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Abstract: This study presents a Two-Layer Deep Deterministic Policy Gradient (TL-DDPG) energy
management strategy for Hydrogen fuel cell hybrid train, that aims to solve the problem that tra-
ditional reinforcement learning strategies require high initial values and are difficult to optimize
global variables. Augmenting the optimization capabilities of the inner layer, a frequency decoupling
algorithm integrates into the outer layer, furnishing a fitting initial value for strategy optimization.
This addition aims to bolster the stability of fuel cell output, thereby enhancing the overall efficiency
of the hybrid power system. In comparison with the traditional reinforcement learning algorithm,
the proposed approach demonstrates notable improvements: a reduction in hydrogen consump-
tion per 100 km by 16.3 kg, a 9.7% increase in the output power stability of the fuel cell, and a
1.8% enhancement in its efficiency.

Keywords: energy management strategy (EMS); hybrid electric train; reinforcement learning;
Two-Layer Deep Deterministic Policy Gradient (TL-DDPG); frequency decoupling

1. Introduction

The global community is currently grappling with escalating energy crises and height-
ened concerns over the worsening greenhouse effect. Hydrogen, acknowledged as a clean
energy source, holds substantial promise for future development [1]. The application of
hydrogen in rail transit is of considerable strategic significance, given its high environmen-
tal friendliness [2], and it is indicated by promising prospects in Hydrogen hybrid power
system [3].

In contrast to traditional trains relying on internal combustion engines or conven-
tional power sources like pantograph-catenary or third-rail currents, hydrogen fuel cell
hybrid trains offer advantages such as heightened environmental friendliness [4], reduced
construction costs [5], and enhanced resistance to interference, along with improved com-
patibility [6]. In a hybrid power system integrating multiple energy sources, the distribution
of output power from these sources plays a pivotal role in ensuring the safety of power
supply [7], the efficiency of power output, the economy of energy utilization, and the
dynamic performance of the train [8]. Consequently, the Energy Management System
(EMS) becomes an indispensable component for hydrogen fuel cell hybrid power sys-
tem trains.Broadly categorized, the EMS of hybrid power systems comprises three main
branches: rule-based, optimization-based, and data-based methods [9]. Rule-based EMS
entails establishing a set of rules to govern power allocation, relying on engineering
expertise or mathematical models [10]. However, this approach heavily depends on histori-
cal experience and model accuracy, lacking adaptability in real-world driving scenarios.
Conversely, optimization-based methods can be classified into global and instantaneous
optimization approaches. Dynamic programming (DP) emerges as a classic numerical
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algorithm for achieving global optimization. Additionally, commonly employed strate-
gies encompass Genetic Algorithms (GA) [11], Particle Swarm Optimization (PSO) [12],
Pontryagin’s Minimum Principle (PMP) [13], and Equivalent Consumption Minimization
Strategy (ECMS) [14]. Nevertheless, optimization-based EMS has inherent drawbacks,
including high computational demands and challenges in real-time updates, rendering it
more suitable for offline planning or integration with other strategies.

The operational parameters of rail transit vehicles exhibit distinctive characteristics.
In a single operation, the imperative to accomplish rapid acceleration, deceleration, and
stopping within a condensed timeframe results in swift fluctuations in power demand [15].
Furthermore, the fixed running lines and schedules contribute to a high degree of re-
peatability in running conditions during multiple vehicle operations [16]. Consequently,
data-driven methodologies have gained prominence in addressing energy management
challenges in rail transport and have garnered considerable attention within the scholarly
community [17]. Energy management strategies rooted in data-driven approaches, promi-
nently exemplified by reinforcement learning and its refined algorithms, have witnessed
increasing application. Reinforcement learning is delineated by four fundamental elements:
State, Action, Policy, and Reward. Throughout the reinforcement learning process, agents
engage in continual interaction with the environment, adapting their strategies based
on rewards garnered from environmental feedback. Presently, a multitude of studies is
dedicated to the energy management of hybrid systems utilizing reinforcement learning
techniques [18]. Among these techniques, Q-learning emerges as the foundational and most
extensively applied strategy [19]. Leveraging recent advancements in Deep Reinforcement
Learning (DRL) [20], researchers have assimilated cutting-edge findings to propose energy
management strategies for Hybrid Electric Vehicles (HEVs) based on Deep Q-Network
(DQN) for tasks with discrete action spaces [21]. Similarly, approaches founded on Deep
Deterministic Policy Gradients (DDPG) have been implemented for tasks with continuous
action spaces, showcasing effective policy behavior [22].

