaches reviewed in this section contribute to
the optimal operation of the grid and off-grid energy systems, there is a noticeable gap in
the literature regarding computational frameworks and computable models specifically
designed for energy-intensive companies. In particular, there is a deficiency in models that
optimize the purchasing process of electricity, self-generation, and energy storage within
enterprises that exhibit high levels of fuel and electricity price risk exposure.

In this context, this study contributes to the literature by describing an integrated
computational approach for the minimization of energy acquisition costs by combining
machine learning methods and mathematical programming. The approach presented in
this work aims to provide optimal schedules for a wide range of system configurations and
local system components, including local conventional (steam turbine, gas engine, etc.) and
renewable generation sources (PV, wind turbine, etc.), charging and discharging energy
storage units, as well as purchasing and selling electricity from and to the grid. Moreover,
it takes into account the operational limitations of these generation sources, energy storage
units, price volatility in the electricity market within the planning horizon, and demand-
side response interventions. The approach also accounts for the variable electricity demand
of the enterprise, determining the potential volume of power reduction, as well as the
maximum duration of this reduction in a given period with fluctuating electricity prices. It
is worth highlighting that the proposed approach is demonstrated using the case study of
an energy-intensive company specializing in wood processing. Additionally, it is important



Energies 2024, 17, 1307 4 of 16

to note that the approach can be adapted to incorporate additional technologies and be
applied to assess other industries and companies in different countries.

In summary, this work contributes to the existing literature via the following:

(1) Proposing a data-driven optimization-based framework to manage and optimize the
operation of a hybrid energy system within industries characterized by significant
energy demands.

(2) Developing a framework architecture that integrates a mixed-integer linear program-
ming model aimed at minimizing the total operating costs of the system. In addition,
it provides the ability to obtain critical input data using additional modules based on
machine learning methods.

(3) Showcasing the benefits and applicability of the optimization model via a case study
of an energy-intensive company specializing in wood processing and office furni-
ture production.

With this scope in mind, the remainder of this paper is structured as follows. Section 3
describes the proposed tool and the main assumptions adopted in its construction. Section 4
presents a case study and two research scenarios—a system without energy storage (Case A)
and a system with energy storage (Case B). Section 5 discusses the main research results.
Concluding remarks are provided in Section 6.

3. Decision-Support System for Energy-Intensive Enterprises

This section describes a model designed to support the operations management of
electricity production assets in energy-intensive companies. The decision-support tool
has been built with universality in mind, allowing its application across various energy-
intensive companies. Its primary function is to optimize the operation of generating units
(dispatchable sources), non-dispatchable generating units (renewable energy technologies),
and energy storage systems and to minimize the costs of electricity generation within
the enterprise.

3.1. Mathematical Model

In recent years, several research works have investigated and compared the effects of
the selection of linear and non-linear optimization approaches on the operation manage-
ment of energy system technologies. Although the choice of the optimization approach
depends on a number of conditions, numerous studies have showcased that the advan-
tages of convex optimization outweigh the overall errors that could be caused by linear
approximations [23]. Moreover, there is an increasing number of works that suggest that
techniques based on mixed-integer linear programming offer significant advantages for cost
minimization, such as global solutions, shorter computation times, and model trackability,
when compared to non-linear or rule-based techniques [24]. Therefore, a mixed-integer
linear programming approach was adopted to develop the mathematical model described
in this section. The model was implemented in the General Algebraic Modeling System
(GAMS), and a simplified scheme of the model is shown in Figure 1. The goal of this model,
represented by its objective function, is to minimize the total operating costs of the hybrid
energy system. Cost components incorporated in the objective function include fuel costs,
fixed and variable operation costs, maintenance costs, costs from purchasing power from
the grid, startup and shutdown costs, and storage operational costs. In addition to costs, the
model considers revenues from the sale of electricity to the grid and additional revenues
from demand-side response (DSR) interventions. This study adopts a similar approach to
the breakdown of cost components often employed by independent system operators [25],
where variable costs depend on the level of output of a generation unit (excluding fuel),
and fixed costs remain constant regardless of the electrical production.
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Figure 1. Block flow diagram of the proposed framework. Source: own elaboration.