However, these reinforcement learning algorithms confront specific challenges. Firstly,
optimization results are significantly influenced by the specified initial value [23]. Inade-
quate specification may lead to slow convergence, diminished accuracy, and assigning a
random initial value can impede the scalability of the model. Secondly, the value function
Q is updated solely based on variables from adjacent time steps, such as the instantaneous
hydrogen consumption of the system and the instantaneous speed of the train [24]. This
limitation hinders the consideration of variables obtainable only after completing the entire
working condition, such as the smoothness of the fuel cell’s output power and the braking
energy recovery efficiency of the lithium battery.To address the impact of the initial value
on results, a method proposed in [25] employs the frequency decoupling approach. Initially,
the total demand power is allocated, with the low-frequency part assigned to the fuel cell
and the high-frequency part allocated to the storage battery. While this method effectively
enhances the stability of fuel cell output, the manual specification of the frequency threshold
remains a challenge [26]. In an alternative approach, Ref. [27] integrates expert experience
to guide the selection of the training initial value. However, reliance solely on expert
experience may not consistently prove effective. To surmount the limitation of single-step
variables, Ref. [28] introduces a sliding time window, enabling a single training session
to learn not only the state variable of a single step but also information from the entire
window. Building on this, Ref. [29] enhances the method by utilizing a neural network
to integrate information from the entire window for the agent to learn. Nonetheless, the
sliding time window may encounter difficulty covering a broad range, and the selection of
its length can introduce truncation effects on the data [30].

In order to solve the problem of initial value dependence of reinforcement learning and
difficult global optimization of global variables for energy management strategies, an en-
hanced energy management framework incorporating the frequency decoupling algorithm
into the Deep Deterministic Policy Gradient (DDPG) is proposed. Initially, a decoupling
algorithm based on the frequency of a low-pass filter is implemented to decompose the
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power demand signal of the train. Subsequently, a Two-Layer Deep Deterministic Policy
Gradient (TL-DDPG) is employed to guide the power allocation of the fuel cell and battery.
In this framework, the outer layer network integrates the frequency decoupling algorithm
to provide an initial value for the optimization in the inner layer. Detailed elucidation
of this approach will be provided in Section 3 of this paper. Test results under various
operating conditions demonstrate that the proposed algorithm effectively reduces costs,
enhances fuel cell efficiency and stability, and achieves superior braking energy recovery.
Diverging from prior works, this paper comprehensively considers the attributes of the
data-driven method, frequency decoupling, and rail transit operation. It deliberates on the
energy management strategy from a data-driven perspective. The primary contributions of
this work are summarized below:

(I) The impact of filter parameters on power flow in the dynamic system is unveiled
through frequency decoupling, and optimal filter parameters are determined using
the reinforcement learning method. This leads to enhanced operational efficiency,
improved output power stability of the fuel cell, and the attainment of superior
economic and energy-saving benefits.

(II) An two-layer reinforcement learning optimization framework is established for the
iterative optimization of both single-step variables and global variables. This approach
addresses the challenge of the reinforcement learning model struggling to assimilate
all information from the data. Furthermore, the initial value for power distribution is
acquired through frequency decoupling, presenting an intuitive relationship and a
favorable trade-off between fuel cell and battery costs.

(III) Tailored to rail transit operational scenarios, the proposed methodology conducts
the model training process on a local server rather than real-time training on the
train controller. This approach alleviates the burden on computing resources and
exhibits a favorable power distribution effect for typical situations characterized by
fixed running tracks.

The remainder of this paper proceeds as follows. In Section 2, the train hybrid system
modeling is detailed. Section 3 proposes an adaptive EMS combining frequency decoupling
and two-layer DDPG. In Section 4, the simulation results of the proposed strategy are
provided and analyzed, and the conclusions are given in Section 5.

2. Hybrid System Train Modeling

This article conducts research on a fuel cell hybrid train depicted in Figure 1. The
train configuration comprises a fuel cell system, a lithium-ion battery pack, two DC-DC
converters, and a traction system involving a DC-AC inverter and traction motor. Figure 1
also shows the input and output of the energy management module, as well as the output
characteristics of key components of the hybrid system, including fuel cells, batteries,
and traction motors. The model is established using MATLAB 2022a, and the intricate
parameters of the system are outlined in Table 1, whose data is from IEEE VTS Motor
Vehicles Challenge 2019 [31]. We have token the locomotive and line data from the race,
and reconstructed their powertrain models.

Table 1. Detailed Parameters of the System.

Locomotive

Mass 140 t

Number of traction drive 4

Efficiency of the electric drives (considered as constant) 85%

Gearbox ratio 4.14

Gearbox efficiency 95%

Diameter of a wheel 0.92
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Table 1. Cont.

Fuel Cell

Type of fuel cell PEMFC

Number of cells in series 350

Number of modules in parallel 2

Voltage range of a cell 0.3–0.75 V

Rated power of the fuel cell system 400 kW

Battery

Type of battery LiFePO4

Total number of cells 345

Rated voltage of a cell 3.8 V

Minimal voltage of a cell (charge) 4.0 V

Maximal voltage of a cell (discharge) 2.8 V

Minimal state of charge 20%

Maximal current of a cell 2 C = 320 A

Minimal current of a cell −0.5 C = −80 A

(a)
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Figure 1. Hybrid system train modeling and the corresponding component characteristics.



Energies 2024, 17, 1929 5 of 21

(a) Train Modeling: Assuming the train drives on a flat road with only the longitudinal
dynamic model considered, the force on the train can be expressed as Equation (1)

Fi = δma
Fa = 1/2 · ρ · A · Cd · v2

Ff = mg f
(1)

where Fi is the inertial force, Fa is the aerodynamic drag, Ff is the rolling resistance, δ is
the correction coefficient of rotating mass, m is the mass of train, a is the acceleration, ρ
is the air density, Cd is the aerodynamic coefficient, A is the fronted area, g is the gravity
coefficient, and f is the rolling resistance coefficient. Then, the power demand of the train
can be calculate by Equation (2).

Preq =
(

Fi + Fa + Ff
)
v (2)

The purpose of EMS is to distribute the power to different energy source, as shown in
Equation (3)

Preq = (Pfcη f c−dcdc + Pbatηbat−dcdc)ηT (3)

where Pfc is power of fuel cell, Pbat is power of battery, η f c−dcdc is the efficiency of
the fuel cell converter, ηbat−dcdc is the efficiency of the battery converter, and ηT is the
transmission efficiency.

(b) Fuel Cell Modeling: The fuel cell can be equivalent to a controlled source connected
to a fixed resistor. Specifically, the output voltage loss of fuel cell includes activation voltage
loss, ohmic voltage loss and concentration voltage loss. At the same time, when the control
quantity changes, the whole curve will have a certain delay characteristic [32]. The output
voltage of the fuel cell is expressed as Equations (4) and (5)

Vf c = E − Rohm · i f c (4)

E = Eoc−NA ln(
i f c

i0
) · 1

sTd / 3 + 1
(5)

where Eoc is the open circuit voltage, N is the number of fuel cell monomer, A is tafel slope,
i0 is the exchange current, Td is dynamic response time, 1

sTd/3+1 represents a delay, and s is
the symbol of transfer function. Rohm is internal resistance, i f c is fuel cell current, and Vf c is
fuel cell voltage. The characteristic curve is shown in the lower left of Figure 1.

(c) Battery Modeling: The model of the battery established in this paper mainly focuses
on the change of its SOC and output characteristics. SOC in the battery can be calculated
by [33]

˙SOC = − Ibat(t)
Qbat

(6)

where Ibat(t) is the battery current and Qbat is the battery nominal capacity. Furthermore,
the Equation can be written as

SOC = −Voc(SOC, t)−
√

V2
oc(SOC, t)− 4Rint(SOC, t)Pbat

2Rint(SOC, t)Qbat
(7)

Vbat = Voc − Rinti − K
Qbat

Qbat −
∫

idt
(
∫

idt + i∗) + Ae(−B
∫

idt) (8)

Vbat = Voc − Rinti − K
Qbat∫

idt − 0.1Qbat
i∗ − K

Qbat

Qbat −
∫

idt
+ Ae(−B

∫
idt) (9)

when voltage dynamics are neglected and the battery circuit do not exist RC branches. In
Equation (7), Pbat is the battery output power, Voc is the battery open circuit voltage, and
Rint is the battery internal resistance. Note that the values of Voc and Rint vary with SOC.
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The output voltage of the battery is expressed as Equations (8) and (9), where A is the
amplitude of the exponential region, B is the inverse amplitude of the exponential region,
K is polarization constant, and i∗ is the battery filtration current. Note that Equation (8)
represents discharging state, and (9) represents charging state. The characteristic curve is
shown in the lower middle of Figure 1.