The model’s temporal resolution is hourly, and the optimization horizon can be se-
lected flexibly in the range of 3–7 days. The calculations can be performed in planning
intervals using a rolling horizon approach. The rolling horizon method in decision-making
processes allows users to utilize updated forecasts (electricity prices, wind, or PV genera-
tion profiles) or information from unexpected events (e.g., unplanned increase/decrease
in demand).

The framework’s architecture assumes the possibility of obtaining critical input data
using additional modules based on machine learning methods. For example, an addi-
tional module that uses specific data to forecast demand could be incorporated into the
workflow (e.g., outdoor temperature, when using electricity to heat rooms, or the number
of orders). The model can also utilize real-time or historical data provided by energy-
intensive companies, enabling energy consumption analyses focused on the seasonality of
the production process.

The input data may also include forecasted electricity generation estimates from
non-dispatchable sources. These forecasts can be provided using external wind and solar
production forecasts or be the result of machine learning methods. The machine learning
module for renewable generation forecasts may use temperature, insolation, and wind
speed for a given location. The application of such methods enables the framework to
account for intermittency and variability in renewable sources and dynamically adjust the
generation levels of dispatchable technologies, mitigating the impact of forecasting errors.
Furthermore, unlike heuristic models that employ strategies to maximize the utilization of
renewable energy sources, the optimization model prioritizes the utilization of renewables
due to their low or nearly negligible variable costs.

Similarly, in the case of input data regarding electricity price forecasts, one may use
external forecasts or machine learning methods. In this work, the model uses electricity
prices from the Polish Balancing Market (spot) [26]. Forecasting models used by companies
can also serve as sources of input data [27]. It is important to note that the prices at which
electricity is bought and sold significantly impact the decisions concerning the operation
of dispatchable sources and energy storage; therefore, the data used in the mathematical



Energies 2024, 17, 1307 6 of 16

model should have a high degree of reliability—as they entail financial consequences.
Figure 2 presents a block flow diagram illustrating the structure of the data input.

Figure 2. Block flow diagram of the proposed computational approach. Source: own elaboration.

Incorporating machine learning methods offers three main benefits. First, machine
learning methods can provide real-time forecasted values to the optimization network,
allowing for dynamic adjustments to the generation levels of dispatchable technologies
and better utilization of energy storage units. Second, the system can adapt to chang-
ing demand patterns and allocate resources optimally, resulting in enhanced efficiency
in resource allocation and minimized system costs. Third, the use of forecasting tools
improves grid reliability by proactively responding to fluctuations in energy production
and consumption, enhancing the overall system stability. This integration can be achieved
by soft-linking different programming environments, such as establishing communication
between optimization models implemented in GAMS version 42.4.0 and machine learning
models programmed in Python version 3.10.10).

As previously mentioned, the model’s objective function assumes the minimization of
all system operating costs. These costs include fuel, fixed and variable costs of generating
units, startup and shutdown costs, costs of purchasing electricity from the grid, and storage
maintenance costs. The system cost balance equation also incorporates revenues that
can be obtained from the sale of electricity to the grid or those associated with demand
side response.

The constraint that defines the power balance in each time step is a crucial equation
implemented in the model. This equation ensures that the total generation of dispatchable
units, PV and wind turbines, energy discharged from the battery storage, and the total
volume of purchased electricity minus the amount of energy sold and the amount of energy
allocated to charging the battery storage and demand reduction is equal to the expected
demand in a given time step.

This study assumes that the system is connected to the main grid and the power
balance can be satisfied using local energy sources as well as energy from the main grid.
Therefore, the following constraints associated with the operation of the grid interaction
were defined:

• Maximum power purchased in a given time step;
• Minimum power purchased in a given time step;
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• Maximum power sold in a given time step;
• Minimum power sold in a given time step;
• Binary variable constraint that determines if the system is importing or exporting

power in a given time step.

Additional constraints in the model are related to the operation of the generation
sources. For dispatchable units, the following constraints were defined:

• Maximum power output in a given time step;
• Minimum power output in a given time step;
• Maximum ramp-up in a given time step;
• Maximum ramp-down in a given time step;
• Minimum up times (number of operating hours after starting the unit);
• Minimum down times (number of hours the unit is off);
• Fuel cost calculation in a given time step;
• Binary variable constraints that represent the operating status of the units at a given

time step.

Moreover, the model includes additional constraints that specify the ramp-up and
ramp-down limits of the dispatchable unit in the first hour of the time horizon, utilizing
information about the unit’s operational state at the beginning of the analyzed period.
Similarly, constraints for non-dispatchable sources have been implemented in the model.
Because of the intermittency of these sources, the primary constraint focuses on the produc-
tion balance of solar PV and wind generation technologies.

The operation of energy storage was also characterized using a set of equations. The
equations consider three fundamental elements for the mathematical representation of a
generic battery energy storage system: parameters, decision variables, and operational
constraints, which are based on the exact-MILP representation of a BESS discussed in [28].
These constraints employ binary and positive variables to reflect the operational plan of
the battery storage at an hourly resolution. Each state (charging, holding, and discharging)
is characterized by the appropriate variable 0 (on)/1 (off). Additional constraints are
associated with the maximum storage capacity, minimum and maximum state of charge,
and the storage’s maximum charge and discharge levels in one hour. Similar to the case of
dispatchable sources, various technical limitations have been added for the first hour of
the time horizon. These limitations include information on the battery’s state of charge at
the beginning of the analyzed period. It is worth noting that the rolling horizon approach
allows for the monitoring of the battery’s state of charge over time. It also records the
charging and discharging profiles, capturing the continuous-time coupled battery dynamics.
Similar approaches have been discussed in [29]. The following constraints were defined:

• Energy storage inventory balance in a given time step;
• Energy storage capacity limits in a given time step;
• Energy storage charge and discharge limits in a given time step;
• Binary variable constraints that represent the operating status of the energy storage

units at a given time step.

The implementation of the model elements, such as sets, parameters, variables, and
the objective function within the modeling system, allows one to determine the optimal
values of the decision variables while considering the various scenario assumptions. The
main outputs of the model include the following:

• Power output of dispatchable technologies in a given time step;
• Power purchased from the external grid in a given time step;
• Power sold to the external grid in a given time step;
• Battery state of charge in a given time step;
• Energy charged to the storage unit in a given time step;
• Energy discharged from the storage unit in a given time step;
• Total system operating costs;
• Fuel cost of dispatchable technologies in a given time step;
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• Fixed and variable costs of dispatchable and non-dispatchable technologies in a given
time step;

• Startup and shutdown costs of dispatchable and non-dispatchable technologies;
• Costs of grid interaction (power purchase from the grid and power sold to the grid

costs) in a given time step.

The tool developed in this study can be employed to optimize the operation of an
energy-intensive company with different configurations of generating units. Furthermore,
the analyses can be used to support planning and investment decisions regarding the
purchase of new generation or storage units.

The primary outcomes of the model, which are valuable for decision-makers in enter-
prises, consist of optimized schedules for purchasing electricity, utilizing local generation
sources, and charging and discharging energy storage units. This capability makes it possi-
ble to minimize operating costs in hybrid energy systems. The fast solution times (typically
a few seconds to several minutes) facilitate the analysis of several scenarios, including, for
example, changes in forecasted electricity prices, unexpected unavailability of local power
generation units, and the reduction in local system demand.

3.2. Model Implementation

The model was implemented in the General Algebraic Modeling System (GAMS). The
optimization was carried out using GAMS version 42.4.0 (64-bit/MS Windows platform).
The solvers (a) IBM ILOG CPLEX version 22.1.1.0 and (b) Gurobi Optimizer version 10.0.0
build v10.0.0rc2 (win64) were used to evaluate the case study. All calculations were
conducted on a desktop computer with a 12th Gen Intel(R) Core(TM) i9-12900K 3.20 GHz,
with a thread count of 16 physical cores, 24 logical processors, and 128 GB of RAM.

The model was verified and validated via a two-step process in line with the stan-
dards commonly used in the development of optimization models for optimization-based
decision-support tools [30]. First, a series of sensitivity analyses were performed to as-
sess the robustness of the model. Second, various scenario analyses were conducted to
validate the model’s performance under different operating conditions. The sensitivity
analysis was performed by adjusting individual parameters, such as fuel price, electricity
price, battery capacity, and others, one at a time by a specified percentage. The sensitivity
analysis indicated that changes in electricity prices had the most significant impact on the
model results.