(d) Traction Motor Modeling: For traction motor, this study focuses on its external
characteristics. For traction motor, this study focuses on its external characteristics. The
traction force supplied by the motor can be expressed by the Equation (10)

F = (T × η)/R (10)

where F is traction force, R is the radius of wheel and η is motor efficiency which is shown
in Figure 2.

Motor Speed/rpm

T
o
rq

u
e/

N
m

Figure 2. Motor efficiency diagram.

The power demand of motor is shown in the Equation (11):

P = (T × n × η)/9550 (11)

where n is the motor speed, which positively correlated the vehicle running speed. In this
equation, power is measured in kilowatts. The characteristic curve is shown in the lower
left of Figure 1.

3. Adaptive Energy Management Strategy Combining Frequency Decoupling and
Data-Driven Deep Reinforcement Learning

In this work, one of the methods suitable for fuel cells hybrid power system, namely,
frequency decoupling, will be combined with DDPG, which is a state-of-the-art data-driven
RL algorithm. Note that similar structures could also be applied to other methods and RL
frameworks. The key ideas of the proposed strategy are described as follows.
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3.1. Frequency Decoupling

To fulfill the requisite smoothness criteria for the output power in fuel cells, the energy
management strategy based on frequency decoupling has been introduced and widely
adopted in fuel cell hybrid systems [34]. The fundamental concept behind frequency
decoupling is treating the power demand signal as a low-frequency signal combined with
a high-frequency signal, with the two signals separated through signal processing. The
isolated low-frequency signal is considered as the output power of the hydrogen fuel cell,
while the high-frequency signal is deemed as the output power of the lithium battery.

The critical aspect of frequency decoupling involves the selection of the filtering al-
gorithm and the determination of the frequency threshold. Currently employed filtering
methods include Fourier filter, wavelet transform, Kalman filter, and others. The choice of
the frequency threshold predominantly relies on expert experience, necessitating the inte-
gration of the frequency decoupling strategy with other approaches. The implementation
workflow of the frequency decoupling strategy is illustrated in Figure 3.

Time

P
ow

er
P

ow
e

r

P
ow

er

Time

To FC

To BAT

FFT

WT

Kalman 
filtering

...

Frequency

A
m

pl
it

ud
e

Threshold
FC

BAT

Time

Figure 3. Diagram of the framework of the frequency decoupling.

3.2. Deep Deterministic Policy Gradient

DDPG is a model-free, off-policy reinforcement learning algorithm designed for learn-
ing policies θ in high-dimensional continuous action spaces. It stems from the DPG algo-
rithm and incorporates a deep function approximator, hence earning its name DDPG [35].
The effectiveness of DDPG relies on two key techniques. Firstly, experience replay enables
the algorithm to learn from a set of unrelated content. Secondly, akin to the hard fixed
Q-target network utilized in DQN, DDPG employs a “soft” target update for the actor-critic.
This technique enhances training stability as the evaluation network (θµ′

, θQ′
) updates

more swiftly than the target network (θµ, θQ). The architecture of DDPG is depicted in
Figure 4.

state

state

action

fully-connected network fully-connected network

Actor network Critic network

Policy Gradient
Sigmoid

Relu

Figure 4. Framework of DDPG.

3.3. Our Energy Management Strategy for Hydrogen Fuel Cell Hybrid Train

In this work, There are two DDPG frameworks are nested to achieve energy man-
agement. The one in outer layer is combined with the frequency decoupling algorithm to
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determine the threshold of frequency division by optimizing long-term variables (such
as the degree of fuel cell power fluctuation and average efficiency), so as to initially
allocate energy. The DDPG in the inner layer is further optimized by the instantaneous
variables (such as instantaneous speed, SOC, etc.) based on the initial value given after
frequency decoupling. Through the method proposed in this paper, we not only focus
on long-term variables, but also have a good specification of the initial value for training.
The block diagram of the method is shown in Figure 5, and more detailed discussion is
given below.