4. Case Study

The model was used to optimize the operation of local electricity generation sources
in an energy-intensive company specializing in wood processing and office furniture
production. The primary cost parameter in its operation, aside from the price of wood and
materials, is electricity consumption. The electricity demand depends on the time of day
and the number of orders. The company operates from 6:00 to 22:00, six days a week. In
exceptional cases, when there is an increase in the number of orders, the company shifts to
a 24 h, seven-days-a-week schedule.

The company’s operational goal is to generate electricity from its local power sources,
but it also possesses the flexibility to purchase electricity from the grid and sell any surplus
back to the grid. The operational strategy established by the plant manager is to minimize
the total costs of production and energy purchases while maximizing the revenues from
electricity sales. In the context of the high volatility of energy prices in the Polish market,
activities related to the energy management and optimization of its purchase and sale are
particularly important [31]. The company owns two generating units, a 200 kW diesel
engine and a 400 kW gas engine. Additionally, it integrates a photovoltaic installation with
a capacity of 100 kWp and a wind turbine with a capacity of 100 kW.

This study assesses the financial and operational effects of incorporating a battery
unit into the system. Therefore, this study analyses two possible scenarios: one where the
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company operates without a battery energy storage (Case A) and the second with a 200 kW
battery energy storage (Case B).

The highest energy consumption in the energy-intensive company occurs between
8:00 and 22:00. The demand profile for the next three days (72 h) was provided by the
company, as shown in Figure 3. The figure shows that the peak demand is 120 kWh, and
the minimum is 25 kWh.

Figure 3. Company demand profile. Source: own elaboration.

Technical parameters of dispatchable and energy storage units are presented in Ta-
bles 1–3. The technical data for the generation sources were made available by the company.

Table 1. Technical parameters of dispatchable units (part 1). Source: own elaboration.

Dispatchable
Technologies

Rated Power
or Rated
Energy

Rated
Efficiency

Min. Output
Power

Max. Power
Output

Ramp Up
Limit

Ramp Down
Limit

CO2
Emission

Factor

Minimum
Time Up

Minimum
Time Down

[kW] [%] [% of IC] [% of IC] [kW] [kW] [kgCO2/kWh] [h] [h]

Diesel 200 0.45 0.05 0.8 10 10 0.76 1 1
Gas engine 400 0.42 0.05 1 50 50 0.48 2 2

Table 2. Technical parameters of dispatchable units (part 2). Source: own elaboration.

Dispatchable
Technologies

Fuel Cost Intercept
Fuel Costs

Variable
O&M Costs

Fixed
O&M Costs

Startup
Costs

Shutdown
Costs

Power
Output from
the Previous

Planning
Horizon

(Horizon-1)

Time UP
from the
Previous
Planning
Horizon

(Horizon-1)

Time Down
from the
Previous
Planning
Horizon

(Horizon-1)
[EUR/kWh] [EUR] [EUR/kWh] [EUR] [EUR] [EUR] [kW] [h] [h]

Diesel 0.6 50 16.3 5 5 5 0 0 0
Gas engine 0.5 120 13 0.3 13.2 0 0 0 0

Table 3. Technical parameters of the battery energy storage (only Case B). Source: own elaboration.

Storage
Technologies

Rated
Power or

Rated
Energy

Rated
Efficiency

Charging
Efficiency

Dis-
Charging
Efficiency

Min.
Storage
Limit
Level

Max.
Storage
Limit
Level

Max.
Power
Charge
Time

Max.
Power

Discharge
Time

Storage
Initial
Level

Storage
O&M
Costs

[kWh] [%] [%] [%] [% of IC] [% of IC] [h] [h] [kWh] [EUR/kWh]

Battery 200 100 98 98 0 100 4 4 0.1 0

The generation profiles of the wind turbine and photovoltaic installation are shown in
Figure 4. The case study employs historical data on the production of non-dispatchable
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units provided by the company and historical electricity prices published by the Polish
Power Exchange (TGE) [26] (Figure 5). To ensure the tractability of the model results for
both scenarios, the option of obtaining additional revenues from demand-side response
interventions was excluded.

Figure 4. Production of non-dispatchable (RES) sources. Source: own elaboration.

Figure 5. Electricity price on the balancing market. Source: [26].

5. Result and Discussion

The calculations were executed using the proposed model for optimizing the operation
of a local energy-intensive company and the assumptions and input data outlined in
Section 4. The results were compared for two scenarios. In the first scenario (referred
to as Case A), the system operated without an energy storage unit, while in the second
case (referred to as Case B), the system incorporated a battery energy storage unit with a
capacity of 200 kWh.

Consequently, the results for both scenarios are presented in three subsections. Section 5.1
provides the results of electricity production and interaction with the grid—information on
purchasing and selling electricity in individual hours. Section 5.2 presents detailed results of
the operation of the energy storage for Case B. Section 5.3 compares the total system costs,
considering the revenues from electricity sales.

It is worth noting that the total computation time with the CPLEX solver ranged from
0.07 s for case A to 0.13 s for case B. Although alternative solvers such as GUROBI or
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HIGHS may yield different computation times, the results obtained are satisfactory for the
operational planning process in energy intensive companies.

5.1. Electricity Generation Mix

The company’s detailed electricity production structure from individual sources is
shown in Figure 6 (Case A) and Figure 7 (Case B). The black line indicates the demand for
electricity in the analyzed system. The low cost of the system forces the controlled unit
(GasEngine1) to operate continuously throughout the entire time horizon. The minimum
production level is 63 kW, and the maximum is 339 kW. The genset (Diesel1) operates at
specific time steps of the analyzed period, with a maximum production level of 50 kW.
The periods of energy sale to the grid, most often related to the generation of wind energy
during low demand, are shown in the diagram above the black line. The total volume of
energy sold to the grid in the analyzed period is 1040 kWh. Hours in which electricity is
purchased from the grid are shown in green. The total purchase of energy in the analyzed
period amounted to 1658 kWh.

Figure 6. Model results for scenario A—electricity production structure in the enterprise. Source:
own elaboration.

Figure 7. Model results for scenario B—electricity production structure in the enterprise. Source:
own elaboration.

In Case B, there are periods when the local electricity production either exceeds
or falls significantly below the energy demand. This is mainly due to the operation of
energy storage. Overall, for Case A and B, the electricity generated by the conventional
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technologies (Diesel1 and GasEngine1) was at a similar level. The most significant difference
is noticeable in the volume of electricity purchased.

Figures 8 and 9 show the detailed results of purchasing and selling electricity by the
system. During the hours when the sale of electricity was possible, the model sought to
increase its profit by selling it to the grid. Electricity was purchased from the grid when
the local generating assets could not satisfy the demand. Scenario A (without storage)
shows that electricity was purchased from the grid in 20 time periods of the analyzed
horizon (accounting for over 25% of the time). The highest purchased volume in a time step
amounted to approximately 160–180 kWh. In Case B (with storage), the highest volumes
were lower (approx. 60–80 kWh), and the number of hours needed to purchase electricity
was only 8.

Figure 8. Results for scenario A—purchase and sale of electricity.

Figure 9. Results for scenario B—purchase and sale of electricity.

5.2. Battery Energy Storage Integration

The decision to charge and discharge the battery energy storage is influenced by factors
such as energy purchase and sale prices, the generation level of dispatchable sources, and
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the capacity of the storage unit. Figure 10 illustrates the charging and discharging periods
of the energy storage in relation to the purchase and sale price of electricity (for Case B).
During the analyzed period (72 h), the storage was charged for 30 h, discharged for 25 h, and
energy was stored for 17 h. Figure 11 shows the production from non-dispatchable sources
in relation to the battery storage state of charge (SOC). When energy production from
non-dispatchable sources is high, the storage (charging) operation is visible. Conversely,
periods in which energy production from non-dispatchable sources is low often coincide
with the discharging of the battery storage.

Figure 10. Model results for scenario B—energy storage charging and discharging cycles in relation
to energy purchase and sale prices.