Costinner = KH2 m(H2) + KFCopen num(FCstart) +
∫
(KFCrun Pf c(t) + KBATrun Pbat(t))dt (12)

rinner = −(Kcostinner Costinner + Ksoc|(SOCnow − SOCinit)|) (13)

(a) Short-time optimization layer: In the inner DDPG, the state variable st comprises
the State of Charge (SOC), the speed and acceleration of the train, and the busbar voltage.
The control action a corresponds to the output power of the fuel cell. The immediate
cost is defined by Equation (12), encompassing the costs of hydrogen, fuel cells, and
lithium batteries. Given that the reward function is the negative counterpart of the
cost, rinner = −costinner . Specifically, if the battery’s SOC is excessively low, a penalty
term is incorporated, and r is defined by Equation (13). Here, KH2 represents the cost
of hydrogen ($/kg), m(H2) denotes the mass of hydrogen consumed in two adjacent
time steps, KFCopen represents the cost of activating the fuel cell once ($), while KFCrun and
KBATrun signify the operating costs of fuel cells and lithium batteries ($). The scale factors
Kcostinner and Ksoc are set to ensure a fundamental balance between the two components
during training.

(b) Long-time optimization layer: In the outer layer, there exist frequency decoupling
modules and an additional DDPG framework. The filter employed in the frequency
decoupling segment is defined as in Equation (14). The state variables sT accepted by this
DDPG encompass the standard deviation of the fuel cell output power in the last entire
operational condition, the average efficiency of the fuel cell, and the difference value
between the SOC at the end and the beginning. These variables are notably challenging
to measure within a single time step. The threshold fc for frequency decoupling is
determined by training the loss function expressed in Equation (15). The loss function
comprises three components representing the smoothness of the fuel cell, the system’s
efficiency, and the braking energy recovery of the lithium battery. Ka, Kb, and Kc are
scale factors. It’s important to note that to minimize the impact of sampling frequency
on results, this work doesn’t calculate the true value of fc but computes the ratio of fc
and the maximum frequency of the power signal to derive the filtering ratio f . The
relationship between the two is expressed in Equation (16), where fmax denotes the
maximum frequency of power demand. Notably, the value of f ranges between 0 and
1, representing the fraction of low-frequency signals. For instance, with a sampling
frequency of 10 Hz, indicating a maximum signal frequency of 5 Hz, if the optimized f
is 0.6, it signifies that signals from 0–3 Hz are considered low frequency, while signals
above 3 Hz are considered high frequency.

H(s) =
1

s
wc

+ 1
, wc = 2π ∗ fc (14)

Costouter = KaStd(Pf c) + Kb∆SOC + Kcη f c (15)

f =
fc

fmax
(16)
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In this study, the optimization of short-term variables is achieved through classical
DDPG, which focuses solely on optimizing the energy flow within a single-step time scale in
the hybrid system. The algorithm based on frequency decoupling furnishes an initial value
for optimization, and the outer DDPG is capable of addressing long-term variables, thereby
optimizing the system’s performance on a more rational scale. The DDPG networks of both
the inner and outer layers are updated according to the following Equations (17) and (18).

L =
1
N ∑

i

(
yi − Q(si, ai|θQ)

)2
(17)

∇θµJ ≈
1
N ∑

i
∇aQ(s, a|θQ)|a=si ,a=µ(si)

· ∇θµ ¯(s|θµ)|si (18)

4. Simulation Validation and Discussion

This section aims to validate the proposed adaptive hierarchical strategy. Initially, the
study explores the impact of the proposed algorithm on hydrogen consumption and State of
Charge (SOC) maintenance. Subsequently, to comprehend the influence of different reward
formulations on learning efficiency and the final policy, a comparison is made between the
proposed strategy and other method. Notably, in contrast to the majority of related studies,
the proposed energy management strategy takes into account the output stability of fuel
cells. Lastly, the robustness of the method is verified under different driving conditions.