Figure 11. Simulation results for scenario B—state of charge of the storage in relation to the production
of energy from non-dispatchable sources.

5.3. System Operating Costs

Table 4 compares the cost components for both scenarios: Case A and Case B. The
upper section of the table distinguishes between the cost components related to the pro-
duction of electricity in individual dispatchable units and non-dispatchable units, as well
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as the costs of operating the energy storage and purchasing electricity from the grid. The
lower section presents the revenues from the sale of electricity to the grid and the total
system costs for the analyzed horizon.

Table 4. Model results for scenarios A and B—system operating costs [EUR]. Source: own elaboration.

Cost Category Cost Component Case A
[EUR]

Case B
[EUR]

Variable operations and maintenance costs
(non-fuel portion) Dispatchable technologies VOM costs 205,685.5 223,504.2

Dispatchable technologies startup costs 48.2 48.2
Dispatchable technologies shutdown costs 35.0 35.0

PV VOM costs 9.5 9.5
Wind VOM costs 14.7 14.7

Storage VOM costs 0.0 0.0

Fixed operations and maintenance costs Dispatchable technologies FOM costs 216.6 111.6

Fuel costs Fuel costs 18,470.3 18,125.8

Electricity costs Costs of purchasing electricity from the grid 62,782.2 13,860.5

Electricity revenues Revenue from selling electricity to the grid −42,397.0 −51,982.2

Total System Cost [EUR] 244,865.0 203,727.3

The total cost of operating the system for Case A (without storage) is EUR 244,865.0.
The most significant cost components are the variable costs (amounting to EUR 205,685.5)
and the cost of purchasing electricity from the grid (EUR 62,782.2). Revenues from the sale
of electricity to the grid amounted to EUR 42,397.0. The system’s flexibility is enhanced
by its ability to store energy, which results in lower operating costs. As a result, in the
second scenario (Case B, with storage), fuel and variable costs are slightly higher. However,
the cost of purchasing energy from the grid dropped almost four times, and the revenues
from the sale of electricity doubled. Consequently, the operating cost of the entire system
amounts to EUR 203,727.3 (approximately EUR 40,000 lower than Case A).

6. Conclusions

This article proposes an optimization-based framework that can be widely used by
energy-intensive companies specializing in various economic activities. It can be applied to
optimize the generation, purchase, and sale of electricity in an enterprise on an ongoing
basis, as well as to support management decisions regarding the integration or the purchase
of new power generation and storage technologies.

The developed tool demonstrates that innovative configurations of technological in-
stallations are necessary for energy-intensive companies. These systems may include local
generation units (conventional and renewable), electricity storage facilities, and smart
loads or smart energy devices. The framework’s architecture assumes the possibility of
obtaining critical input data using additional modules based on machine learning methods.
Moreover, the model was used to optimize the operation of local electricity generation
sources in an energy-intensive company specializing in wood processing and office fur-
niture production. The optimization-based framework proposed in this study is highly
generalizable, flexible, and scalable. Therefore, it could be applied to other energy-intensive
companies operating in various economic activities and located in different regions, such
as industrial processes, agriculture, microgrids, mining and extractive industries, and
commercial buildings, among others.

The results from the case study show that the total cost of operating the system for
Case A (without storage) is EUR 244,865.0, with the most significant cost components being
the variable costs (amounting to EUR 205,685.5) and the cost of purchasing electricity from
the grid (EUR 62,782.2). Adding a battery to the system enhanced its flexibility, resulting
in lower operating costs. The cost of buying electricity from the grid dropped almost four
times, and the revenues from the sale of electricity doubled.

Possible paths for future research worth exploring are integrating smart energy de-
vices and potentially increasing the temporal resolution adopted in the rolling horizon to
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15 min. Additionally, the optimization framework could be expanded to include emerg-
ing technologies, such as electrolyzers and electric vehicles, and analyze their financial
impact on current hybrid energy systems. While the framework is designed for optimal
operational scheduling of the hybrid energy systems, it could also be used to perform
techno-economic analyses using capital budgeting methods such as payback period (PBP),
return on investment (ROI), net present value (NPV), and internal rate of return (IRR).
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