To assess the experimental outcomes, the proposed method undergoes comparison
with other benchmark algorithms through simulation experiments conducted under the
driving conditions illustrated in Figures 6 and 7 [31]. The proposed algorithm is imple-
mented in Python 3.9, utilizing Tensorflow as the primary machine learning library, while
the hybrid system model is constructed using MATLAB R2022a. ONNX is employed
for transforming neural network models between Tensorflow and Simulink frameworks.
The simulation experiment is conducted on a server equipped with two NVIDIA RTX
3060 graphics cards. The algorithms involved in the comparison encompass rule-based,
filter-based, and traditional DDPG, with their profiles and settings detailed in Table 2.
The train’s running condition spans a 1200 s time series, and training continues until the
network converges. After each epoch completion (totaling 120 epochs), relevant results
such as the average efficiency of the fuel cell and the standard deviation of the output
power are recorded and averaged.
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Figure 7. Train power demand of our training condition.

Table 2. Introduction to the reference algorithm.

Algorithm Brief Introduction Parameter Set

Rule-based Design power distribution according to
expert experience

Preq < 0, Pbat = Preq ;
SOC < SOCmin Pf c = max ;

SOC > SOCmax Pf c = 0 ;
else . . .

DDPG Reinforcement learning The loss function is shown in Equation (13)

Frequency Decoupling low frequency to the fuel cell and high frequency
to the battery

The filtering algorithm is Fourier transform,
filter frequency is shown in Equations (14) and (16)

4.1. Validation of the Proposed Strategy

Figure 8 illustrates the results of the proposed algorithm after 120 training epochs
under the specified driving conditions (each condition spanning 1200 s as in Figure 6).
The results exhibit convergence tendencies. The loss curves of the inner and outer layers
are depicted in Figure 8a, showing similar change trends and confirming the rationality
of the loss function settings. At the 100th epoch, the filtering threshold is determined to
be 0.376 times the maximum frequency (as depicted in Figure 8b). This implies, under a
sampling frequency of 1 Hz, that power changes below 0.188 Hz are considered as filtering
threshold for the fuel cell, while the remaining power demand is supplied by the lithium
battery. A visual representation of the method is presented in Figure 8c. The time-frequency
diagram of the power is obtained by wavelet transform of the required power-time. The
brighter the colour, the greater the amplitude of a signal at that frequency at that point. The
horizontal lines in the figure are derived from the results in Figure 8b). The section below
the horizontal line will be allocated to the fuel cell and the section above will be allocated
to the battery.
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Figure 8. Result of our method. (a) Inner and outer layer loss curves. (b) Frequency threshold ratio.
(c) Frequency decoupling visualization. (d) Power allocation.
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Additionally, Figure 9 showcases the superiority of the proposed strategy across various
metrics. Figure 9a displays the output power curves of the fuel cell in the first training epoch
for the proposed method, frequency decoupling, and traditional DDPG. It is evident that
traditional DDPG generates initial values randomly during training, leading to volatility,
longer adjustment times, and difficulty in finding the optimal solution. When using the
frequency decoupling method, almost all power output comes from fuel cells, underutilizing
lithium batteries. Our method employs the result of frequency decoupling as the initial value,
enabling better learning of operating conditions’ characteristics. Notably, this represents only
the first training session, demonstrating the effectiveness of our method. The final result is
depicted in Figure 8d. Figure 9b illustrates the total cost of a single run using different energy
management strategies, encompassing fuel cell start and stop costs, hydrogen consumption
costs, and storage battery usage costs, as defined by Equation (12). Once training stabilizes,
the total cost of our strategy is $18.86, lower than other strategies. The comparison also reveals
that the proposed strategy outperforms traditional DDPG in terms of speed and convergence
due to the consideration of initial value optimization. Figure 9c demonstrates the impact of
different energy management strategies on the SOC trajectory, with the demand power curve
attached at the bottom to illustrate the effect of braking energy recovery for each strategy. Our
proposed strategy effectively enables the storage battery to absorb braking energy, showcasing
the largest SOC variation range, indicating the strategy’s ability to stimulate the potential
of lithium batteries while maintaining their performance. Figure 10a,b present the working
efficiency of the fuel cell across different strategies, showcasing the advantages of the proposed
strategy through two aspects: the average efficiency change of each epoch during training
and the proportion of different efficiency intervals after training. The proposed strategy
ensures the fuel cell operates mostly in the high-efficiency interval. Finally, Table 3 provides
a comprehensive comparison of different strategies. Notably, while the rule-based strategy
is relatively close to our strategy in indicators such as hydrogen consumption and SOC, it
neglects the switching loss of fuel cells, resulting in a significantly larger final cost compared
to other strategies.

Table 3. Comparison between different EMSs.

Algorithm Fuel Consumption (kg) Terminal SOC (%) Average Efficiency of Fuel Cell (%) Total Cost ($) Training Time (s)

Rule-based 2.78 62.40 54.78 56.49 40.12

DDPG 3.84 63.8 53.38 21.45 123.56 + 33.54

Frequency
Decoupling 5.02 69.52 51.49 34.29 66.38

Proposed 2.21 60.36 55.20 18.90 206.71 + 45.40

(a) (b)

Figure 9. Cont.
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Time/s

Time/s
(c)

Figure 9. Comparison of each index of the algorithm. (a) Fuel cell power of different algorithms at
the first epoch. (b) the total cost of one complete run. (c) SOC trajectory and energy recovery.
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Figure 10. Comparison of fuel cell efficiency under different strategies. (a) The average efficiency
curve of each training epoch. (b) Finished training, the proportion of efficiency intervals under
different strategies.

4.2. Impact of Different Reward Expressions on the Strategy

In this section, the hyperparameters setting of the reward function are discussed. For
the reward function, KH2 , KFCopen , KFCrun and KBATrun are determined by economics, and
they are given by Table 4.
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Table 4. Economic Parameters Setting.

Parameter Value

KH2 ($/kg) 5

KFCopen 40

KFCrun 159

KBATrun 105

Figure 11 explores the impact of different reward expressions on the strategy’s learning
efficiency and final policy when Kcostinner and Ksoc in Equation (13) assume different values
(essentially determining their ratio value). As observed, a reward function with greater
emphasis on SOC sustenance tends to exhibit conservative behavior, underutilizing the
battery buffer. Conversely, if more weight is assigned to minimizing hydrogen consumption,
the final policy may breach the battery SOC constraint, causing the battery to enter the
risky region in such instances. Simultaneously, adjustments to the weight of the standard
deviation of the fuel cell output power, the difference between the initial and final SOC,
and the average fuel cell efficiency should be considered. Given that the ranges of Std(Pf c),
∆SOC, and η f c are all confined within the 0–1 range (the fuel cell standard deviation has
been normalized), the ratio values of Ka, Kb, and Kc in Equation (15) are set to be equal.
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Figure 11. SOC Variation Under Different Hyperparameters.

4.3. Discussion of the Performance about Fuel Cell and Battery

This section delves into further details concerning fuel cells and storage batteries. The
frequent start and stop as well as the output stationarity of fuel cells are crucial factors
influencing their lifespan and hydrogen consumption. However, traditional strategies often
overlook the switching times of fuel cells and the smoothness of output power. Additionally,
a significant portion of the energy generated by train braking is typically dissipated through
braking resistance, leading to inadequate braking energy recovery in traditional strategies.
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Table 5 presents the standard deviation of switching times and output power of the fuel
cell under different energy management strategies. It is evident that the application of
reinforcement learning (DDPG and our strategy) reduces unnecessary switching losses and
effectively maintains the smoothness of the fuel cell’s output power. Figure 12 illustrates
the braking energy recovery ratio under different energy management strategies, calculated
as the ratio of absorbed power by the battery to the total braking power. The proposed
algorithm demonstrates the ability to maximize braking energy recovery. In contrast, the
DDPG strategy and the frequency decoupling strategy encounter issues such as the battery
absorbing energy from the hydrogen fuel cell, leading to overcharging.
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Figure 12. Comparison of braking energy recovery ratio under different strategies.

Table 5. Fuel Cell Related Indicators.

Algorithm Number of Fuel Cell Starts Standard Deviation

Rule-based 17 100.04

DDPG 9 95.63

Frequency Decoupling 13 88.93

Proposed 6 86.32

4.4. Robustness Verification against Different Driving Cycle

The working conditions vary between different scenarios. In order to evaluate the
robustness of the proposed strategy, another different driving cycles are tested. The new
test condition is shown in Figure 13 [31]. It can be seen that the overall speed of the vehicle
under the new condition is higher than that under the old condition, and the requirements
for the power system are more stringent. Therefore, we changed the cells of the battery
from 345 in Table 1 to 1580. Figure 14 and Table 6 show the energy allocation results
of different strategies under this condition. The results indicate that the cost under the
proposed strategy is lower than that of other strategies validating the robust performance
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of the proposed strategy. It should be noted that this result is pre-trained on the previous
condition, so that the common characteristics between different working conditions can be
better learned.
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Figure 13. New test condition. (a) Train driving cycle. (b) Train power demand.
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Figure 14. Power allocation under different EMS. (a) Rule-based EMS. (b) Frequency Decoupling.
(c) DDPG. (d) Proposed method.
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Table 6. Comparison between different EMSs in new condition.

Algorithm Fuel Consumption
(kg) Terminal SOC (%) Average Efficiency

of Fuel Cell (%) Total Cost ($) Training Time (s)

Rule-based 8.85 67.24 48.53 86.14 52.14

DDPG 7.70 66.87 49.86 45.96 178.55 + 55.54

Frequency
Decoupling 12.44 69.73 44.87 56.91 105.47

Proposed 5.96 65.53 51.69 37.70 252.84 + 68.40

5. Conclusions

In this research, An adaptive hierarchical EMS for trains of hydrogen fuel cell hybrid
power system is proposed by combining frequency decoupling and data-driven DDPG. The
goal is to address the difficulty of reinforcement learning based EMS to consider multiple
time steps, and training initial values, and directly facilitate online training in real-world
Settings. The main findings are summarized as follows.

Our proposed adaptive hierarchical EMS represents a significant advancement in
addressing the intricacies of hydrogen fuel cell hybrid power systems within the rail
transit context. The integration of frequency decoupling and data-driven DDPG not
only showcases reduced hydrogen consumption but also offers a strategic advantage
in battery SOC management over extended timeframes. This, in turn, enhances the
overall potential and lifespan of the battery while ensuring a stable and optimized fuel
cell power output. Unlike conventional RL-based EMS strategies, where random initial-
ization may lead to prolonged training times and potential pitfalls in fuel cell stability,
our approach leverages the synergies between reinforcement learning techniques and
frequency decoupling methods. This unique combination allows for efficient and safe
exploration in real-world environments, positioning our strategy as a robust contender
for future RL-based algorithms.

It is crucial to note that our study primarily focuses on energy management under
fixed working conditions, presenting an offline training strategy. Future endeavors will
delve into the dynamic coupling of speed trajectory optimization and energy management,
paving the way for real-time trajectory optimization and adaptive energy distribution for
trains. This ongoing research aims to bridge the gap between theoretical advancements and
practical applications, contributing to the sustainable and efficient integration of hydrogen
fuel cell technology in rail transit systems.

The study still has the following limitations: First, we design a double-layer nested
reinforcement learning framework, which results in larger model size and longer training
time. Secondly, due to the optimization of global variables, this study only trains the known
conditions of the working conditions, rather than online real-time training. When the working
conditions change, the model needs to be further fine-tuned to achieve better results.
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Nomenclature

Abbreviations
EMS Energy Management Strategy
SOC State of Charge
RL Reinforcement Learning
DDPG Deep Deterministic Policy Gradient
DP Dynamic programming
GA Genetic Algorithm
PSO Particle Swarm Optimization
ECMS Equivalent Consumption Minimization Strategy
DRL Deep Reinforcement Learning
DQN Deep Q-Network
Parameters
Fi inertial force
Fa aerodynamic drag
Ff rolling resistance
δ correction coefficient of rotating mass
m mass of train
a acceleration
ρ air density
Cd aerodynamic coefficient
A fronted area
g gravity coefficient
f rolling resistance coefficient
Pfc power of fuel cell
Pbat power of battery
η f c−dcdc efficiency of the fuel cell converter
ηbat−dcdc efficiency of the battery converter
ηT transmission efficiency
Eoc open circuit voltage
N number of fuel cell monomer
i0 exchange current
Td dynamic response time
Rohm internal resistance
i f c fuel cell current
Vf c fuel cell voltage
Pbat battery output power
Voc battery open circuit voltage
Rint battery internal resistance
B inverse amplitude of the exponential region
K polarization constant
i∗ battery filtration current
F traction force
R radius of wheel
η motor efficiency
KH2 cost of hydrogen ($/kg)
m(H2) mass of hydrogen consumed
KFCopen cost of turning on the fuel cell once ($)
KFCrun operating costs of fuel cells
KBATrun operating costs of lithium batteries ($)
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